(58)【調査した分野】(Int.Cl.,DB名)
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光異性化構造を有し、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つを含むか;または、
テトラカルボン酸およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つの光異性化構造を有する化合物を含む原料モノマーを反応させて得られる重合体の少なくとも1つと、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光異性化構造を有さず、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、請求項1に記載の光配向液晶配向剤。
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが異性化構造を有し、かつジアミンは式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つと、当該重合体と混合して用いるその他の重合体を含み、その他の重合体が、
テトラカルボン酸およびその誘導体、およびジアミンのいずれもが光異性化構造を有さない原料モノマーを反応させて得られる重合体である、請求項2に記載の光配向用液晶配向剤。
テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが異性化構造を有し、かつジアミンは式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体の少なくとも1つと、当該重合体と混合して用いるその他の重合体を含み、その他の重合体が、
テトラカルボン酸およびその誘導体、およびジアミンのいずれもが光異性化構造を有さず、かつジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得られる重合体である、請求項2に記載の光配向用液晶配向剤。
テトラカルボン酸およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光異性化構造を有する原料モノマーを反応させて得られる重合体の少なくとも1つと、
テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光異性化構造を有さず、かつ、ジアミンが式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、請求項1に記載の光配向液晶配向剤。
アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する、請求項1〜13のいずれか1項に記載の液晶配向剤。
【発明を実施するための形態】
【0032】
<光配向用液晶配向剤>
本発明の光配向用液晶配向剤は、テトラカルボン酸二無水物およびその誘導体から選ばれる少なくとも1つとジアミンとの反応生成物である、ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体を含有し、前記重合体の原料モノマーの少なくとも1つが光異性化構造を有し、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含むことを特徴とする。前記ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドとは、溶剤を含有する後述する液晶配向剤としたときに溶剤に溶解する成分であり、その液晶配向剤を後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。ポリアミック酸エステルは、前述のポリアミック酸と水酸基含有化合物、ハロゲン化物、エポキシ基含有化合物等とを反応させることにより合成する方法や、酸二無水物から誘導されるテトラカルボン酸ジエステルもしくはテトラカルボン酸ジエステルジクロライドとジアミンとを反応させることにより合成する方法により、合成することができる。酸二無水物から誘導されるテトラカルボン酸ジエステルは例えば、酸二無水物を2等量のアルコールと反応させ開環させて得ることができ、テトラカルボン酸ジエステルジクロライドは、テトラカルボン酸ジエステルを2等量の塩素化剤(例えば塩化チオニルなど)と反応させることで得ることができる。なお、ポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。本発明の光配向用液晶配向剤はこれらのポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドを1つ含んでいてもよいし、2つ以上含んでいてもよい。
【化24】
[この文献は図面を表示できません]
式(1)中のR
aおよびR
bの定義は前記の通りである。
【0033】
本発明の光配向用液晶配向剤は、テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光異性化構造を有し、かつ、ジアミンが上記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つを含むか、または、テトラカルボン酸およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光異性化構造を有する原料モノマーを反応させて得られる重合体の少なくとも1つと、テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光異性化構造を有さず、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、光配向液晶配向剤である。
【0034】
<光反応性構造>
本発明において、光反応性構造とは、紫外線照射で異性化を起こす光異性化構造のことを意味する。紫外線照射で異性化を起こす構造を有する原料モノマーを適宜使用することができる。
【0035】
前記光異性化構造を有するモノマーとしては、光異性化構造を有するテトラカルボン酸二無水物または光異性化構造を有するジアミンが挙げられ、感光性が良好な下記式(II)〜式(VI)で表される化合物の群から選ばれる少なくとも1つであることが好ましく、式(V)で表される化合物がより好ましい。
【化25】
[この文献は図面を表示できません]
式(II)〜(V)において、R
2およびR
3は−NH
2を有する1価の有機基または−CO−O−CO−を有する1価の有機基であり、式(IV)においてR
4は2価の有機基であり、式(VI)においてR
5は−NH
2もしくは−CO−O−CO−を有する芳香環である。
【0036】
光異性化構造は、本発明におけるポリアミック酸またはその誘導体の主鎖もしくは側鎖のどちらに組み込んでもよいが、主鎖に組み込むことにより、横電界方式の液晶表示素子に好適に用いることができる。
【0037】
前記光異性化構造を有する材料としては、下記式(II−1)、(II−2)、(III−1)、(III−2)、(IV−1)、(IV−2)、(V−1)〜(V−3)、(VI−1)、および(VI−2)で表される化合物の群から選ばれる少なくとも1つを好適に用いることができる。
【化26】
[この文献は図面を表示できません]
【化27】
[この文献は図面を表示できません]
上記各式において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、式(V−2)において、R
6は独立して−CH
3、−OCH
3、−CF
3、または−COOCH
3であり、aは0〜2の整数であり、式(V−3)において、環Aおよび環Bはそれぞれ独立して、単環式炭化水素、縮合多環式炭化水素および複素環から選ばれる少なくとも1つであり、R
11は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH
3)CO−、または−CON(CH
3)−であり、R
12は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH
3)CO−、または−CON(CH
3)−であり、R
11およびR
12において、直鎖アルキレンの−CH
2−の1つまたは2つは−O−で置換されてもよく、R
7〜R
10は、それぞれ独立して、−F、−CH
3、−OCH
3、−CF
3、または−OHであり、そして、b〜eは、それぞれ独立して、0〜4の整数である。
【0038】
上記式(V−1)、(V−2)および(VI−2)で表される化合物はその感光性の点から特に好適に用いることができる。式(V−2)および(VI−2)においては、アミノ基の結合位置がパラ位の化合物を、さらに式(V−2)においては、a=0の化合物を、その配向性の点からより好適に用いることができる。
【0039】
(II−1)〜(VI−2)に示す紫外線照射で異性化を起こし得る構造を持つ酸二無水物もしくはジアミンは下記式(II−1−1)〜(VI−2−3)で具体的に表すことができる。
【化28】
[この文献は図面を表示できません]
【化29】
[この文献は図面を表示できません]
【化30】
[この文献は図面を表示できません]
【化31】
[この文献は図面を表示できません]
【化32】
[この文献は図面を表示できません]
【化33】
[この文献は図面を表示できません]
【化34】
[この文献は図面を表示できません]
【0040】
これらの中でも(VI−1−1)〜(V−3−8)を紫外線照射で異性化を起こし得る構造を含む化合物とすることで、紫外線照射に対してより感度の高い光配向用液晶配向剤を得ることができる。(V−1−1)、(V−2−1)、(V−2−4)〜(V−2−11)および(V−3−1)〜(V−3−8)を紫外線照射で異性化を起こし得る構造を含む化合物とすることで、液晶分子をより一様に配向させることができる光配向用液晶配向剤を得ることができる。(V−2−4)〜(V−3−8)を紫外線照射で異性化を起こし得る構造を含む化合物とすることで、形成される配向膜がより着色の少なくできる光配向用液晶配向剤を得ることができる。
【0041】
光反応性構造を有さない(非感光性)テトラカルボン酸二無水物および光反応性構造を有する(感光性)テトラカルボン酸二無水物を併用する態様においては、配向膜の光に対する感度の低下を防ぐために、本発明のポリアミック酸またはその誘導体を製造する際の原料として使用するテトラカルボン酸二無水物の全量に対して、感光性テトラカルボン酸二無水物は0〜70モル%が好ましく、0〜50モル%が特に好ましい。また、光に対する感度、電気特性、残像特性等、前述した諸般の特性を改善するために感光性テトラカルボン酸二無水物を2つ以上併用してもよい。
【0042】
光反応性構造を有さない(非感光性)のジアミンおよび光反応性構造を有する(感光性)ジアミンを併用する態様においては、配向膜の光に対する感度の低下を防ぐために、本発明のポリアミック酸またはその誘導体を製造する際の原料として使用するジアミンの全量に対して、感光性ジアミンは20〜100モル%が好ましく、50〜100モル%が特に好ましい。また、光に対する感度、残像特性等、前述した諸般の特性を改善するために感光性ジアミンを2つ以上併用してもよい。前記のごとく、本発明の態様にはテトラカルボン酸二無水物の全量が非感光性テトラカルボン酸二無水物で占められる場合が含まれるが、その場合でもジアミンの全量の最低20モル%が感光性ジアミンであることが求められる。
【0043】
光に対する感度、残像特性等、前述した諸般の特性を改善するために、感光性テトラカルボン酸二無水物および感光性ジアミンを併用してもよく、それぞれを2つ以上併用してもよい。
【0044】
本発明の式(1)で表されるジアミンについて説明する。式(1)で表されるジアミンにおいて、R
aは水素またはメチルであり、R
bは水素、−OH、炭素数1〜6のアルキル、または炭素数1〜6のアルコキシである。2つのアミノ基のベンゼン環における置換位置は特に限定されるものではないが、液晶分子をより良く並ばせる液晶配向剤とするには、アミド基の置換位置に対し、3,5位または2,5位が望ましい。
【化35】
[この文献は図面を表示できません]
【0045】
式(1)で表されるジアミンはR
aが水素である、式(1−1)で表されるジアミンと、R
aがメチルである、式(1−2)で表されるジアミンに分類される。
【化36】
[この文献は図面を表示できません]
【化37】
[この文献は図面を表示できません]
式(1−1)および式(1−2)において、R
bは水素、−OH、炭素数1〜6のアルキル、または炭素数1〜6のアルコキシである。
【0046】
溶剤への溶解性がより高い液晶配向剤を所望する場合には、式(1−1)のジアミンを用いることが好ましい。また、より信頼性の高い液晶配向膜を所望する場合には、式(1−1)および式(1−2)において、R
bが水素または−OHである化合物を用いることが好ましい。
【0047】
式(1−1)で表されるジアミンの具体例は、以下の式(1−1−1)〜式(1−1−28)で表される化合物である。
【化38】
[この文献は図面を表示できません]
【0048】
【化39】
[この文献は図面を表示できません]
【0049】
【化40】
[この文献は図面を表示できません]
【0050】
式(1−2)で表されるジアミンの具体例は、以下の式(1−2−1)〜式(1−2−28)で表される化合物である。
【0051】
【化41】
[この文献は図面を表示できません]
【0052】
【化42】
[この文献は図面を表示できません]
【0053】
【化43】
[この文献は図面を表示できません]
【0054】
式(1−1−1)〜式(1−1−4)、式(1−2−1)および式(1−2−2)で表されるジアミンを本発明の液晶配向剤を構成するポリマーの原料の1つとして用いることによって、長時間の使用でも表示品位が低下することがなく、液晶配向性の高い液晶配向膜が得られる。
【0055】
式(1−2−1)〜式(1−2−6)で表されるジアミンを本発明の液晶配向剤を構成するポリマーの原料の1つとして用いることによって、式(1)で表されるジアミン以外のその他のジアミンを併用しても、ポリマー合成時にゲル化を抑えることが出来る。これはアミド基の水素がメチル基で置換されるため、水素結合による分子間の相互作用が消失するためと考えらえる。
【0056】
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドから選択される少なくとも1つを含有する光配向用液晶配向剤を製造する為に使用する、非感光性テトラカルボン酸二無水物について説明する。
本発明に使用される非感光性テトラカルボン酸二無水物は、公知の非感光性テトラカルボン酸二無水物から制限されることなく選択することができる。このような非感光性テトラカルボン酸二無水物は、芳香環に直接ジカルボン酸無水物が結合した芳香族系(複素芳香環系を含む)、および芳香環に直接ジカルボン酸無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。
【0057】
このような非感光性テトラカルボン酸二無水物の好適な例としては、原料入手の容易さや、ポリマー重合時の容易さ、膜の電気特性の点から、式(AN−I)〜(AN−VII)で表されるテトラカルボン酸二無水物が挙げられる。
【化44】
[この文献は図面を表示できません]
【0058】
式(AN−I)、(AN−IV)および(AN−V)において、Xは独立して単結合または−CH
2−である。式(AN−II)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO
2−、−C(CH
3)
2−、または−C(CF
3)
2−である。式(AN−II)〜(AN−IV)において、Yは独立して下記の3価の基の群から選ばれる1つであり、結合手は任意の炭素に連結しており、この基の少なくとも1つの水素はメチル、エチルまたはフェニルで置き換えられてもよい。
【0059】
【化45】
[この文献は図面を表示できません]
【0060】
式(AN−III)〜(AN−V)において、環A
10は炭素数3〜10の単環式炭化水素の基または炭素数6〜30の縮合多環式炭化水素の基であり、この基の少なくとも1つの水素はメチル、エチルまたはフェニルで置き換えられていてもよく、環に掛かっている結合手は環を構成する任意の炭素に連結しており、2本の結合手が同一の炭素に連結してもよい。式(AN−VI)において、X
10は炭素数2〜6のアルキレンであり、Meはメチルを表し、Phはフェニルを表す。式(AN−VII)において、G
10は独立して−O−、−COO−または−OCO−であり、rは独立して0または1である。
【0061】
さらに詳しくは以下の式(AN−1)〜(AN−16−14)の式で表されるテトラカルボン酸二無水物が挙げられる。
【0062】
[式(AN−1)で表されるテトラカルボン酸二無水物]
【化46】
[この文献は図面を表示できません]
式(AN−1)において、G
11は単結合、炭素数1〜12のアルキレン、1,4−フェニレン、または1,4−シクロヘキシレンである。X
11は独立して単結合または−CH
2−である。G
12は独立して下記の3価の基のどちらかである。
【化47】
[この文献は図面を表示できません]
G
12が>CH−であるとき、>CH−の水素は−CH
3に置き換えられてもよい。G
12が>N−であるとき、G
11が単結合および−CH
2−であることはなく、X
11は単結合であることはない。そしてR
11は水素または−CH
3である。
【0063】
式(AN−1)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化48】
[この文献は図面を表示できません]
式(AN−1−2)および(AN−1−14)において、mは1〜12の整数である。
【0064】
[式(AN−2)で表されるテトラカルボン酸二無水物]
【化49】
[この文献は図面を表示できません]
式(AN−2)において、R
12は独立して水素、−CH
3、−CH
2CH
3、またはフェニルである。
【0065】
式(AN−2)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化50】
[この文献は図面を表示できません]
【0066】
[式(AN−3)で表されるテトラカルボン酸二無水物]
【化51】
[この文献は図面を表示できません]
式(AN−3)において、環A
11はシクロヘキサン環またはベンゼン環である。
【0067】
式(AN−3)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化52】
[この文献は図面を表示できません]
【0068】
[式(AN−4)で表されるテトラカルボン酸二無水物]
【化53】
[この文献は図面を表示できません]
式(AN−4)において、G
13は単結合、−(CH
2)
m−、−O−、−S−、−C(CH
3)
2−、−SO
2−、−CO−、−C(CF
3)
2−、または下記の式(G13−1)で表される2価の基であり、mは1〜12の整数である。環A
11はそれぞれ独立してシクロヘキサン環またはベンゼン環である。G
13は環A
11の任意の位置に結合してよい。
【化54】
[この文献は図面を表示できません]
式(G13−1)において、G
13aおよびG
13bはそれぞれ独立して、単結合、−O−または−NHCO−で表される2価の基である。フェニレンは、1,4−フェニレンおよび1,3−フェニレンが好ましい。
【0069】
式(AN−4)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化55】
[この文献は図面を表示できません]
【化56】
[この文献は図面を表示できません]
式(AN−4−17)において、mは1〜12の整数である。
【化57】
[この文献は図面を表示できません]
【化58】
[この文献は図面を表示できません]
【0070】
[式(AN−5)で表されるテトラカルボン酸二無水物]
【化59】
[この文献は図面を表示できません]
式(AN−5)において、R
11は水素、または−CH
3である。ベンゼン環を構成する炭素原子に結合位置が固定されていないR
11は、ベンゼン環における結合位置が任意であることを示す。
【0071】
式(AN−5)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化60】
[この文献は図面を表示できません]
【0072】
[式(AN−6)で表されるテトラカルボン酸二無水物]
【化61】
[この文献は図面を表示できません]
式(AN−6)において、X
11は独立して単結合または−CH
2−である。X
12は−CH
2−、−CH
2CH
2−または−CH=CH−である。nは1または2である。
【0073】
式(AN−6)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化62】
[この文献は図面を表示できません]
【0074】
[式(AN−7)で表されるテトラカルボン酸二無水物]
【化63】
[この文献は図面を表示できません]
式(AN−7)において、X
11は単結合または−CH
2−である。
【0075】
式(AN−7)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化64】
[この文献は図面を表示できません]
【0076】
[式(AN−8)で表されるテトラカルボン酸二無水物]
【化65】
[この文献は図面を表示できません]
式(AN−8)において、X
11は単結合または−CH
2−である。R
12は水素、−CH
3、−CH
2CH
3、またはフェニルであり、環A
12はシクロヘキサン環またはシクロヘキセン環である。
【0077】
式(AN−8)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化66】
[この文献は図面を表示できません]
【0078】
[式(AN−9)で表されるテトラカルボン酸二無水物]
【化67】
[この文献は図面を表示できません]
式(AN−9)において、rはそれぞれ独立して0または1である。
