(58)【調査した分野】(Int.Cl.,DB名)
塩素化ポリエチレンを50〜100質量%を含有するベース樹脂100質量部に対して、有機過酸化物0.003〜0.3質量部と、無機フィラー0.5〜400