【0079】
式(AN−9)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化68】
[この文献は図面を表示できません]
【0080】
[式(AN−10−1)および式(AN−10−2)で表されるテトラカルボン酸二無水物]
【化69】
[この文献は図面を表示できません]
【0081】
[式(AN−11)で表されるテトラカルボン酸二無水物]
【化70】
[この文献は図面を表示できません]
式(AN−11)において、環A
11は独立してシクロヘキサン環またはベンゼン環である。
【0082】
式(AN−11)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化71】
[この文献は図面を表示できません]
【0083】
[式(AN−12)で表されるテトラカルボン酸二無水物]
【化72】
[この文献は図面を表示できません]
式(AN−12)において、環A
11はそれぞれ独立してシクロヘキサン環またはベンゼン環である。
【0084】
式(AN−12)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化73】
[この文献は図面を表示できません]
【0085】
[式(AN−13)で表されるテトラカルボン酸二無水物]
【化74】
[この文献は図面を表示できません]
式(AN−13)において、X
13は炭素数2〜6のアルキレンであり、Phはフェニルを表す。
【0086】
式(AN−13)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化75】
[この文献は図面を表示できません]
【0087】
[式(AN−14)で表されるテトラカルボン酸二無水物]
【化76】
[この文献は図面を表示できません]
式(AN−14)において、G
14は独立して−O−、−COO−または−OCO−であり、rは独立して0または1である。
【0088】
式(AN−14)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化77】
[この文献は図面を表示できません]
【0089】
[式(AN−15)で表されるテトラカルボン酸二無水物]
【化78】
[この文献は図面を表示できません]
式(AN−15)において、wは1〜10の整数である。
【0090】
式(AN−15)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
【化79】
[この文献は図面を表示できません]
【0091】
上記以外のテトラカルボン酸二無水物として、下記の化合物が挙げられる。
【化80】
[この文献は図面を表示できません]
【0092】
上記酸二無水物において、各特性を向上させる好適な材料について述べる。
【0093】
光異性化構造を有するモノマーを使用した重合体に使用する酸二無水物においては、液晶の配向性を向上させることを重視する場合には、式(AN−1)、(AN−3)、および(AN−4)で表される化合物が好ましく、式(AN−1−2)、(AN−1−13)、(AN−3−2)、(AN−4−5)、(AN−4−17)および(AN−4−29)で表される化合物がより好ましい。式(AN−1−2)においては、m=4または8が好ましい。式(AN−4−17)においては、m=4または8が好ましく、m=8がより好ましい。
【0094】
液晶表示素子の透過率を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−1−1)、(AN−1−2)、(AN−2−1)、(AN−3−1)、(AN−4−17)、(AN−4−30)、(AN−5−1)、(AN−7−2)、(AN−10)、(AN−16−3)、および(AN−16−4)で表される化合物が好ましい。式(AN−1−2)においては、m=4または8が好ましい。式(AN−4−17)においては、m=4または8が好ましく、m=8がより好ましい。
【0095】
液晶表示素子のVHRを向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−1−1)、(AN−1−2)、(AN−2−1)、(AN−3−1)、(AN−4−17)、(AN−4−30)、(AN−7−2)、(AN−10)、(AN−16−1)、(AN−16−3)、および(AN−16−4)で表される化合物が好ましい。式(AN−1−2)においては、m=4または8が好ましい。式(AN−4−17)においては、m=4または8が好ましく、m=8がより好ましい。
【0096】
液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、上記の酸二無水物のうち、式(AN−1−13)、(AN−3−2)、(AN−4−21)、(AN−4−29)、および(AN−11−3)で表される化合物が好ましい。
【0097】
光異性化構造を有するモノマーを使用しない重合体に使用する酸二無水物においては、液晶の配向性を向上させることを重視する場合には、式(AN−1)、(AN−3)、および(AN−4)で表される化合物が好ましく、式(AN−1−1)、(AN−1−2)、(AN−1−13)、(AN−2−1)、(AN−3−2)、(AN−4−17)および(AN−4−29)で表される化合物がより好ましい。式(AN−1−2)においては、m=4または8が好ましい。式(AN−4−17)においては、m=4または8が好ましい。
【0098】
液晶表示素子の透過率を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−1−1)、(AN−1−2)、(AN−2−1)、(AN−3−1)、(AN−4−17)、(AN−4−30)、(AN−5−1)、(AN−7−2)、(AN−10)、(AN−16−3)、および(AN−16−4)で表される化合物が好ましい。式(AN−1−2)においては、m=4または8が好ましい。式(AN−4−17)においては、m=4または8が好ましく、m=8がより好ましい。
【0099】
液晶表示素子のVHRを向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−1−1)、(AN−1−2)、(AN−2−1)、(AN−3−1)、(AN−4−17)、(AN−4−30)、(AN−7−2)、(AN−10)、(AN−16−1)、(AN−16−3)、および(AN−16−4)で表される化合物が好ましい。式(AN−1−2)においては、m=4または8が好ましい。式(AN−4−17)においては、m=4または8が好ましく、m=8がより好ましい。
【0100】
液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、上記の酸二無水物のうち、式(AN−1−13)、(AN−3−2)、(AN−4−21)、(AN−4−29)、および(AN−11−3)で表される化合物が好ましい。
【0101】
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドから選択される少なくとも1つを含有する光配向用液晶配向剤を製造する為に使用する、式(1)で表されるジアミン以外の非感光性ジアミンおよび非感光性ジヒドラジドについて説明する。本発明の光配向用液晶配向剤を製造するにあたっては、公知の非感光性ジアミンおよび非感光性ジヒドラジドから制限されることなく選択することができる。
【0102】
ジアミンはその構造によって2種類に分けることができる。即ち、2つのアミノ基を結ぶ骨格を主鎖として見たときに、主鎖から分岐する基、即ち側鎖基を有するジアミンと側鎖基を持たないジアミンである。この側鎖基はプレチルト角を大きくする効果を有する基である。このような効果を有する側鎖基は炭素数3以上の基である必要があり、具体的な例として炭素数3以上のアルキル、炭素数3以上のアルコキシ、炭素数3以上のアルコキシアルキル、およびステロイド骨格を有する基を挙げることができる。1つ以上の環を有する基であって、その末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシおよび炭素数2以上のアルコキシアルキルのいずれか1つを有する基も側鎖基としての効果を有する。以下の説明では、このような側鎖基を有するジアミンを側鎖型ジアミンと称することがある。そして、このような側鎖基を持たないジアミンを非側鎖型ジアミンと称することがある。
【0103】
非側鎖型ジアミンと側鎖型ジアミンを適切に使い分けることにより、それぞれに必要なプレチルト角に対応することができる。側鎖型ジアミンは、本発明の特性を損なわない程度に併用するのが好ましい。また側鎖型ジアミンおよび非側鎖型ジアミンについて、液晶に対する垂直配向性、電圧保持率、焼き付き特性および配向性を向上させる目的で取捨選択して使用することが好ましい。
【0104】
非側鎖型ジアミンについて説明する。既知の側鎖を有さないジアミンとしては、以下の式(DI−1)〜(DI−16)のジアミンを挙げることができる。
【化81】
[この文献は図面を表示できません]
【0105】
上記の式(DI−1)において、G
20は、−CH
2−であり、少なくとも1つの−CH
2−は−NH−、−O−に置き換えられてもよく、mは1〜12の整数であり、アルキレンの少なくとも1つの水素は−OHに置き換えられてもよい。式(DI−3)および式(DI−5)〜式(DI−7)において、G
21は独立して単結合、−NH−、−NCH
3−、−O−、−S−、−S−S−、−SO
2−、−CO−、−COO−、−CONCH
3−、−CONH−、−C(CH
3)
2−、−C(CF
3)
2−、−(CH
2)
m−、−O−(CH
2)
m−O−、−N(CH
3)−(CH
2)
k−N(CH
3)−、−(O−C
2H
4)
m−O−、−O−CH
2−C(CF
3)
2−CH
2−O−、−O−CO−(CH
2)
m−CO−O−、−CO−O−(CH
2)
m−O−CO−、−(CH
2)
m−NH−(CH
2)
m−、−CO−(CH
2)
k−NH−(CH
2)
k−、−(NH−(CH
2)
m)
k−NH−、−CO−C
3H
6−(NH−C
3H
6)
n−CO−、または−S−(CH
2)
m−S−であり、mは独立して1〜12の整数であり、kは1〜5の整数であり、nは1または2である。式(DI−4)において、sは独立して0〜2の整数である。式(DI−6)および式(DI−7)において、G
22は独立して単結合、−O−、−S−、−CO−、−C(CH
3)
2−、−C(CF
3)
2−、−NH−、または炭素数1〜10のアルキレンである。式(DI−2)〜式(DI−7)中のシクロヘキサン環およびベンゼン環の少なくとも1つの水素は、−F、−Cl、炭素数1〜3のアルキル、−OCH
3、−OH、−CF
3、−CO
2H、−CONH
2、−NHC
6H
5、フェニル、またはベンジルで置き換えられてもよく、加えて式(DI−4)においては、シクロヘキサン環およびベンゼン環の少なくとも1つの水素は下記式(DI−4−a)〜式(DI−4−e)で表される基の群から選ばれる1つで置き換えられていてもよい。環を構成する炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。そして、シクロヘキサン環またはベンゼン環への−NH
2の結合位置は、G
21またはG
22の結合位置を除く任意の位置である。
【0106】
【化82】
[この文献は図面を表示できません]
式(DI−4−a)および式(DI−4−b)において、R
20は独立して水素または−CH
3である。
【0107】
【化83】
[この文献は図面を表示できません]
式(DI−11)において、rは0または1である。式(DI−8)〜式(DI−11)において、環に結合する−NH
2の結合位置は、任意の位置である。
【0108】
【化84】
[この文献は図面を表示できません]
【0109】
式(DI−12)において、R
21およびR
22は独立して炭素数1〜3のアルキルまたはフェニルであり、G
23は独立して炭素数1〜6のアルキレン、フェニレンまたはアルキル置換されたフェニレンであり、wは1〜10の整数である。式(DI−13)において、R
23は独立して炭素数1〜5のアルキル、炭素数1〜5のアルコキシまたは−Clであり、pは独立して0〜3の整数であり、qは0〜4の整数である。式(DI−14)において、環Bは単環の複素環式芳香族基であり、R
24は水素、−F、−Cl、炭素数1〜6のアルキル、アルコキシ、ビニル、アルキニルであり、qは独立して0〜4の整数である。式(DI−15)において、環Cは複素環式芳香族基または複素環式脂肪族基である。式(DI−16)において、G
24は単結合、炭素数2〜6のアルキレンまたは1,4−フェニレンであり、rは0または1である。そして、環を構成する炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。式(DI−13)〜式(DI−16)において、環に結合する−NH
2の結合位置は、任意の位置である。
【0110】
上記式(DI−1)〜式(DI−16)の側鎖を有さないジアミンとして、以下の式(DI−1−1)〜式(DI−16−1)の具体例を挙げることができる。
【0111】
式(DI−1)で表されるジアミンの例を以下に示す。
【化85】
[この文献は図面を表示できません]
式(DI−1−7)および式(DI−1−8)において、kはそれぞれ独立して、1〜3の整数である。
【0112】
式(DI−2)〜式(DI−3)で表されるジアミンの例を以下に示す。
【化86】
[この文献は図面を表示できません]
【0113】
式(DI−4)で表されるジアミンの例を以下に示す。
【化87】
[この文献は図面を表示できません]
【化88】
[この文献は図面を表示できません]
【化89】
[この文献は図面を表示できません]
【化90】
[この文献は図面を表示できません]
【0114】
式(DI−5)で表されるジアミンの例を以下に示す。
【化91】
[この文献は図面を表示できません]
式(DI−5−1)において、mは1〜12の整数である。
【化92】
[この文献は図面を表示できません]
式(DI−5−12)および式(DI−5−13)において、mは1〜12の整数である。
【化93】
[この文献は図面を表示できません]
式(DI−5−16)において、vは1〜6の整数である。
【化94】
[この文献は図面を表示できません]
式(DI−5−30)において、kは1〜5の整数である。
【化95】
[この文献は図面を表示できません]
式(DI−5−35)〜式(DI−5−37)、および式(DI−5−39)において、mは1〜12の整数であり、式(DI−5−38)および式(DI−5−39)において、kは1〜5の整数であり、式(DI−5−40)において、nは1または2の整数である。
【0115】
式(DI−6)で表されるジアミンの例を以下に示す。
【化96】
[この文献は図面を表示できません]
【0116】
式(DI−7)で表されるジアミンの例を以下に示す。
【化97】
[この文献は図面を表示できません]
式(DI−7−3)および式(DI−7−4)において、mは1〜12の整数であり、nは独立して1または2である。
【化98】
[この文献は図面を表示できません]
【化99】
[この文献は図面を表示できません]
【0117】
【化100】
[この文献は図面を表示できません]
式(DI−7−12)において、mは1〜12の整数である。
【0118】
式(DI−8)で表されるジアミンの例を以下に示す。
【化101】
[この文献は図面を表示できません]
【0119】
式(DI−9)で表されるジアミンの例を以下に示す。
【化102】
[この文献は図面を表示できません]
【0120】
式(DI−10)で表されるジアミンの例を以下に示す。
【化103】
[この文献は図面を表示できません]
【0121】
式(DI−11)で表されるジアミンの例を以下に示す。
【化104】
[この文献は図面を表示できません]
【0122】
式(DI−12)で表されるジアミンの例を以下に示す。
【化105】
[この文献は図面を表示できません]
【0123】
式(DI−13)で表されるジアミンの例を以下に示す。
【化106】
[この文献は図面を表示できません]
【化107】
[この文献は図面を表示できません]
【化108】
[この文献は図面を表示できません]
【0124】
式(DI−14)で表されるジアミンの例を以下に示す。
【化109】
[この文献は図面を表示できません]
【0125】
式(DI−15)で表されるジアミンの例を以下に示す。
【化110】
[この文献は図面を表示できません]
【化111】
[この文献は図面を表示できません]
【0126】
式(DI−16)で表されるジアミンの例を以下に示す。
【化112】
[この文献は図面を表示できません]
【0127】
ジヒドラジドについて説明する。既知の側鎖を有さないジヒドラジドとしては、以下の式(DIH−1)〜式(DIH−3)を挙げることができる。
【0128】
【化113】
[この文献は図面を表示できません]
【0129】
式(DIH−1)において、G
25は単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO
2−、−C(CH
3)
2−、または−C(CF
3)
2−である。式(DIH−2)において、環Dはシクロヘキサン環、ベンゼン環またはナフタレン環であり、この基の少なくとも1つの水素はメチル、エチル、またはフェニルで置き換えられてもよい。式(DIH−3)において、環Eはそれぞれ独立してシクロヘキサン環、またはベンゼン環であり、この基の少なくとも1つの水素はメチル、エチル、またはフェニルで置き換えられてもよく、Yは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO
2−、−C(CH
3)
2−、または−C(CF
3)
2−である。式(DIH−2)および式(DIH−3)において、環に結合する−CONHNH
2の結合位置は、任意の位置である。
【0130】
式(DIH−1)〜(DIH−3)の例を以下に示す。
【化114】
[この文献は図面を表示できません]
式(DIH−1−2)において、mは1〜12の整数である。
【化115】
[この文献は図面を表示できません]
【化116】
[この文献は図面を表示できません]
【0131】
このような非側鎖型ジアミンおよびジヒドラジドは液晶表示素子のイオン密度を低下させる等、電気特性を改善する効果がある。本発明の液晶配向剤に用いられるポリアミック酸、ポリアミック酸エステルもしくはポリイミドからなる光配向用液晶配向剤を製造する為に使用するジアミンとして非側鎖型ジアミンおよび/またはジヒドラジドを用いる場合、ジアミンおよびジヒドラジドの総量に占めるその割合を0〜90モル%とすることが好ましく、0〜50モル%とすることがより好ましい。
【0132】
側鎖型ジアミンについて説明する。側鎖型ジアミンの側鎖基としては、以下の基をあげることができる。
【0133】
側鎖基としてまず、アルキル、アルキルオキシ、アルキルオキシアルキル、アルキルカルボニル、アルキルカルボニルオキシ、アルキルオキシカルボニル、アルキルアミノカルボニル、アルケニル、アルケニルオキシ、アルケニルカルボニル、アルケニルカルボニルオキシ、アルケニルオキシカルボニル、アルケニルアミノカルボニル、アルキニル、アルキニルオキシ、アルキニルカルボニル、アルキニルカルボニルオキシ、アルキニルオキシカルボニル、アルキニルアミノカルボニル等を挙げることができる。これらの基におけるアルキル、アルケニルおよびアルキニルは、いずれも炭素数3以上の基である。但し、アルキルオキシアルキルにおいては、基全体で炭素数3以上であればよい。これらの基は直鎖状であっても分岐鎖状であってもよい。
【0134】
次に、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシまたは炭素数2以上のアルコキシアルキルを有することを条件に、フェニル、フェニルアルキル、フェニルアルキルオキシ、フェニルオキシ、フェニルカルボニル、フェニルカルボニルオキシ、フェニルオキシカルボニル、フェニルアミノカルボニル、フェニルシクロヘキシルオキシ、炭素数3以上のシクロアルキル、シクロヘキシルアルキル、シクロヘキシルオキシ、シクロヘキシルオキシカルボニル、シクロヘキシルフェニル、シクロヘキシルフェニルアルキル、シクロヘキシルフェニルオキシ、ビス(シクロヘキシル)オキシ、ビス(シクロヘキシル)アルキル、ビス(シクロヘキシル)フェニル、ビス(シクロヘキシル)フェニルアルキル、ビス(シクロヘキシル)オキシカルボニル、ビス(シクロヘキシル)フェニルオキシカルボニル、およびシクロヘキシルビス(フェニル)オキシカルボニル等の環構造の基を挙げることができる。
【0135】
さらに、2個以上のベンゼン環を有する基、2個以上のシクロヘキサン環を有する基、またはベンゼン環およびシクロヘキサン環で構成される2環以上の基であって、結合基が独立して単結合、−O−、−COO−、−OCO−、−CONH−または炭素数1〜3のアルキレンであり、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のフッ素置換アルキル、炭素数1以上のアルコキシ、または炭素数2以上のアルコキシアルキルを有する環集合基を挙げることができる。ステロイド骨格を有する基も側鎖基として有効である。
【0136】
側鎖を有するジアミンとしては、以下の式(DI−31)〜式(DI−35)で表される化合物を挙げることができる。
【化117】
[この文献は図面を表示できません]
式(DI−31)において、G
26は単結合、−O−、−COO−、−OCO−、−CO−、−CONH−、−CH
2O−、−OCH
2−、−CF
2O−、−OCF
2−、または−(CH
2)
m’−であり、m’は1〜12の整数である。G
26の好ましい例は単結合、−O−、−COO−、−OCO−、−CH
2O−、および炭素数1〜3のアルキレンであり、特に好ましい例は単結合、−O−、−COO−、−OCO−、−CH
2O−、−CH
2−および−CH
2CH
2−である。R
25は炭素数3〜30のアルキル、フェニル、ステロイド骨格を有する基、または下記の式(DI−31−a)で表される基である。このアルキルにおいて、少なくとも1つの水素は−Fで置き換えられてもよく、そして少なくとも1つの−CH
2−は−O−、−CH=CH−または−C≡C−で置き換えられていてもよい。このフェニルの水素は、−F、−CH
3、−OCH
3、−OCH
2F、−OCHF
2、−OCF
3、炭素数3〜30のアルキルまたは炭素数3〜30のアルコキシで置き換えられていてもよい。ベンゼン環に結合する−NH
2の結合位置はその環において任意の位置であることを示すが、その結合位置はメタまたはパラであることが好ましい。即ち、基「R
25−G
26−」の結合位置を1位としたとき、2つの結合位置は3位と5位、または2位と5位であることが好ましい。
【0137】
【化118】
[この文献は図面を表示できません]
式(DI−31−a)において、G
27、G
28およびG
29は結合基であり、これらは独立して単結合、または炭素数1〜12のアルキレンであり、このアルキレンの1以上の−CH
2−は−O−、−COO−、−OCO−、−CONH−、−CH=CH−で置き換えられていてもよい。環B
21、環B
22、環B
23および環B
24は独立して1,4−フェニレン、1,4−シクロへキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、ピリジン−2,5−ジイル、ナフタレン−1,5−ジイル、ナフタレン−2,7−ジイルまたはアントラセン−9,10−ジイルであり、環B
21、環B
22、環B
23および環B
24において、少なくとも1つの水素は−Fまたは−CH
3で置き換えられてもよく、s、tおよびuは独立して0〜2の整数であって、これらの合計は1〜5であり、s、tまたはuが2であるとき、各々の括弧内の2つの結合基は同じであっても異なってもよく、そして、2つの環は同じであっても異なっていてもよい。R
26は水素、−F、−OH、炭素数1〜30のアルキル、炭素数1〜30のフッ素置換アルキル、炭素数1〜30のアルコキシ、−CN、−OCH
2F、−OCHF
2、または−OCF
3であり、この炭素数1〜30のアルキルの少なくとも1つの−CH
2−は下記式(DI−31−b)で表される2価の基で置き換えられていてもよい。
【0138】
【化119】
[この文献は図面を表示できません]
式(DI−31−b)において、R
27およびR
28は独立して炭素数1〜3のアルキルであり、vは1〜6の整数である。R
26の好ましい例は炭素数1〜30のアルキルおよび炭素数1〜30のアルコキシである。
【0139】
【化120】
[この文献は図面を表示できません]
【0140】
式(DI−32)および式(DI−33)において、G
30は独立して単結合、−CO−または−CH
2−であり、R
29は独立して水素または−CH
3であり、R
30は水素、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルである。式(DI−33)におけるベンゼン環の少なくとも1つの水素は、炭素数1〜20のアルキルまたはフェニルで置き換えられてもよい。そして、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。式(DI−32)における2つの基「−フェニレン−G
30−O−」の一方はステロイド核の3位に結合し、もう一方はステロイド核の6位に結合していることが好ましい。式(DI−33)における2つの基「−フェニレン−G
30−O−」のベンゼン環への結合位置は、ステロイド核の結合位置に対して、それぞれメタ位またはパラ位であることが好ましい。式(DI−32)および式(DI−33)において、ベンゼン環に結合する−NH
2はその環における結合位置が任意であることを示す。
【0141】
【化121】
[この文献は図面を表示できません]
【0142】
式(DI−34)および式(DI−35)において、G
31は独立して−O−、−NH−または炭素数1〜6のアルキレンであり、G
32は単結合または炭素数1〜3のアルキレンである。R
31は水素または炭素数1〜20のアルキルであり、このアルキルの少なくとも1つの−CH
2−は、−O−、−CH=CH−または−C≡C−で置き換えられてもよい。R
32は炭素数6〜22のアルキルであり、R
33は水素または炭素数1〜22のアルキルである。環B
25は1,4−フェニレンまたは1,4−シクロヘキシレンであり、rは0または1である。そしてベンゼン環に結合する−NH
2はその環における結合位置が任意であることを示すが、独立してG
31の結合位置に対してメタ位またはパラ位であることが好ましい。
【0143】
側鎖型ジアミンの具体例を以下に例示する。上記式(DI−31)〜式(DI−35)の側鎖を有するジアミンとして、下記の式(DI−31−1)〜式(DI−35−3)で表される化合物を挙げることができる。
【0144】
式(DI−31)で表される化合物の例を以下に示す。
【化122】
[この文献は図面を表示できません]
【0145】
式(DI−31−1)〜式(DI−31−11)において、R
34は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり、好ましくは炭素数5〜25のアルキルまたは炭素数5〜25のアルコキシである。R
35は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり、好ましくは炭素数3〜25のアルキルまたは炭素数3〜25のアルコキシである。
【0146】
【化123】
[この文献は図面を表示できません]
式(DI−31−12)〜式(DI−31−17)において、R
36は炭素数4〜30のアルキルであり、好ましくは炭素数6〜25のアルキルである。R
37は炭素数6〜30のアルキルであり、好ましくは炭素数8〜25のアルキルである。
【0147】
【化124】
[この文献は図面を表示できません]
【化125】
[この文献は図面を表示できません]
【化126】
[この文献は図面を表示できません]
【化127】
[この文献は図面を表示できません]
【化128】
[この文献は図面を表示できません]
式(DI−31−18)〜式(DI−31−43)において、R
38は炭素数1〜20のアルキルまたは炭素数1〜20のアルコキシであり、好ましくは炭素数3〜20のアルキルまたは炭素数3〜20のアルコキシである。R
39は水素、−F、炭素数1〜30のアルキル、炭素数1〜30のアルコキシ、−CN、−OCH
2F、−OCHF
2または−OCF
3であり、好ましくは炭素数3〜25のアルキル、または炭素数3〜25のアルコキシである。そしてG
33は炭素数1〜20のアルキレンである。
【0148】
【化129】
[この文献は図面を表示できません]
【化130】
[この文献は図面を表示できません]
【化131】
[この文献は図面を表示できません]
【化132】
[この文献は図面を表示できません]
【0149】
式(DI−32)で表される化合物の例を以下に示す。
【化133】
[この文献は図面を表示できません]
【0150】
式(DI−33)で表される化合物の例を以下に示す。
【化134】
[この文献は図面を表示できません]
【化135】
[この文献は図面を表示できません]
【0151】
式(DI−34)で表される化合物の例を以下に示す。
【化136】
[この文献は図面を表示できません]
【化137】
[この文献は図面を表示できません]
【化138】
[この文献は図面を表示できません]
【化139】
[この文献は図面を表示できません]
【化140】
[この文献は図面を表示できません]
式(DI−34−1)〜式(DI−34−14)において、R
40は水素または炭素数1〜20のアルキル、好ましくは水素または炭素数1〜10のアルキルであり、そしてR
41は水素または炭素数1〜12のアルキルである。
【0152】
式(DI−35)で表される化合物の例を以下に示す。
【化141】
[この文献は図面を表示できません]
式(DI−35−1)〜式(DI−35−3)において、R
37は炭素数6〜30のアルキルであり、R
41は水素または炭素数1〜12のアルキルである。
【0153】
本発明におけるジアミンとしては、式(DI−1−1)〜式(DI−16−1)、式(DIH−1−1)〜式(DIH−3−6)および式(DI−31−1)〜式(DI−35−3)で表されるジアミン以外のジアミンも用いることができる。このようなジアミンとしては、例えば下記式(DI−36−1)〜式(DI−36−13)で表される化合物が挙げられる。
【化142】
[この文献は図面を表示できません]
式(DI−36−1)〜式(DI−36−8)において、R
42はそれぞれ独立して炭素数3〜30のアルキル基を表す。
【0154】
【化143】
[この文献は図面を表示できません]
式(DI−36−9)〜式(DI−36−11)において、eは2〜10の整数であり、式(DI−36−12)中、R
43はそれぞれ独立して水素、−NHBocまたは−N(Boc)
2であり、R
43の少なくとも1つは−NHBocまたは−N(Boc)
2であり、式(DI−36−13)において、R
44は−NHBocまたは−N(Boc)
2であり、そして、mは1〜12の整数である。ここでBocはt−ブトキシカルボニル基である。
【0155】
上記ジアミンおよびジヒドラジドにおいて、各特性を向上させる好適な材料について述べる。
【0156】
光異性化構造を有するモノマーを使用した重合体に使用するジアミンおよびジヒドラジドにおいては、液晶の配向性をさらに向上させることを重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−1−3)、式(DI−5−1)、式(DI−5−5)、式(DI−5−9)、式(DI−5−12)、式(DI−5−13)、式(DI−5−29)、式(DI−6−7)、式(DI−7−3)、および式(DI−11−2)で表されるジアミンを用いるのが好ましい。式(DI−5−1)においては、m=2、4または6が好ましく、m=4がより好ましい。式(DI−5−12)においては、m=2〜6が好ましく、m=5がより好ましい。式(DI−5−13)においては、m=1または2が好ましく、m=1がより好ましい。式(DI−5−30)においては、k=2が好ましい。式(DI−7−3)においては、m=2、3または4、n=1または2が好ましく、m=3、n=1がより好ましい。
【0157】
透過率を向上させることを重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−1−3)、式(DI−2−1)、式(DI−5−1)、式(DI−5−5)、式(DI−5−17)、および式(DI−7−3)で表されるジアミンを用いるのが好ましく、(DI−2−1)で表されるジアミンがより好ましい。式(DI−5−1)においては、m=2、4または6が好ましく、m=4がより好ましい。式(DI−7−3)においては、m=2または3、n=1または2が好ましく、m=3、n=1がより好ましい。
【0158】
液晶表示素子のVHRを向上させることを重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−2−1)、式(DI−4−1)、式(DI−4−2)、式(DI−4−10)、式(DI−4−15)、式(DI−5−1)、式(DI−5−28)、式(DI−5−30)、および式(DI−13−1)で表されるジアミンを用いるのが好ましく、式(DI−2−1)、式(DI−5−1)、および式(DI−13−1)で表されるジアミンがより好ましい。式(DI−5−1)においては、m=1が好ましい。式(DI−5−30)においては、k=2が好ましい。
【0159】
液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−4−1)、式(DI−4−2)、式(DI−4−10)、式(DI−4−15)、式(DI−5−1)、式(DI−5−12)、式(DI−5−13)、式(DI−5−28)、式(DI−7−12)、および式(DI−16−1)で表されるジアミンを用いるのが好ましく、式(DI−4−1)、式(DI−5−1)、および式(DI−5−13)で表されるジアミンがより好ましい。式(DI−5−1)においては、m=2、4または6が好ましく、m=4がより好ましい。式(DI−5−12)においては、m=2〜6が好ましく、m=5がより好ましい。式(DI−5−13)においては、m=1または2が好ましく、m=1がより好ましい。式(DI−7−12)においては、m=3または4が好ましく、m=4がより好ましい。
【0160】
光異性化構造を有するモノマーを使用しない重合体に使用するジアミンおよびジヒドラジドにおいては、層分離性、つまり液晶の配向性をさらに向上させることを重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−4−1)、式(DI−4−2)、式(DI−4−10)、式(DI−5−1)、式(DI−5−9)、式(DI−5−28)、および式(DIH−2−1)で表されるジアミンおよびジヒドラジドを用いるのが好ましい。式(DI−5−1)においては、m=1、2または4が好ましく、m=1または2がより好ましい。
【0161】
透過率を向上させることを重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−1−2)、式(DI−2−1)、式(DI−5−1)、および式(DI−7−3)で表されるジアミンを用いるのが好ましく、式(DI−2−1)で表されるジアミンがより好ましい。式(DI−5−1)において、m=1、2または4が好ましく、m=1または2がより好ましい。式(DI−7−3)においては、m=2または3、n=1、または2が好ましく、m=3、n=1がより好ましい。
【0162】
液晶表示素子のVHRを向上させることを重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−2−1)、式(DI−4−1)、式(DI−4−2)、式(DI−4−15)、式(DI−5−1)、式(DI−5−28)、式(DI−5−30)、および式(DI−13−1)で表されるジアミンを用いるのが好ましく、式(DI−2−1)、式(DI−5−1)、および式(DI−13−1)で表されるジアミンが特に好ましい。中でも式(DI−5−1)において、m=1、または2が特に好ましく、式(DI−5−30)において、k=2が特に好ましい。
【0163】
液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、上記のジアミンおよびジヒドラジドのうち、式(DI−4−1)、式(DI−4−2)、式(DI−4−10)、式(DI−4−15)、式(DI−5−1)、式(DI−5−9)、式(DI−5−12)、式(DI−5−13)、式(DI−5−28)、式(DI−5−30)、式(DI−7−12)、および式(DI−16−1)で表されるジアミンを用いるのが好ましく、式(DI−4−1)、式(DI−5−1)、および式(DI−5−12)で表されるジアミンが特に好ましい。中でも式(DI−5−1)において、m=1、または2が好ましく、式(DI−5−12)において、m=2〜6が好ましく、m=5が特に好ましく、式(DI−5−13)において、m=1、または2が好ましく、m=1が特に好ましく、式(DI−5−30)において、k=2が特に好ましい。式(DI−7−12)においては、m=3または4が好ましく、m=4がより好ましい。
【0164】
各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられていてもよい。このような置き換えは、ポリアミック酸を生成する際の重合反応のターミネーションを起こすことができ、それ以上の重合反応の進行を抑えることができる。このため、このような置き換えによって、得られる重合体(ポリアミック酸、ポリアミック酸エステルもしくはポリイミド)の分子量を容易に制御することができ、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノアミンに置き換えられるジアミンは、本発明の効果が損なわれなければ、1種でも2種以上でもよい。前記モノアミンとしては、例えばアニリン、4−ヒドロキシアニリン、シクロヘキシルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、およびn−エイコシルアミンが挙げられる。
【0165】
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドは、そのモノマーにモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物をモノマーに含むことによって、得られるポリアミック酸またはその誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはその誘導体を用いることにより、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノマー中のモノイソシアネート化合物の含有量は、モノマー中のジアミンおよびテトラカルボン酸二無水物の総量に対して1〜10モル%であることが、前記の観点から好ましい。前記モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。
【0166】
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドは、上記の酸無水物の混合物とジアミンを溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリアミック酸合成における条件をそのまま適用することができる。使用する溶剤については後述する。
【0167】
本発明の光配向用液晶配向剤は、本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミド以外の他の成分をさらに含有していてもよい。他の成分は、1種であっても2種以上であってもよい。他の成分として、例えば後述するその他のポリマーや化合物などが挙げられる。
【0168】
その他のポリマーとしては、光異性化構造を有さず、式(1)のジアミンを含まない原料モノマーを反応させて得たポリアミック酸、ポリアミック酸エステル、またはポリイミド(以下、“その他のポリアミック酸またはその誘導体”という。)、ポリエステル、ポリアミド、ポリシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げる事ができる。1種であっても2種以上であってもよい。これらのうち、その他のポリアミック酸またはその誘導体およびポリシロキサンが好ましく、その他のポリアミック酸またはその誘導体がより好ましい。
【0169】
その他のポリアミック酸またはその誘導体を合成するために用いられるテトラカルボン酸二無水物としては、本発明の液晶配向剤の必須成分であるポリアミック酸またはその誘導体を合成するために用いられるテトラカルボン酸二無水物として公知のテトラカルボン酸二無水物から制限されることなく選択することができ、上記に例示したものと同じものを挙げることができる。
【0170】
好ましいテトラカルボン酸二無水物としては、上述の光異性化構造を有するモノマーを使用しない重合体に使用するテトラカルボン酸二無水物が挙げられる。
【0171】
その他のポリアミック酸またはその誘導体を合成するために用いられるテトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物を、全テトラカルボン酸二無水物に対して、10モル%以上含むものである事が好ましく、30モル%以上含むものであることがより好ましい。
【0172】
その他のポリアミック酸またはその誘導体を合成するために用いられるジアミンおよびジヒドラジドとしては、本発明の液晶配向剤の必須成分であるポリアミック酸またはその誘導体を合成するために用いることのできるその他のジアミンとして上記に例示したものと同じものを挙げることができる。
【0173】
好ましいジアミンおよびジヒドラジドとしては、上述の光異性化構造を有するモノマーを使用しない重合体に使用するジアミンおよびジヒドラジドが挙げられる。
【0174】
その他のポリアミック酸またはその誘導体を合成するために用いられるジアミンは、芳香族ジアミンを、全ジアミンに対して、30モル%以上含むものである事が好ましく、50モル%以上含むものであることがより好ましい。
【0175】
その他のポリアミック酸またはその誘導体は、それぞれ、本発明の液晶配向剤の必須成分であるポリアミック酸またはその誘導体の合成方法として下記に記載したところに準じて合成することができる。
【0176】
本発明の光配向用液晶配向剤は、前述の通り、テトラカルボン酸二無水物およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光異性化構造を有し、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つを含むか、または、テトラカルボン酸およびその誘導体、およびジアミンからなる群から選ばれる少なくとも1つが光異性化構造を有する原料モノマーを反応させて得られる重合体の少なくとも1つと、テトラカルボン酸二無水物およびその誘導体、およびジアミンのいずれもが光異性化構造を有さず、かつ、ジアミンが下記式(1)で表される化合物の少なくとも1つを含む原料モノマーを反応させて得た重合体の少なくとも1つとを同時に含む、光配向液晶配向剤である。
【0177】
本発明の光配向用液晶配向剤は、少なくとも2つのポリマーを含有していてもよい。2つのポリマーのうち光異性化構造を有するポリマーを〔A〕、光異性化構造を有さないポリマーを〔B〕とすると、〔A〕の重量平均分子量を〔B〕の重量平均分子量よりも小さく制御することによって、両ポリマーの混合物を含有する液晶配向剤を基板に塗布し、予備乾燥を行う過程で、形成されたポリマー膜の上層に光異性化構造を有する〔A〕を、下層に光異性化構造を有さない〔B〕を偏析させることができると考えられる。このため、配向膜表面は光異性化構造を有するポリマー〔A〕の存在が支配的となり、配向膜を形成するポリマーの総量を基準として光異性化構造を有するポリマー〔A〕の含有量が少なくても、本発明の光配向用液晶配向剤によって形成された配向膜は高い液晶配向性を示す。
【0178】
上記のように2つのポリマーを含む液晶配向剤を用いて薄膜を形成する過程で、表面エネルギーが小さいポリマーは上層に、表面エネルギーの大きいポリマーは下層に分離する現象が知られている。上記の配向膜が層分離しているかの確認は、例えば、形成した膜の表面エネルギーを測定し、ポリマー〔A〕のみを含有する液晶配向剤によって形成された膜の表面エネルギーの値と同じか、それに近い値であることによって確認することができる。
【0179】
上記のように良好な光配向性を示すために、本発明の光配向用液晶配向剤中の〔A〕の含有量は、含まれるポリマー全量を100としたとき20重量%以上であることが必要であり、30重量%以上であることが好ましく、50重量%以上であることがより好ましい。また、液晶配向膜の透過率を良好に保つために、〔A〕の含有量は90重量%以下であることが必要であり、70重量%以下であることが好ましく、50重量%以下であることがより好ましい。ただし、ここで述べる〔A〕の好ましい含有量は1つの指針であり、原料に用いるテトラカルボン酸二無水物またはジアミンの組み合わせによって変動することがある。特にアゾベンゼンの構造を有する原料化合物を使用する場合、透過性を良好に保つためには、〔A〕の含有量は上記の割合よりもおよそ10〜20重量%少なく設定される。
【0180】
ポリマーの重量平均分子量は、〔A〕を8,000〜40,000に、〔B〕を50,000〜200,000に調整することにより、好ましくは〔A〕の分子量(MW)を10,000〜30,000に、〔B〕の分子量(MW)を80,000〜160,000に調整することにより、前記のような層分離を引き起こすことができる。ポリマーの重量平均分子量は、例えば、テトラカルボン酸二無水物とジアミンを反応させる時間によって調整することができる。重合反応中の反応液を少量採取して、これに含まれるポリマーの重量平均分子量をゲルパーミエーションクロマトグラフィー(GPC)法による測定によって求め、その測定値によって反応の終点を決定することができる。また、反応開始時にテトラカルボン酸二無水物およびジアミンの相当量を、モノカルボン酸またはモノアミンに置き換えることにより、重合反応のターミネーションを起こさせて、重量平均分子量を制御する方法もよく知られている。
【0181】
前記[A]成分および前記[B]成分の合計量に対する[A]成分の割合としては、10重量%〜100重量%が好ましく、20重量%〜100重量%がさらに好ましい。
【0182】
前記ポリシロキサンとしては、特開2009−036966、特開2010−185001、特開2011−102963、特開2011−253175、特開2012−159825、国際公開2008/044644、国際公開2009/148099、国際公開2010/074261、国際公開2010/074264、国際公開2010/126108、国際公開2011/068123、国際公開2011/068127、国際公開2011/068128、国際公開2012/115157、国際公開2012/165354等に開示されているポリシロキサンをさらに含有することができる。
【0183】
<アルケニル置換ナジイミド化合物>
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1種で用いてもよいし、2種以上を併用してもよい。アルケニル置換ナジイミド化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
【0184】
以下にナジイミド化合物について具体的に説明する。
アルケニル置換ナジイミド化合物は、本発明で用いられるポリアミック酸またはその誘導体を溶解する溶剤に溶解させることができる化合物であることが好ましい。このようなアルケニル置換ナジイミド化合物の例は、下記の式(NA)で表される化合物が挙げられる。
【化144】
[この文献は図面を表示できません]
式(NA)において、L
1およびL
2は独立して水素、炭素数1〜12のアルキル、炭素数3〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリールまたはベンジルであり、nは1または2である。
【0185】
式(NA)において、n=1のとき、Wは炭素数1〜12のアルキル、炭素数2〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリール、ベンジル、−Z
1−(O)
r−(Z
2O)
k−Z
3−H(ここで、Z
1、Z
2およびZ
3は独立して炭素数2〜6のアルキレンであり、rは0または1であり、そして、kは1〜30の整数である。)で表される基、−(Z
4)
r−B−Z
5−H(ここで、Z
4およびZ
5は独立して炭素数1〜4のアルキレンまたは炭素数5〜8のシクロアルキレンであり、Bはフェニレンであり、そして、rは0または1である。)で表される基、−B−T−B−H(ここで、Bはフェニレンであり、そして、Tは−CH
2−、−C(CH
3)
2−、−O−、−CO−、−S−、または−SO
2−である。)で表される基、またはこれらの基の1〜3個の水素が−OHで置換された基である。
【0186】
このとき、好ましいWは、炭素数1〜8のアルキル、炭素数3〜4のアルケニル、シクロヘキシル、フェニル、ベンジル、炭素数4〜10のポリ(エチレンオキシ)エチル、フェニルオキシフェニル、フェニルメチルフェニル、フェニルイソプロピリデンフェニル、およびこれらの基の1個または2個の水素が−OHで置き換えられた基である。
【0187】
式(NA)において、n=2のとき、Wは炭素数2〜20のアルキレン、炭素数5〜8のシクロアルキレン、炭素数6〜12のアリーレン、−Z
1−O−(Z
2O)
k−Z
3−(ここで、Z
1〜Z
3、およびkの定義は前記の通りである。)で表される基、−Z
4−B−Z
5−(ここで、Z
4、Z
5およびBの定義は前記の通りである。)で表される基、−B−(O−B)
r−T−(B−O)
r−B−(ここで、Bはフェニレンであり、Tは炭素数1〜3のアルキレン、−O−または−SO
2−であり、rの定義は前記の通りである。)で表される基、またはこれらの基の1〜3個の水素が−OHで置き換えられた基である。
【0188】
このとき、好ましいWは炭素数2〜12のアルキレン、シクロヘキシレン、フェニレン、トリレン、キシリレン、−C
3H
6−O−(Z
2−O)
n−O−C
3H
6−(ここで、Z
2は炭素数2〜6のアルキレンであり、nは1または2である。)で表される基、−B−T−B−(ここで、Bはフェニレンであり、そして、Tは−CH
2−、−O−または−SO
2−である。)で表される基、−B−O−B−C
3H
6−B−O−B−(ここで、Bはフェニレンである。)で表される基、およびこれらの基の1個または2個の水素が−OHで置き換えられた基である。
【0189】
このようなアルケニル置換ナジイミド化合物は、例えば特許2729565に記載されているように、アルケニル置換ナジック酸無水物誘導体とジアミンとを80〜220℃の温度で0.5〜20時間保持することにより合成して得られる化合物や市販されている化合物を用いることができる。アルケニル置換ナジイミド化合物の具体例として、以下に示す化合物が挙げられる。
【0190】
N−メチル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0191】
N−(2−エチルヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−フェニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0192】
N−フェニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0193】
N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシ−1−プロペニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシシクロヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0194】
N−(4−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(p−ヒドロキシベンジル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
【0195】
N−{2−(2−ヒドロキシエトキシ)エチル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、およびこれらのオリゴマー、
【0196】
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0197】
1,2−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、ビス〔2’−{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、ビス〔2’−{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、1,4−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、1,4−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、
【0198】
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0199】
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
【0200】
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、
【0201】
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、1,6−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3−ヒドロキシ−ヘキサン、1,12−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3,6−ジヒドロキシ−ドデカン、1,3−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−シクロヘキサン、1,5−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}−3−ヒドロキシ−ペンタン、1,4−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−ベンゼン、
【0202】
1,4−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2,5−ジヒドロキシ−ベンゼン、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルメチルシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2,3−ジヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0203】
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェノキシ}フェニル〕プロパン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェニル}メタン、ビス{3−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−4−ヒドロキシ−フェニル}エーテル、ビス{3−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−フェニル}スルホン、1,1,1−トリ{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)}フェノキシメチルプロパン、N,N’,N”−トリ(エチレンメタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)イソシアヌレート、およびこれらのオリゴマー等。
【0204】
さらに、本発明に用いられるアルケニル置換ナジイミド化合物は、非対称なアルキレン・フェニレン基を含む下記の式で表される化合物でもよい。
【化145】
[この文献は図面を表示できません]
【0205】
アルケニル置換ナジイミド化合物のうち、好ましい化合物を以下に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
【0206】
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。
【0207】
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン。
【0208】
更に好ましいアルケニル置換ナジイミド化合物を以下に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)。
【0209】
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)。
【0210】
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。
【0211】
そして、特に好ましいアルケニル置換ナジイミド化合物としては、下記式(NA−1)で表されるビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、式(NA−2)で表されるN,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、および式(NA−3)で表されるN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)が挙げられる。
【化146】
[この文献は図面を表示できません]
【0212】
<ラジカル重合性不飽和二重結合を有する化合物>
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。なお、ラジカル重合性不飽和二重結合を有する化合物にはアルケニル置換ナジイミド化合物は含まれない。ラジカル重合性不飽和二重結合を有する化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
【0213】
なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像の発生を抑制するために、ラジカル重合性不飽和二重結合を有する化合物/アルケニル置換ナジイミド化合物が重量比で0.1〜10であることが好ましく、0.5〜5であることがより好ましい。
【0214】
以下にラジカル重合性不飽和二重結合有する化合物について具体的に説明する。
ラジカル重合性不飽和二重結合を有する化合物としては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド等の(メタ)アクリル酸誘導体、およびビスマレイミドが挙げられる。ラジカル重合性不飽和二重結合を有する化合物は、ラジカル重合性不飽和二重結合を2つ以上有する(メタ)アクリル酸誘導体であることがより好ましい。
【0215】
(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−2−メチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−ヒドロキシエチル、および(メタ)アクリル酸−2−ヒドロキシプロピルが挙げられる。
【0216】
2官能(メタ)アクリル酸エステルの具体例としては、例えばエチレンビスアクリレート、東亜合成化学工業(株)の製品であるアロニックスM−210、アロニックスM−240およびアロニックスM−6200、日本化薬(株)の製品であるKAYARADHDDA、KAYARADHX−220、KAYARADR−604およびKAYARADR−684、大阪有機化学工業(株)の製品であるV260、V312およびV335HP、並びに共栄社油脂化学工業(株)の製品であるライトアクリレートBA−4EA、ライトアクリレートBP−4PAおよびライトアクリレートBP−2PAが挙げられる。
【0217】
3官能以上の多官能(メタ)アクリル酸エステルの具体例としては、例えば4,4’−メチレンビス(N,N−ジヒドロキシエチレンアクリレートアニリン)、東亜合成化学工業(株)の製品であるアロニックスM−400、アロニックスM−405、アロニックスM−450、アロニックスM−7100、アロニックスM−8030、アロニックスM−8060、日本化薬(株)の製品であるKAYARADTMPTA、KAYARADDPCA−20、KAYARADDPCA−30、KAYARADDPCA−60、KAYARADDPCA−120、および大阪有機化学工業(株)の製品であるVGPTが挙げられる。
【0218】
(メタ)アクリル酸アミド誘導体の具体例としては、例えばN−イソプロピルアクリルアミド、N−イソプロピルメタクリルアミド、N−n−プロピルアクリルアミド、N−n−プロピルメタクリルアミド、N−シクロプロピルアクリルアミド、N−シクロプロピルメタクリルアミド、N−エトキシエチルアクリルアミド、N−エトキシエチルメタクリルアミド、N−テトラヒドロフルフリルアクリルアミド、N−テトラヒドロフルフリルメタクリルアミド、N−エチルアクリルアミド、N−エチル−N−メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピペリジン、N−アクリロイルピロリジン、N,N’−メチレンビスアクリルアミド、N,N’−エチレンビスアクリルアミド、N,N’−ジヒドロキシエチレンビスアクリルアミド、N−(4−ヒドロキシフェニル)メタクリルアミド、N−フェニルメタクリルアミド、N−ブチルメタクリルアミド、N−(iso−ブトキシメチル)メタクリルアミド、N−[2−(N,N−ジメチルアミノ)エチル]メタクリルアミド、N,N−ジメチルメタクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、N−(メトキシメチル)メタクリルアミド、N−(ヒドロキシメチル)−2−メタクリルアミド、N−ベンジル−2−メタクリルアミド、およびN,N’−メチレンビスメタクリルアミドが挙げられる。
【0219】
上記の(メタ)アクリル酸誘導体のうち、N,N’−メチレンビスアクリルアミド、N,N’−ジヒドロキシエチレン−ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N−ジヒドロキシエチレンアクリレートアニリン)が特に好ましい。
【0220】
ビスマレイミドとしては、例えばケイ・アイ化成(株)製のBMI−70およびBMI−80、並びに大和化成工業(株)製のBMI−1000、BMI−3000、BMI−4000、BMI−5000およびBMI−7000が挙げられる。
【0221】
<オキサジン化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサジン化合物をさらに含有していてもよい。オキサジン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサジン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
【0222】
以下にオキサジン化合物について具体的に説明する。
オキサジン化合物は、ポリアミック酸またはその誘導体を溶解させる溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。
【0223】
またオキサジン化合物におけるオキサジン構造の数は、特に限定されない。
【0224】
オキサジンの構造には種々の構造が知られている。本発明では、オキサジンの構造は特に限定されないが、オキサジン化合物におけるオキサジン構造には、ベンゾオキサジンやナフトオキサジン等の、縮合多環芳香族基を含む芳香族基を有するオキサジンの構造が挙げられる。
【0225】
オキサジン化合物としては、例えば下記式(OX−1)〜式(OX−6)に示す化合物が挙げられる。なお下記式において、環の中心に向けて表示されている結合は、環を構成しかつ置換基の結合が可能ないずれかの炭素に結合していることを示す。
【化147】
[この文献は図面を表示できません]
式(OX−1)〜式(OX−3)において、L
3およびL
4は炭素数1〜30の有機基であり、式(OX−1)〜式(OX−6)において、L
5〜L
8は水素または炭素数1〜6の炭化水素基であり、式(OX−3)、式(OX−4)および式(OX−6)において、Q
1は単結合、−O−、−S−、−S−S−、−SO
2−、−CO−、−CONH−、−NHCO−、−C(CH
3)
2−、−C(CF
3)
2−、−(CH
2)
v−、−O−(CH
2)
v−O−、−S−(CH
2)
v−S−であり、ここでvは1〜6の整数であり、式(OX−5)および式(OX−6)において、Q
2は独立して単結合、−O−、−S−、−CO−、−C(CH
3)
2−、−C(CF
3)
2−または炭素数1〜3のアルキレンであり、Q
2におけるベンゼン環、ナフタレン環に結合している水素は独立して−F、−CH
3、−OH、−COOH、−SO
3H、−PO
3H
2と置き換えられていてもよい。
【0226】
また、オキサジン化合物には、オキサジン構造を側鎖に有するオリゴマーやポリマー、オキサジン構造を主鎖中に有するオリゴマーやポリマーが含まれる。
【0227】
式(OX−1)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
【化148】
[この文献は図面を表示できません]
【0228】
式(OX−1−2)において、L
3は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
【0229】
式(OX−2)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
【化149】
[この文献は図面を表示できません]
【化150】
[この文献は図面を表示できません]
【0230】
式中、L
3は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
【0231】
式(OX−3)で表されるオキサジン化合物としては、下記式(OX−3−I)で表されるオキサジン化合物が挙げられる。
【化151】
[この文献は図面を表示できません]
式(OX−3−I)において、L
3およびL
4は炭素数1〜30の有機基であり、L
5からL
8は水素または炭素数1〜6の炭化水素基であり、Q
1は単結合、−CH
2−、−C(CH
3)
2−、−CO−、−O−、−SO
2−、−C(CH
3)
2−、または−C(CF
3)
2−である。式(OX−3−I)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
【0232】
【化152】
[この文献は図面を表示できません]
【化153】
[この文献は図面を表示できません]
【化154】
[この文献は図面を表示できません]
【化155】
[この文献は図面を表示できません]
式中、L
3およびL
4は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
【0233】
式(OX−4)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
【化156】
[この文献は図面を表示できません]
【化157】
[この文献は図面を表示できません]
【0234】
式(OX−5)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
【化158】
[この文献は図面を表示できません]
【0235】
式(OX−6)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
【化159】
[この文献は図面を表示できません]
【化160】
[この文献は図面を表示できません]
【化161】
[この文献は図面を表示できません]
【0236】
これらのうち、より好ましくは、式(OX−2−1)、式(OX−3−1)、式(OX−3−3)、式(OX−3−5)、式(OX−3−7)、式(OX−3−9)、式(OX−4−1)〜式(OX−4−6)、式(OX−5−3)、式(OX−5−4)、および式(OX−6−2)〜式(OX−6−4)で表されるオキサジン化合物が挙げられる。
【0237】
オキサジン化合物は、国際公開2004/009708、特開平11−12258、特開2004−352670に記載の方法と同様の方法で製造することができる。
【0238】
式(OX−1)で表されるオキサジン化合物は、フェノール化合物と1級アミンとアルデヒドとを反応させることによって得られる(国際公開2004/009708参照。)。
【0239】
式(OX−2)で表されるオキサジン化合物は、1級アミンをホルムアルデヒドへ徐々に加える方法により反応させたのち、ナフトール系水酸基を有する化合物を加えて反応させることによって得られる(国際公開2004/009708参照。)。
【0240】
式(OX−3)で表されるオキサジン化合物は、有機溶媒中でフェノール化合物1モル、そのフェノール性水酸基1個に対し少なくとも2モル以上のアルデヒド、および1モルの一級アミンを、2級脂肪族アミン、3級脂肪族アミンまたは塩基性含窒素複素環化合物の存在下で反応させることによって得られる(国際公開2004/009708および特開平11−12258参照。)。
【0241】
式(OX−4)〜式(OX−6)で表されるオキサジン化合物は、4,4’−ジアミノジフェニルメタン等の、複数のベンゼン環とそれらを結合する有機基とを有するジアミン、ホルマリン等のアルデヒド、およびフェノールを、n−ブチルアルコール中、90℃以上の温度で脱水縮合反応させることにより得られる(特開2004−352670参照。)。
【0242】
<オキサゾリン化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサゾリン化合物をさらに含有していてもよい。オキサゾリン化合物はオキサゾリン構造を有する化合物である。オキサゾリン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサゾリン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。または、オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、ポリアミック酸またはその誘導体に対して0.1〜40重量%であることが、上記の目的から好ましい。
【0243】
以下にオキサゾリン化合物について具体的に説明する。
オキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1種だけ有していてもよいし、2種以上有していてもよい。またオキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1個有していればよいが、2個以上有することが好ましい。またオキサゾリン化合物は、オキサゾリン構造を側鎖に有する重合体であってもよいし、共重合体であってもよい。オキサゾリン構造を側鎖に有する重合体は、オキサゾリン構造を側鎖に有するモノマーの単独重合体であってもよいし、オキサゾリン構造を側鎖に有するモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。オキサゾリン構造を側鎖に有する共重合体は、オキサゾリン構造を側鎖に有する2種以上のモノマーの共重合体であってもよいし、オキサゾリン構造を側鎖に有する2種以上のモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。
【0244】
オキサゾリン構造は、オキサゾリン構造中の酸素および窒素の一方または両方とポリアミック酸のカルボニル基とが反応し得るようにオキサゾリン化合物中に存在する構造であることが好ましい。
【0245】
オキサゾリン化合物としては、例えば2,2’−ビス(2−オキサゾリン)、1,2,4−トリス−(2−オキサゾリニル−2)−ベンゼン、4−フラン−2−イルメチレン−2−フェニル−4H−オキサゾール−5−オン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,3−ビス(4−イソプロペニル−2−オキサゾリン−2−イル)ブタン、2,2’−ビス−4−ベンジル−2−オキサゾリン、2,6−ビス(イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−tert−ブチル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−メチレンビス(4−tert−ブチル−2−オキサゾリン)、および2,2’−メチレンビス(4−フェニル−2−オキサゾリン)が挙げられる。これらの他、エポクロス(商品名、(株)日本触媒製)のようなオキサゾリルを有するポリマーやオリゴマーも挙げられる。これらのうち、より好ましくは、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンが挙げられる。
【0246】
<エポキシ化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、エポキシ化合物をさらに含有していてもよい。エポキシ化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。エポキシ化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
【0247】
以下にエポキシ化合物について具体的に説明する。
エポキシ化合物としては、分子内にエポキシ環を1つまたは2つ以上有する種々の化合物が挙げられる。分子内にエポキシ環を1つ有する化合物としては、例えばフェニルグリシジルエーテル、ブチルグリシジルエーテル、3,3,3−トリフルオロメチルプロピレンオキシド、スチレンオキシド、ヘキサフルオロプロピレンオキシド、シクロヘキセンオキシド、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−グリシジルフタルイミド、(ノナフルオロ−N−ブチル)エポキシド、パーフルオロエチルグリシジルエーテル、エピクロロヒドリン、エピブロモヒドリン、N,N−ジグリシジルアニリン、および3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパンが挙げられる。
【0248】
分子内にエポキシ環を2つ有する化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートおよび3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランが挙げられる。
【0249】
分子内にエポキシ環を3つ有する化合物としては、例えば2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(商品名「テクモアVG3101L」、(三井化学(株)製))が挙げられる。
【0250】
分子内にエポキシ環を4つ有する化合物としては、例えば1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、および3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシランが挙げられる。
【0251】
上記の他、分子内にエポキシ環を有する化合物の例として、エポキシ環を有するオリゴマーや重合体も挙げられる。エポキシ環を有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
【0252】
エポキシ環を有するモノマーと共重合を行う他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミドおよびN−フェニルマレイミドが挙げられる。
【0253】
エポキシ環を有するモノマーの重合体の好ましい具体例としては、ポリグリシジルメタクリレート等が挙げられる。また、エポキシ環を有するモノマーと他のモノマーとの共重合体の好ましい具体例としては、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
【0254】
これら例の中でも、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが特に好ましい。
【0255】
より体系的には、エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。なお、エポキシ化合物はエポキシ基を有する化合物を意味し、エポキシ樹脂はエポキシ基を有する樹脂を意味する。
【0256】
エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。
【0257】
グリシジルエーテルとしては、例えばビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール−A型エポキシ化合物、水素化ビスフェノール−F型エポキシ化合物、水素化ビスフェノール−S型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、臭素化ビスフェノール−A型エポキシ化合物、臭素化ビスフェノール−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、臭素化クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ナフタレン骨格含有エポキシ化合物、芳香族ポリグリシジルエーテル化合物、ジシクロペンタジエンフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、脂肪族ポリグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、およびビフェノール型エポキシ化合物が挙げられる。
【0258】
グリシジルエステルとしては、例えばジグリシジルエステル化合物およびグリシジルエステルエポキシ化合物が挙げられる。
【0259】
グリシジルアミンとしては、例えばポリグリシジルアミン化合物およびグリシジルアミン型エポキシ樹脂が挙げられる。
【0260】
エポキシ基含有アクリル系化合物としては、例えばオキシラニルを有するモノマーの単独重合体および共重合体が挙げられる。
【0261】
グリシジルアミドとしては、例えばグリシジルアミド型エポキシ化合物が挙げられる。
【0262】
鎖状脂肪族型エポキシ化合物としては、例えばアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
【0263】
環状脂肪族型エポキシ化合物としては、例えばシクロアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
【0264】
ビスフェノールA型エポキシ化合物としては、例えばjER828、jER1001、jER1002、jER1003、jER1004、jER1007、jER1010(いずれも商品名、三菱化学(株)製)、エポトートYD−128(東都化成(株)製)、DER−331、DER−332、DER−324(いずれもThe Dow Chemical Company製)、エピクロン840、エピクロン850、エピクロン1050(いずれも商品名、DIC(株)製)、エポミックR−140、エポミックR−301、およびエポミックR−304(いずれも商品名、三井化学(社)製)が挙げられる。
【0265】
ビスフェノールF型エポキシ化合物としては、例えばjER806、jER807、jER4004P(いずれも商品名、三菱化学(株)製)、エポトートYDF−170、エポトートYDF−175S、エポトートYDF−2001(いずれも商品名、東都化成(株)製)、DER−354(商品名、ダウ・ケミカル社製)、エピクロン830、およびエピクロン835(いずれも商品名、DIC(株)製)が挙げられる。
【0266】
ビスフェノール型エポキシ化合物としては、例えば2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
【0267】
水素化ビスフェノール−A型エポキシ化合物としては、例えばサントートST−3000(商品名、東都化成(株)製)、リカレジンHBE−100(商品名、新日本理化(株)製)、およびデナコールEX−252(商品名、ナガセケムテックス(株)製)が挙げられる。
【0268】
水素化ビスフェノール型エポキシ化合物としては、例えば水素化2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
【0269】
臭素化ビスフェノール−A型エポキシ化合物としては、例えばjER5050、jER5051(いずれも商品名、三菱化学(株)製)、エポトートYDB−360、エポトートYDB−400(いずれも商品名、東都化成(株)製)、DER−530、DER−538(いずれも商品名、The Dow Chemical Company製)、エピクロン152、およびエピクロン153(いずれも商品名、DIC(株)製)が挙げられる。
【0270】
フェノールノボラック型エポキシ化合物としては、例えばjER152、jER154(いずれも商品名、三菱化学(株)製)、YDPN−638(商品名、東都化成社製)、DEN431、DEN438(いずれも商品名、The Dow Chemical Company製)、エピクロンN−770(商品名、DIC(株)製)、EPPN−201、およびEPPN−202(いずれも商品名、日本化薬(株)製)が挙げられる。
【0271】
クレゾールノボラック型エポキシ化合物としては、例えばjER180S75(商品名、三菱化学(株)製)、YDCN−701、YDCN−702(いずれも商品名、東都化成社製)、エピクロンN−665、エピクロンN−695(いずれも商品名、DIC(株)製)、EOCN−102S、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、およびEOCN−1027(いずれも商品名、日本化薬(株)製)が挙げられる。
【0272】
ビスフェノールAノボラック型エポキシ化合物としては、例えばjER157S70(商品名、三菱化学(株)製)、およびエピクロンN−880(商品名、DIC(株)製)が挙げられる。
【0273】
ナフタレン骨格含有エポキシ化合物としては、例えばエピクロンHP−4032、エピクロンHP−4700、エピクロンHP−4770(いずれも商品名、DIC(株)製)、およびNC−7000(商品名、日本化薬社製)が挙げられる。
【0274】
芳香族ポリグリシジルエーテル化合物としては、例えばハイドロキノンジグリシジルエーテル(下記式EP−1)、カテコールジグリシジルエーテル(下記式EP−2)、レゾルシノールジグリシジルエーテル(下記式EP−3)、2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(下記式EP−4)、トリス(4−グリシジルオキシフェニル)メタン(下記式EP−5)、jER1031S、jER1032H60(いずれも商品名、三菱化学(株)製)、TACTIX−742(商品名、The Dow Chemical Company製)、デナコールEX−201(商品名、ナガセケムテックス(株)製)、DPPN−503、DPPN−502H、DPPN−501H、NC6000(いずれも商品名、日本化薬(株)製)、テクモアVG3101L(商品名、三井化学(株)製)、下記式EP−6で表される化合物、および下記式EP−7で表される化合物が挙げられる。
【化162】
[この文献は図面を表示できません]
【化163】
[この文献は図面を表示できません]
【0275】
ジシクロペンタジエンフェノール型エポキシ化合物としては、例えばTACTIX−556(商品名、The Dow Chemical Company製)、およびエピクロンHP−7200(商品名、DIC(株)製)が挙げられる。
【0276】
脂環式ジグリシジルエーテル化合物としては、例えばシクロヘキサンジメタノールジグリシジルエーテル化合物、およびリカレジンDME−100(商品名、新日本理化(株)製)が挙げられる。
【0277】
脂肪族ポリグリシジルエーテル化合物としては、例えばエチレングリコールジグリシジルエーテル(下記式EP−8)、ジエチレングリコールジグリシジルエーテル(下記式EP−9)、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(下記式EP−10)、トリプロピレングリコールジグリシジルエーテル(下記式EP−11)、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル(下記式EP−12)、1,4−ブタンジオールジグリシジルエーテル(下記式EP−13)、1,6−ヘキサンジオールジグリシジルエーテル(下記式EP−14)、ジブロモネオペンチルグリコールジグリシジルエーテル(下記式EP−15)、デナコールEX−810、デナコールEX−851、デナコールEX−8301、デナコールEX−911、デナコールEX−920、デナコールEX−931、デナコールEX−211、デナコールEX−212、デナコールEX−313(いずれも商品名、ナガセケムテックス(株)製)、DD−503(商品名、(株)ADEKA製)、リカレジンW−100(商品名、新日本理化(株)製)、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール(下記式EP−16)、グリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、デナコールEX−313、デナコールEX−611、デナコールEX−321、およびデナコールEX−411(いずれも商品名、ナガセケムテックス(株)製)が挙げられる。
【化164】
[この文献は図面を表示できません]
【化165】
[この文献は図面を表示できません]
【0278】
ポリサルファイド型ジグリシジルエーテル化合物としては、例えばFLDP−50、およびFLDP−60(いずれも商品名、東レチオコール(株)製)が挙げられる。
【0279】
ビフェノール型エポキシ化合物としては、例えばYX−4000、YL−6121H(いずれも商品名、三菱化学(株)製)、NC−3000P、およびNC−3000S(いずれも商品名、日本化薬(株)製)が挙げられる。
【0280】
ジグリシジルエステル化合物としては、例えばジグリシジルテレフタレート(下記式EP−17)、ジグリシジルフタレート(下記式EP−18)、ビス(2−メチルオキシラニルメチル)フタレート(下記式EP−19)、ジグリシジルヘキサヒドロフタレート(下記式EP−20)、下記式EP−21で表される化合物、下記式EP−22で表される化合物、および下記式EP−23で表される化合物が挙げられる。
【化166】
[この文献は図面を表示できません]
【0281】
グリシジルエステルエポキシ化合物としては、例えばjER871、jER872(いずれも商品名、三菱化学(株)製)、エピクロン200、エピクロン400(いずれも商品名、DIC(株)製)、デナコールEX−711、およびデナコールEX−721(いずれも商品名、ナガセケムテックス(株)製)が挙げられる。
【0282】
ポリグリシジルアミン化合物としては、例えばN,N−ジグリシジルアニリン(下記式EP−24)、N,N−ジグリシジル−o−トルイジン(下記式EP−25)、N,N−ジグリシジル−m−トルイジン(下記式EP−26)、N,N−ジグリシジル−2,4,6−トリブロモアニリン(下記式EP−27)、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン(下記式EP−28)、N,N,O−トリグリシジル−p−アミノフェノール(下記式EP−29)、N,N,O−トリグリシジル−m−アミノフェノール(下記式EP−30)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン(下記式EP−31)、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン(TETRAD−X(商品名、三菱ガス化学(株)製)、下記式EP−32)、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(TETRAD−C(商品名、三菱ガス化学(株)製)、下記式EP−33)、1,4−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(下記式EP−34)、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−35)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−36)、1,3−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−37)、1,4−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−38)、2,6−ビス(N,N−ジグリシジルアミノメチル)ビシクロ[2.2.1]ヘプタン(下記式EP−39)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジシクロヘキシルメタン(下記式EP−40)、2,2’−ジメチル−(N,N,N’,N’−テトラグリシジル)−4,4’−ジアミノビフェニル(下記式EP−41)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルエーテル(下記式EP−42)、1,3,5−トリス(4−(N,N−ジグリシジル)アミノフェノキシ)ベンゼン(下記式EP−43)、2,4,4’−トリス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−44)、トリス(4−(N,N−ジグリシジル)アミノフェニル)メタン(下記式EP−45)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ビフェニル(下記式EP−46)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−47)、下記式EP−48で表される化合物、および下記式EP−49で表される化合物が挙げられる。
【化167】
[この文献は図面を表示できません]
【化168】
[この文献は図面を表示できません]
【化169】
[この文献は図面を表示できません]
【化170】
[この文献は図面を表示できません]
【化171】
[この文献は図面を表示できません]
【0283】
オキシラニルを有するモノマーの単独重合体としては、例えばポリグリシジルメタクリレートが挙げられる。オキシラニルを有するモノマーの共重合体としては、例えばN−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
【0284】
オキシラニルを有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
【0285】
オキシラニルを有するモノマーの共重合体におけるオキシラニルを有するモノマー以外の他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが挙げられる。
【0286】
グリシジルイソシアヌレートとしては、例えば1,3,5−トリグリシジル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−50)、1,3−ジグリシジル−5−アリル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−51)、およびグリシジルイソシアヌレート型エポキシ樹脂が挙げられる。
【化172】
[この文献は図面を表示できません]
【0287】
鎖状脂肪族型エポキシ化合物としては、例えばエポキシ化ポリブタジエン、およびエポリードPB3600(商品名、(株)ダイセル製)が挙げられる。
【0288】
環状脂肪族型エポキシ化合物としては、例えば3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(セロキサイド2021((株)ダイセル製)、下記式EP−52)、2−メチル−3,4−エポキシシクロヘキシルメチル−2’−メチル−3’,4’−エポキシシクロヘキシルカルボキシレート(下記式EP−53)、2,3−エポキシシクロペンタン−2’,3’−エポキシシクロペンタンエーテル(下記式EP−54)、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキレート、1,2:8,9−ジエポキシリモネン(セロキサイド3000(商品名、(株)ダイセル製)、下記式EP−55)、下記式EP−56で表される化合物、CY−175、CY−177、CY−179(いずれも商品名、The Ciba-Geigy Chemical Corp.製(ハンツマン・ジャパン(株)から入手できる。))、EHPD−3150(商品名、(株)ダイセル製)、および環状脂肪族型エポキシ樹脂が挙げられる。
【化173】
[この文献は図面を表示できません]
【0289】
エポキシ化合物は、ポリグリシジルアミン化合物、ビスフェノールAノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、および環状脂肪族型エポキシ化合物の一以上であることが好ましく、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N,N,O−トリグリシジル−p−アミノフェノール、ビスフェノールAノボラック型エポキシ化合物、およびクレゾールノボラック型エポキシ化合物の1つ以上であることがより好ましい。
【0290】
また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤としては、例えばポリアミック酸およびその誘導体以外の高分子化合物、および低分子化合物が挙げられ、それぞれの目的に応じて選択して使用することができる。
【0291】
例えば、前記高分子化合物としては、有機溶媒に可溶性の高分子化合物が挙げられる。このような高分子化合物を本発明の液晶配向剤に添加することは、形成される液晶配向膜の電気特性や配向性を制御する観点から好ましい。該高分子化合物としては、例えばポリアミド、ポリウレタン、ポリウレア、ポリエステル、ポリエポキサイド、ポリエステルポリオール、シリコーン変性ポリウレタン、およびシリコーン変性ポリエステルが挙げられる。
【0292】
また、前記低分子化合物としては、例えば1)塗布性の向上を望むときにはかかる目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、また、4)低温でイミド化を進行させる場合はイミド化触媒、が挙げられる。
【0293】
シランカップリング剤としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロピルアミン、およびN,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミンが挙げられる。好ましいシランカップリング剤は3−アミノプロピルトリエトキシシランである。
【0294】
イミド化触媒としては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン、メチル置換アニリン、ヒドロキシ置換アニリン等の芳香族アミン類;ピリジン、メチル置換ピリジン、ヒドロキシ置換ピリジン、キノリン、メチル置換キノリン、ヒドロキシ置換キノリン、イソキノリン、メチル置換イソキノリン、ヒドロキシ置換イソキノリン、イミダゾール、メチル置換イミダゾール、ヒドロキシ置換イミダゾール等の環式アミン類が挙げられる。前記イミド化触媒は、N,N−ジメチルアニリン、o−,m−,p−ヒドロキシアニリン、o−,m−,p−ヒドロキシピリジン、およびイソキノリンから選ばれる1種または2種以上であることが好ましい。
【0295】
シランカップリング剤の添加量は、通常、ポリアミック酸またはその誘導体の総重量の0〜20重量%であり、0.1〜10重量%であることが好ましい。
【0296】
イミド化触媒の添加量は、通常、ポリアミック酸またはその誘導体のカルボニル基に対して0.01〜5当量であり、0.05〜3当量であることが好ましい。
【0297】
その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリアミック酸またはその誘導体の総重量の0〜100重量%であり、0.1〜50重量%であることが好ましい。
【0298】
本発明のポリアミック酸またはその誘導体は、ポリイミドの膜の形成に用いられる公知のポリアミック酸またはその誘導体と同様に製造することができる。テトラカルボン酸二無水物の総仕込み量は、ジアミンの総モル数とほぼ等モル(モル比0.9〜1.1程度)とすることが好ましい。
【0299】
本発明のポリアミック酸またはその誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、7,000〜500,000であることが好ましく、10,000〜200,000であることがより好ましい。前記ポリアミック酸またはその誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。
【0300】
本発明のポリアミック酸またはその誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。またKOHやNaOH等の強アルカリの水溶液による前記ポリアミック酸またはその誘導体の分解物の有機溶剤による抽出物をGC、HPLCまたはGC−MSで分析することにより、使用されているモノマーを確認することができる。
【0301】
また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリアミック酸またはその誘導体の濃度の調整の観点から、溶剤をさらに含有していてもよい。前記溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。前記溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。前記溶剤は1種でも2種以上の混合溶剤であってもよい。
【0302】
溶剤としては、前記ポリアミック酸またはその誘導体の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。
【0303】
ポリアミック酸またはその誘導体に対し親溶剤である非プロトン性極性有機溶剤としては、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトン等のラクトンが挙げられる。
【0304】
塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が挙げられる。
【0305】
これらの中で、前記溶剤は、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、およびジプロピレングリコールモノメチルエーテルが特に好ましい。
【0306】
本発明の配向剤中のポリアミック酸の濃度は0.1〜40重量%であることが好ましい。この配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。
【0307】
本発明の配向剤における固形分濃度は特に限定されるものではなく、下記の種々の塗布法に合わせ最適な値を選べばよい。通常、塗布時のムラやピンホール等を抑えるため、ワニス重量に対し、好ましくは0.1〜30重量%、より好ましくは1〜10重量%である。
【0308】
本発明の液晶配向剤の粘度は、塗布する方法、ポリアミック酸またはその誘導体の濃度、使用するポリアミック酸またはその誘導体の種類、溶剤の種類と割合によって好ましい範囲が異なる。例えば、印刷機による塗布の場合は5〜100mPa・s(より好ましくは10〜80mPa・s)である。5mPa・sより小さいと十分な膜厚を得ることが難しくなり、100mPa・sを超えると印刷ムラが大きくなることがある。スピンコートによる塗布の場合は5〜200mPa・s(より好ましくは10〜100mPa・s)が適している。インクジェット塗布装置を用いて塗布する場合は5〜50mPa・s(より好ましくは5〜20mPa・s)が適している。液晶配向剤の粘度は回転粘度測定法により測定され、例えば回転粘度計(東機産業製TVE−20L型)を用いて測定(測定温度:25℃)される。
【0309】
本発明の液晶配向膜について、詳細に説明する。本発明の液晶配向膜は、前述した本発明の液晶配向剤の塗膜を加熱することによって形成される膜である。本発明の液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば本発明の液晶配向膜は、本発明の液晶配向剤の塗膜を形成する工程と、加熱乾燥する工程と、加熱焼成する工程を経ることによって得ることができる。本発明の液晶配向膜については、必要に応じて後述の通り、加熱乾燥工程、加熱焼成工程を経て得られる膜をラビング処理して異方性を付与してもよい。または、必要に応じて、塗膜工程、加熱乾燥工程の後に光を照射して、または加熱焼成工程の後に光を照射して異方性を付与してもよい。またラビング処理をしないVA用液晶配向膜としても使用してもよい。
【0310】
塗膜は、通常の液晶配向膜の作製と同様に、液晶表示素子における基板に本発明の液晶配向剤を塗布することによって形成することができる。基板には、ITO(IndiumTinOxide)、IZO(In
2O
3−ZnO)、IGZO(In−Ga−ZnO
4)電極等の電極やカラーフィルタ等が設けられていてもよいガラス製の基板が挙げられる。
【0311】
液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。
【0312】
前記加熱乾燥工程は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。加熱乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、加熱焼成工程における温度に対して比較的低い温度で実施することがより好ましい。具体的には加熱乾燥温度は30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。
【0313】
前記加熱焼成工程は、前記ポリアミック酸またはその誘導体が脱水・閉環反応を呈するのに必要な条件で行うことができる。前記塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。一般に100〜300℃程度の温度で1分間〜3時間行うことが好ましく、120〜280℃がより好ましく、150〜250℃がさらに好ましい。
【0314】
本発明の液晶配向膜の形成方法において、液晶を水平および/または垂直方向に対して一方向に配向させるために、配向膜へ異方性を付与する手段として、ラビング法や光配向法など公知の形成方法を好適に用いることができる。
【0315】
ラビング法を用いた本発明の液晶配向膜は、本発明の液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、その膜を加熱焼成する工程と、膜をラビング処理する工程とを経て形成することができる。
【0316】
ラビング処理は、通常の液晶配向膜の配向処理のためのラビング処理と同様に行うことができ、本発明の液晶配向膜において十分なリタデーションが得られる条件であればよい。好ましい条件は、毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmである。
【0317】
光配向法による本発明の液晶配向膜の形成方法について、詳細に説明する。光配向法を用いた本発明の液晶配向膜は、塗膜を加熱乾燥した後、放射線の直線偏光または無偏光を照射することにより、塗膜に異方性を付与し、その膜を加熱焼成することにより形成することができる。または、塗膜を加熱乾燥し、加熱焼成した後に、放射線の直線偏光または無偏光を照射することにより形成する事ができる。配向性の点から、放射線の照射工程は加熱焼成工程前に行うのが好ましい。
【0318】
さらに、液晶配向膜の液晶配向能を上げるために、塗膜を加熱しながら放射線の直線偏光または無偏光を照射することもできる。放射線の照射は、塗膜を加熱乾燥する工程、または加熱焼成する工程で行ってもよく、加熱乾燥工程と加熱焼成工程の間に行ってもよい。該工程における加熱乾燥温度は、30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。また該工程における加熱焼成温度は、30℃〜300℃の範囲であること、さらには50℃〜250℃の範囲であることが好ましい。
【0319】
放射線としては、例えば150〜800nmの波長の光を含む紫外線または可視光を用いることができるが、300〜400nmの光を含む紫外線が好ましい。また、直線偏光または無偏光を用いることができる。これらの光は、前記塗膜に液晶配向能を付与することができる光であれば特に限定されないが、液晶に対して強い配向規制力を発現させたい場合、直線偏光が好ましい。
【0320】
本発明の液晶配向膜は、低エネルギーの光照射でも高い液晶配向能を示すことができる。前記放射線照射工程における直線偏光の照射量は0.05〜20J/cm
2であることが好ましく、0.5〜10J/cm
2がより好ましい。また直線偏光の波長は200〜400nmであることが好ましく、300〜400nmであることがより好ましい。直線偏光の膜表面に対する照射角度は特に限定されないが、液晶に対する強い配向規制力を発現させたい場合、膜表面に対してなるべく垂直であることが配向処理時間短縮の観点から好ましい。また、本発明の液晶配向膜は、直線偏光を照射することにより、直線偏光の偏光方向に対して垂直な方向に液晶を配向させることができる。
【0321】
プレチルト角を発現させたい場合に前記膜に照射する光は、前述同様直線偏光であっても無偏光であってもよい。プレチルト角を発現させたい場合に前記膜に照射される光の照射量は0.05〜20J/cm
2であることが好ましく、0.5〜10J/cm
2が特に好ましく、その波長は250〜400nmであることが好ましく、300〜380nmが特に好ましい。プレチルト角を発現させたい場合に前記膜に照射する光の前記膜表面に対する照射角度は特に限定されないが、30〜60度であることが配向処理時間短縮の観点から好ましい。
【0322】
放射線の直線偏光または無偏光を照射する工程に使用する光源には、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、Deep UVランプ、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、水銀キセノンランプ、エキシマランプ、KrFエキシマレーザー、蛍光ランプ、LEDランプ、ナトリウムランプ、マイクロウェーブ励起無電極ランプ、などを制限なく用いることができる。
【0323】
本発明の液晶配向膜は、前述した工程以外の他の工程をさらに含む方法によって好適に得られる。例えば、本発明の液晶配向膜は焼成または放射線照射後の膜を洗浄液で洗浄する工程は必須としないが、他の工程の都合で洗浄工程を設けることができる。
【0324】
洗浄液による洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水または、メチルアルコール、エチルアルコール、イソプロピルアルコール等の各種アルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン系溶剤、アセトン、メチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。このような洗浄方法は、本発明の液晶配向膜の形成における前記洗浄工程にも適用することができる。
【0325】
本発明の液晶配向膜の液晶配向能を高めるために、加熱焼成工程の前後、ラビング工程の前後、または、偏光または無偏光の放射線照射の前後に、熱や光によるアニール処理を用いることができる。該アニール処理において、アニール温度が30〜180℃、好ましくは50〜150℃であり、時間は1分〜2時間が好ましい。また、アニール処理に使用するアニール光には、UVランプ、蛍光ランプ、LEDランプなどが挙げられる。光の照射量は0.3〜10J/cm
2であることが好ましい。
【0326】
本発明の液晶配向膜の膜厚は、特に限定されないが、10〜300nmであることが好ましく、30〜150nmであることがより好ましい。本発明の液晶配向膜の膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。
【0327】
本発明の液晶配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005−275364等に記載の偏光IRを用いた方法で評価する事ができる。また以下の実施例に示すようにエリプソメトリーを用いた方法によっても評価することができる。詳しくは、分光エリプソメータによって液晶配向膜のリタデーション値を測定することができる。膜のリタデーション値はポリマー主鎖の配向度に比例して大きくなる。すなわち、大きなリタデーション値を持つものは、大きな配向度を持ち、液晶配向膜として使用した場合、より大きな異方性を持つ配向膜が液晶組成物に対し大きな配向規制力を持つと考えられる。
【0328】
本発明の液晶配向膜は横電界方式の液晶表示素子に好適に用いることができる。横電界方式の液晶表示素子に用いる場合、Pt角が小さいほど、また液晶配向能が高いほど暗状態での黒表示レベルは高くなり、コントラストが向上する。Pt角は0.1°以下が好ましい。
【0329】
本発明の液晶配向膜は、液晶ディスプレイ用の液晶組成物の配向用途以外に、光学補償材やその他すべての液晶材料の配向制御に用いることができる。また本発明の配向膜は大きな異方性を有するので、単独で光学補償材用途に使用することができる。
【0330】
本発明の液晶表示素子について、詳細に説明する。
本発明は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方または両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記液晶配向膜が本発明の配向膜である液晶表示素子を提供する。
【0331】
前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていてもよいし、例えばパターン化されている所望の形状に形成されていてもよい。電極の前記所望の形状には、例えば櫛型またはジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていてもよいし、両方の基板に形成されていてもよい。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板または電極の上に前記液晶配向膜が形成される。
【0332】
前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。
【0333】
液晶組成物には、特に制限はなく、誘電率異方性が正または負の各種の液晶組成物を用いることができる。誘電率異方性が正の好ましい液晶組成物には、特許3086228、特許2635435、特表平5−501735、特開平8−157826、特開平8−231960、特開平9−241644(EP885272A1)、特開平9−302346(EP806466A1)、特開平8−199168(EP722998A1)、特開平9−235552、特開平9−255956、特開平9−241643(EP885271A1)、特開平10−204016(EP844229A1)、特開平10−204436、特開平10−231482、特開2000−087040、特開2001−48822等に開示されている液晶組成物が挙げられる。
【0334】
誘電率異方性が正または負の液晶組成物に1種以上の光学活性化合物を添加して使用することも何ら差し支えない。
【0335】
前記誘電率異方性が負の液晶組成物について説明する。負の誘電率異方性の液晶組成物として、例えば、第1成分として下記式(NL−1)で表される液晶化合物の群から選択される少なくとも1つの液晶化合物含有する組成物が挙げられる。
【化174】
[この文献は図面を表示できません]
ここで、R
1aおよびR
2aは独立して、炭素数1〜12のアルキル、炭素数1〜12のアルコキシ、炭素数2〜12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2〜12のアルケニルであり、環A
2および環B
2は独立して、1,4−シクロへキシレン、テトラヒドロピラン−2,5−ジイル、1,3−ジオキサン−2,5−ジイル、1,4−フェニレン、2−フルオロ−1,4−フェニレン、2,5−ジフルオロ−1,4−フェニレン、2,3−ジフルオロ−1,4−フェニレン、2−フルオロ−3−クロロ−1,4−フェニレン、2,3−ジフルオロ−6−メチル−1,4−フェニレン、2,6−ナフタレンジイル、または7,8−ジフルオロクロマン−2,6−ジイルであり、ここで、環A
2および環B
2の少なくとも1つは2,3−ジフルオロ−1,4−フェニレン、2−フルオロ−3−クロロ−1,4−フェニレン、2,3−ジフルオロ−6−メチル−1,4−フェニレン、または7,8−ジフルオロクロマン−2,6−ジイルであり、Z
1は独立して単結合、−(CH
2)
2−、−CH
2O−、−COO−、または−CF
2O−であり、jは1、2、または3であり、jが2または3である時、任意の2つの環A
2は同じであっても異なってもよく、任意の2つのZ
1は同じであっても異なってもよい。
【0336】
好ましい環A
2および環B
2はそれぞれ、誘電率異方性を上げるために2,3−ジフルオロ−1,4−フェニレンまたはテトラヒドロピラン−2,5−ジイルであり、粘度を下げるために1,4−シクロへキシレンである。
【0337】
好ましいZ
1は誘電率異方性を上げるために−CH
2O−であり、粘度を下げるために単結合である。
【0338】
好ましいjは下限温度を下げるために1であり、上限温度を上げるために2である。
【0339】
上記式(NL−1)の液晶化合物の具体例として、下記の式(NL−1−1)〜(NL−1−32)で表される化合物を挙げることができる。
【化175】
[この文献は図面を表示できません]
【化176】
[この文献は図面を表示できません]
【化177】
[この文献は図面を表示できません]
ここで、R
1aおよびR
2aは独立して、炭素数1〜12のアルキル、炭素数1〜12のアルコキシ、炭素数2〜12のアルケニル、または少なくとも1つの水素がフッ素で置き換えられた炭素数2〜12のアルケニルであり、環A
21、環A
22、環A
23、環B
21、および環B
22は独立して、1,4−シクロへキシレンまたは1,4−フェニレンであり、Z
11およびZ
12は、独立して単結合、−(CH
2)
2−、−CH
2O−、または−COO−である。
【0340】
好ましいR
1aおよびR
2aは、紫外線または熱に対する安定性などを上げるために炭素数1〜12のアルキル、または誘電率異方性の絶対値を上げるために炭素数1〜12のアルコキシである。
【0341】
好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、粘度を下げるためにエチル、プロピル、ブチル、ペンチル、またはヘプチルである。
【0342】
好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。粘度を下げるために、さらに好ましいアルコキシは、メトキシまたはエトキシである。
【0343】
好ましいアルケニルは、ビニル、1−プロペニル、2−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、または5−ヘキセニルである。さらに好ましいアルケニルは、粘度を下げるためにビニル、1−プロペニル、3−ブテニル、または3−ペンテニルである。これらのアルケニルにおける−CH=CH−の好ましい立体配置は、二重結合の位置に依存する。粘度を下げるためなどから1−プロペニル、1−ブテニル、1−ペンテニル、1−ヘキセニル、3−ペンテニル、3−ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2−ブテニル、2−ペンテニル、2−ヘキセニルのようなアルケニルにおいてはシスが好ましい。これらのアルケニルにおいては、分岐よりも直鎖のアルケニルが好ましい。
【0344】
少なくとも1つの水素がフッ素で置き換えられたアルケニルの好ましい例は、2,2−ジフルオロビニル、3,3−ジフルオロ−2−プロペニル、4,4−ジフルオロ−3−ブテニル、5,5−ジフルオロ−4−ペンテニル、および6,6−ジフルオロ−5−ヘキセニルである。さらに好ましい例は、粘度を下げるために2,2−ジフルオロビニル、および4,4−ジフルオロ−3−ブテニルである。
【0345】
好ましい環A
21、環A
22、環A
23、環B
21、および環B
22はそれぞれ、粘度を下げるために1,4−シクロへキシレンである。
【0346】
好ましいZ
11およびZ
12は誘電率異方性を上げるために−CH
2O−であり、粘度を下げるために単結合である。
【0347】
前記負の誘電率異方性を有する液晶組成物が、第1成分として好ましい化合物(NL−1)は、化合物(NL−1−1)、(NL−1−4)、(NL−1−7)または(NL−1−32)である。
【0348】
前記負の誘電率異方性を有する液晶組成物の好ましい例として、特開昭57−114532、特開平2−4725、特開平4−224885、特開平8−40953、特開平8−104869、特開平10−168076、特開平10−168453、特開平10−236989、特開平10−236990、特開平10−236992、特開平10−236993、特開平10−236994、特開平10−237000、特開平10−237004、特開平10−237024、特開平10−237035、特開平10−237075、特開平10−237076、特開平10−237448(EP967261A1)、特開平10−287874、特開平10−287875、特開平10−291945、特開平11−029581、特開平11−080049、特開2000−256307、特開2001−019965、特開2001−072626、特開2001−192657、特開2010−037428、国際公開2011/024666、国際公開2010/072370、特表2010−537010、特開2012−077201、特開2009−084362等に開示されている液晶組成物が挙げられる。
【0349】
また例えば、本発明の素子に用いる液晶組成物は、例えば配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、光重合性モノマー、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤、重合禁止剤などである。
【0350】
液晶の配向性を改善する目的で光重合性モノマーまたはオリゴマーの最も好ましい構造としては、式(PM−1−1)〜(PM−1−6)の構造が挙げられる。
【化178】
[この文献は図面を表示できません]
【0351】
光重合性モノマーまたはオリゴマーは、重合後の液晶の傾斜方向を決める効果を発現させるために、0.01重量%以上であることが望ましい。また、重合後のポリマーの配向効果を適切なものとするため、或いは紫外線照射後に、未反応のモノマーまたはオリゴマーが液晶に溶出することを避けるために、30重量%以下であることが望ましい。
【0352】
液晶のらせん構造を誘起してねじれ角を与える目的で光学活性な化合物が組成物に混合される。このような化合物の例は、化合物(PAC−1−1)から化合物(PAC−1−4)である。
光学活性な化合物の好ましい割合は5重量%以下である。さらに好ましい割合は0.01重量%から2重量%の範囲である。
【化179】
[この文献は図面を表示できません]
【0353】
大気中での加熱による比抵抗の低下を防止するために、または素子を長時間使用したあと、室温だけではなく高い温度でも大きな電圧保持率を維持するために、酸化防止剤が液晶組成物に混合される。
【化180】
[この文献は図面を表示できません]
【0354】
酸化防止剤の好ましい例は、wが1から10の整数である化合物(AO−1)などである。化合物(AO−1)において、好ましいwは、1、3、5、7、または9である。さらに好ましいwは1または7である。wが1である化合物(AO−1)は、揮発性が大きいので、大気中での加熱による比抵抗の低下を防止するときに有効である。wが7である化合物(AO−1)は、揮発性が小さいので、素子を長時間使用したあと、室温だけではなく高い温度でも大きな電圧保持率を維持するのに有効である。酸化防止剤の好ましい割合は、その効果を得るために50ppm以上であり、上限温度を下げないように、または下限温度を上げないように600ppm以下である。さらに好ましい割合は、100ppmから300ppmの範囲である。
【0355】
紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。これらの吸収剤や安定剤における好ましい割合は、その効果を得るために50ppm以上であり、上限温度を下げないように、または下限温度を上げないように10000ppm以下である。さらに好ましい割合は100ppmから10000ppmの範囲である。
【0356】
GH(Guest host)モードの素子に適合させるためにアゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に混合される。色素の好ましい割合は、0.01重量%から10重量%の範囲である。
【0357】
泡立ちを防ぐために、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどの消泡剤が組成物に混合される。消泡剤の好ましい割合は、その効果を得るために1ppm以上であり、表示の不良を防ぐために1000ppm以下である。さらに好ましい割合は、1ppmから500ppmの範囲である。
【0358】
PSA(polymer sustained alignment)モードの素子に適合させるために重合可能な化合物を組成物に混合することができる。重合可能な化合物の好ましい例はアクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、ビニルケトンなどの重合可能な基を有する化合物である。特に好ましい例は、アクリレートまたはメタクリレートの誘導体である。このような化合物の例は、化合物(PM−2−1)から化合物(PM−2−9)である。重合可能な化合物の好ましい割合は、その効果を得るために、約0.05重量%以上であり、表示不良を防ぐために約10重量%以下である。さらに好ましい割合は、約0.1重量%から約2重量%の範囲である。
【0359】
【化181】
[この文献は図面を表示できません]
ここで、R
3a、R
4a、R
5a、およびR
6aは独立して、アクリロイルまたはメタクリロイルであり、R
7aおよびR
8aは独立して、水素、ハロゲン、または炭素数1から10のアルキルであり、Z
13、Z
14、Z
15、およびZ
16は独立して、単結合または炭素数1から12のアルキレンであり、少なくとも1つの−CH
2−は−O−または−CH=CH−により置き換えられていてもよく、s、t、およびuはそれぞれ独立して、0、1、または2である。
【0360】
ラジカルまたはイオンを容易に生じ、連鎖重合反応を開始させるのに必要な物質として、重合開始剤を混合することができる。例えば光重合開始剤であるIrgacure651(登録商標)、Irgacure184(登録商標)、またはDarocure1173(登録商標)(Ciba Japan K.K.)がラジカル重合に対して適切である。重合可能な化合物は、好ましくは光重合開始剤を0.1重量%から5重量%の範囲で含む。特に好ましくは光重合開始剤を1重量%から3重量%の範囲で含む。
【0361】
ラジカル重合系において、重合開始剤あるいは単量体から生じたラジカルと速やかに反応して安定なラジカルまたは中性の化合物に変化し、その結果重合反応を停止させる目的で重合禁止剤を混合することができる。重合禁止剤は構造上いくつかに分類される。その1つは、トリ−p−ニトロフェニルメチル、ジ−p−フルオロフェニルアミンなどのようなそれ自身安定なラジカルで、もう一方は、重合系に存在するラジカルと容易に反応して安定なラジカルに変わるもので、ニトロ、ニトリソ、アミノ、ポリヒドロキシ化合物などがその代表である。後者の代表としてはヒドロキノン、ジメトキシベンゼンなどがあげられる。重合禁止剤の好ましい割合は、その効果を得るために5ppm以上であり、表示の不良を防ぐために1000ppm以下である。さらに好ましい割合は、5ppmから500ppmの範囲である。
【0362】
本発明の液晶表示素子に負の誘電率異方性を持つ液晶組成物を用いることにより、残像特性に優れ、かつ配向安定性の良い液晶表示素子を提供することができる。
【実施例】
【0363】
以下、本発明を実施例により説明する。なお、実施例において用いる評価法および化合物は次の通りである。
【0364】
1.重量平均分子量(Mw)
ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB−M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
2.電圧保持率
「水嶋他、第14回液晶討論会予稿集 p78(1988)」に記載の方法で行った。測定は、波高±5Vの矩形波をセルに印加して行った。測定は60℃で行った。この値は、印加した電圧がフレーム周期後どの程度保持されているかを示す指標であり、この値が100%ならば全ての電荷が保持されていることを示す。ポジ型液晶を搭載したセルでは99.0%以上、ネガ型液晶を搭載したセルでは97.5%以上であれば表示品位が良好な液晶表示素子となる。
3.液晶中のイオン量測定(イオン密度)
応用物理、第65巻、第10号、1065(1996)に記載の方法に従い、東陽テクニカ社製、液晶物性測定システム6254型を用いて測定した。周波数0.01Hzの三角波を用い、±10Vの電圧範囲、温度60℃で測定した(電極の面積は1cm
2)。イオン密度が大きいとイオン性不純物による焼き付き等の不具合が発生しやすい。即ち、イオン密度は焼き付き発生を予測する指標となる物性値である。この値が40pC以下であれば表示品位が良好な液晶表示素子となる。
【0365】
<テトラカルボン酸二無水物>
【化182】
[この文献は図面を表示できません]
【化183】
[この文献は図面を表示できません]
【0366】
<ジアミン>
【化184】
[この文献は図面を表示できません]
【化185】
[この文献は図面を表示できません]
【化186】
[この文献は図面を表示できません]
【0367】
<その他モノマー>
アニリン
フタル酸無水物
【0368】
<溶剤>
NMP: N−メチル−2−ピロリドン
BC: ブチルセロソルブ(エチレングリコールモノブチルエーテル)
GBL: γ−ブチロラクトン
ジエチレングリコールジエチルエーテル
ジイソブチルケトン
2−ブトキシプロパノール
【0369】
<添加剤>
添加剤(Ad1): N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン
添加剤(Ad2): 1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン
添加剤(Ad3): 2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
【0370】
[実施例1]ワニスの合成
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(1−1−1)で表される化合物0.3075g、式(DI−5−1)(m=4)で表される化合物2.0361gおよび式(DI−5−30)(k=2)で表される化合物0.2863gを入れ、N−メチル−2−ピロリドンを35.0g加えた。その溶液を氷浴で5℃まで冷却した後、式(II−1−1)で表される化合物3.3701gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン30.0gおよびブチルセロソルブ30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ13,000であり樹脂分濃度が6重量%であるワニス1を得た。
【0371】
[実施例2〜96]
テトラカルボン酸二無水物およびジアミンを変更した以外は、実施例1に準拠して、ポリマー固形分濃度が6重量%のワニス2〜ワニス96を調製した。重量平均分子量は、光異性化構造を有する原料を使用するポリマーはおおよそ12,000から13,000、光異性化構造を有する原料を使用しないポリマーは40,000から50,000に調整した。使用したテトラカルボン酸二無水物およびジアミンと、得られたポリマーの重量平均分子量を表1−1〜表1−9に示す。実施例1も表1−1に再掲する。
【0372】
【表1】
[この文献は図面を表示できません]
【0373】
【表2】
[この文献は図面を表示できません]
【0374】
【表3】
[この文献は図面を表示できません]
【0375】
【表4】
[この文献は図面を表示できません]
【0376】
【表5】
[この文献は図面を表示できません]
【0377】
【表6】
[この文献は図面を表示できません]
【0378】
【表7】
[この文献は図面を表示できません]
【0379】
【表8】
[この文献は図面を表示できません]
【0380】
【表9】
[この文献は図面を表示できません]
【0381】
[実施例97]単層型配向剤の調製、電気特性測定用セルの作製および電気特性測定
攪拌翼、窒素導入管を装着した50mLナスフラスコに実施例1で合成したワニス1を10.0g秤取し、そこにN−メチル−2−ピロリドン5.0gおよびブチルセロソルブ5.0gを加え室温で1時間攪拌し、樹脂分濃度3重量%の配向剤1を得た。この配向剤をIPS電極付きガラス基板およびカラムスペーサー付きガラス基板にスピンナー法により塗布した(2,000rpm、15秒)。塗布後、基板を80℃で3分間加熱し、溶剤を蒸発させた後、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S365)を用いて光量を測定し、波長365nmで1.3±0.1J/cm
2になるよう、露光時間を調整した。次いで、230℃にて20分間焼成処理を行い、膜厚およそ100nmの液晶配向膜を形成した。これらの配向膜が形成された基板2枚を、配向膜が形成されている面を対向させ、かつ、対向する配向膜の間に液晶組成物を注入するための空隙を設けて貼り合わせた。この時、それぞれの配向膜に照射された直線偏光の偏光方向が平行になるようにした。これらのセルにポジ型液晶組成物Aを注入し、セル厚7μmの液晶セル(液晶表示素子)を作製した。
【0382】
<ポジ型液晶組成物A>
【化187】
[この文献は図面を表示できません]
物性値:NI 100.1℃; Δε 5.1; Δn 0.093; η 25.6mPa・s.
【0383】
この液晶セルの電圧保持率は5V−30Hzで99.5%であり、イオン密度は15pCであった。このセルを点灯させたバックライト試験機(富士フィルム(株)製、FujiCOLOR LED Viewer Pro HR−2;輝度2,700cd/m
2)の上に1,000時間載せ、信頼性試験を行った。信頼性試験後の測定用セルの電圧保持率は99.4%であり、イオン密度は15pCであった。
【0384】
[実施例98〜133]
使用するワニスを変更した以外は、実施例97に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を実施例97と併せて表2に示す。
【表10】
[この文献は図面を表示できません]
【0385】
実施例98〜133のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。ここで初期値とは、セル作製後、上記バックライト試験機に載せずに測定した結果である。
【0386】
[実施例134]ブレンド型配向剤の調製、電気特性測定用セルの作製および電気特性測定
攪拌翼、窒素導入管を装着した50mLナスフラスコに実施例6で合成したワニス6を2.0gおよび実施例39で合成したワニス39を8.0g秤取し、そこにN−メチル−2−ピロリドン5.0gおよびブチルセロソルブ5.0gを加え室温で1時間攪拌し樹脂分濃度3重量%の配向剤38を得た。実施例97に記載の方法に準じ液晶セルを作製した。この液晶セルの電圧保持率は5V−30Hzで99.8%であり、イオン密度は10pCであった。信頼性試験後の測定用セルの電圧保持率は99.7%であり、イオン密度は10pCであった。表3中、ワニスAは光異性化構造を有する原料を使用するポリマーを含有するワニス、ワニスBは光異性化構造を有する原料を使用しないポリマーを含有するワニスであることを示す。
【0387】
[実施例135〜164]
使用するワニスを変更した以外は、実施例134に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。使用するワニスおよび測定結果を実施例134と併せて表3に示す。なお表3中、ワニスAは光異性化構造を有する原料を使用するポリマーを含有するワニス、ワニスBは光異性化構造を有する原料を使用しないポリマーを含有するワニスであることを示す。
【0388】
【表11】
[この文献は図面を表示できません]
【0389】
実施例135〜164のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。
【0390】
[実施例165]
セルに注入するポジ型液晶組成物Aをネガ型液相組成物Bに代えた以外は実施例97に記載の方法に準じ、配向剤を調製し、液晶セルを作製し、電気特性を測定した。
【0391】
<ネガ型液晶組成物B>
【化188】
[この文献は図面を表示できません]
物性値:NI 75.7℃; Δε −4.1; Δn 0.101; η 14.5mPa・s.
【0392】
[実施例166〜201]
使用するワニスを変更した以外は、実施例165に準拠して液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を実施例165と併せて表4に示す。
【0393】
【表12】
[この文献は図面を表示できません]
【0394】
実施例166〜201のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。
【0395】
[実施例202]
セルに注入するポジ型液晶組成物Aをネガ型液相組成物Bに代えた以外は実施例134に記載の方法に準じ、配向剤を調製し、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0396】
[実施例203〜232]
使用するワニスを変更した以外は、実施例202に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を実施例202と併せて表5に示す。
【0397】
【表13】
[この文献は図面を表示できません]
【0398】
実施例203〜232のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。
【0399】
[実施例233]
実施例8で調製したポリマー固形分濃度6重量%のワニス8に、添加剤(Ad1)をポリマー100重量部当たり5重量部添加した。このポリアミック酸溶液をワニス97とする。ワニス97に含まれるポリアミック酸の重量平均分子量は12,000であった。その後、NMP/BC=1/1(重量比)の混合溶剤を加え、ポリマー固形分濃度3重量%に希釈して配向剤69とした。得られた液晶配向剤を用いて、実施例97に準じた方法で液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0400】
[実施例234]
実施例8で調製したポリマー固形分濃度6重量%のワニス8に、添加剤(Ad2)をポリマー100重量部当たり5重量部添加した。このポリアミック酸溶液をワニス98とする。ワニス98に含まれるポリアミック酸の重量平均分子量は12,000であった。その後、NMP/BC=1/1(重量比)の混合溶剤を加え、ポリマー固形分濃度3重量%に希釈して配向剤70とした。得られた液晶配向剤を用いて、実施例97に準じた方法で液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0401】
[実施例235]
実施例8で調製したポリマー固形分濃度6重量%のワニス8に、添加剤(Ad3)をポリマー100重量部当たり5重量部添加した。このポリアミック酸溶液をワニス99とする。ワニス99に含まれるポリアミック酸の重量平均分子量は12,000であった。その後、NMP/BC=1/1(重量比)の混合溶剤を加え、ポリマー固形分濃度3重量%に希釈して配向剤71とした。得られた液晶配向剤を用いて、実施例97に準じた方法で液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0402】
[実施例236]
実施例144で調製したポリマー固形分濃度3重量%の配向剤48に対して、添加剤(Ad1)をポリマー100重量部当たり5重量部添加した。得られた配向剤72を用いて、実施例97に準じた方法で液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0403】
[実施例237]
実施例144で調製したポリマー固形分濃度3重量%の配向剤48に対して、添加剤(Ad2)をポリマー100重量部当たり5重量部添加した。得られた配向剤73を用いて、実施例97に準じた方法で液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0404】
[実施例238]
実施例144で調製したポリマー固形分濃度3重量%の配向剤48に対して、添加剤(Ad3)をポリマー100重量部当たり5重量部添加した。得られた配向剤74を用いて、実施例97に準じた方法で液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。
【0405】
実施例233〜238の測定結果を表6に示す。
【表14】
[この文献は図面を表示できません]
【0406】
実施例233〜238のすべてのセルにおいて、添加剤を添加しても、初期値、信頼性試験後の値において良好な結果が得られた。
【0407】
[比較例1〜3]
ワニス1をワニス65、75または85に代えた以外は、実施例97に記載の方法に準拠して液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を表7に示す。
【0408】
【表15】
[この文献は図面を表示できません]
【0409】
比較例1〜3のすべてのセルにおいて、特に信頼性試験後の値が大きく低下する結果が得られた。
【0410】
[比較例4〜6]
セルに注入するポジ型液晶組成物Aをネガ型液相組成物Bに代えた以外は、比較例1〜3に記載の方法に準拠して液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を表8に示す。
【0411】
【表16】
[この文献は図面を表示できません]
【0412】
比較例4〜6のすべてのセルにおいて、特に信頼性試験後の値が大きく低下する結果が得られた。
【0413】
[比較例7〜17]
使用するワニスを変更した以外は、実施例134に準拠して液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。使用するワニスおよび測定結果を表9に示す。
【0414】
【表17】
[この文献は図面を表示できません]
【0415】
比較例7〜17のすべてのセルにおいて、特に信頼性試験後の値が、大きく低下する結果が得られた。
【0416】
[比較例18〜28]
セルに注入するポジ型液晶組成物Aをネガ型液相組成物Bに代えた以外は、比較例7〜17に記載の方法に準拠して液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。測定結果を表10に示す。
【0417】
【表18】
[この文献は図面を表示できません]
【0418】
比較例18〜28のすべてのセルにおいて、特に信頼性試験後の値が大きく低下する結果が得られた。
【0419】
[実施例239〜241]ワニスの合成
テトラカルボン酸二無水物およびジアミンを変更した以外は、実施例1に準拠して、ポリマー固形分濃度が6重量%のワニス97〜ワニス99を調製した。重量平均分子量は、40,000から50,000に調整した。使用したテトラカルボン酸二無水物およびジアミンと、得られたポリマーの重量平均分子量を表11に示す。
【表19】
[この文献は図面を表示できません]
【0420】
[実施例242〜244]配向剤の調製、電気特性測定用セルの作製および電気特性測定
使用するワニスを変更した以外は、実施例134に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。使用するワニスおよび測定結果を表12に示す。なお表12中、ワニスAは光異性化構造を有する原料を使用するポリマーを含有するワニス、ワニスBは光異性化構造を有する原料を使用しないポリマーを含有するワニスであることを示す。
【表20】
[この文献は図面を表示できません]
【0421】
実施例242〜244のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。
【0422】
[インクジェット法による印刷性の確認]
本発明の液晶配向剤は、使用する溶剤を適宜選択することにより、インクジェット法による塗布に適した液晶配向剤となる。
【0423】
インクジェット法塗布用液晶配向剤の調製
[実施例245]
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(1−1−1)で表される化合物0.1390g、式(V−2−1)で表される化合物1.6254gおよび式(DI−5−1)(m=4)で表される化合物0.3451gを入れ、N−メチル−2−ピロリドンを34.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−4−17)(m=8)で表される化合物3.8905gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン30.0gおよびブチルセロソルブ30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ12,000であり樹脂分濃度が6重量%であるワニス100を得た。
【0424】
[実施例246]
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(DI−5−9)で表される化合物1.5052g、式(DI−13−1)で表される化合物1.6504gを入れ、N−メチル−2−ピロリドンを34.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−1−1)で表される化合物1.3539gおよび式(AN−3−2)で表される化合物1.4905gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン30.0gおよびブチルセロソルブ30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ49,000であり樹脂分濃度が6重量%であるワニス101を得た。
【0425】
[実施例247]
実施例245で合成したワニス100を17.5g、実施例246で合成したワニス101を40.8g秤取り、そこに、NMPを16.7g、GBLを7.5g、ブチルセロソルブを7.5gおよびジエチレングリコールジエチルエーテル10.0gを加え、固形分濃度3.5重量%、溶剤組成がNMP:GBL:ブチルセロソルブ:ジエチレングリコールジエチルエーテル=36.5:25:25:10となるインクジェット法塗布用液晶配向剤1を調製した。
【0426】
このインクジェット法塗布用液晶配向剤1をガラス基板にインクジェット塗布装置(富士フィルム株式会社製、DMP−2831)にて塗布した。なお、液晶配向膜の膜厚が100nmとなるよう液滴間隔、カートリッジ印加電圧を調整した。塗布後、印刷面全体のムラと、印刷辺の直線性を目視により確認したが、ムラは発生せず、直線性も良好であった。
【0427】
[実施例248]
実施例245で合成したワニス100を17.5g、実施例246で合成したワニス101を40.8g秤取り、そこに、NMPを16.7g、GBLを7.5g、ブチルセロソルブを5.5g、ジエチレングリコールジエチルエーテル10.0gおよびジイソブチルケトンを2.0g加え、固形分濃度3.5重量%、溶剤組成がNMP:GBL:ブチルセロソルブ:ジエチレングリコールジエチルエーテル:ジイソブチルケトン=36.5:25:23:10:2となるインクジェット法塗布用液晶配向剤2を調製した。実施例247に記載の方法に従いインクジェット法印刷での塗布性を確認したところ、印刷面全体のムラは発生せず、印刷辺の直線性は良好であった。
【0428】
[実施例249]アミン、酸無水物を併用したポリアミック酸の合成
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(1−1−1)で表される化合物0.1336g、式(V−2−1)で表される化合物1.8547gおよびアニリン0.0865gを入れ、N−メチル−2−ピロリドンを34.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−4−17)(m=8)で表される化合物3.9253gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン30.0gおよび2−ブトキシプロパノール30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ11,000であり樹脂分濃度が6重量%であるワニス102を得た。
【0429】
[実施例250]
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(1−1−1)で表される化合物0.1344g、式(V−2−1)で表される化合物1.9652gを入れ、N−メチル−2−ピロリドンを34.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−4−17)(m=8)で表される化合物3.7632gフタル酸無水物0.1372gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン30.0gおよび2−ブトキシプロパノール30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ10,000であり樹脂分濃度が6重量%であるワニス103を得た。
【0430】
[実施例251、252]配向剤の調製、電気特性測定用セルの作製および電気特性測定
使用するワニスを変更した以外は、実施例134に準拠して、液晶セルを作製し、電圧保持率、イオン密度の測定および信頼性試験を行った。使用するワニスおよび測定結果を表13に示す。なお表13中、ワニスAは光異性化構造を有する原料を使用するポリマーを含有するワニス、ワニスBは光異性化構造を有する原料を使用しないポリマーを含有するワニスであることを示す。
【表21】
[この文献は図面を表示できません]
【0431】
実施例251、252のすべてのセルにおいて初期値、信頼性試験後の値において良好な結果が得られた。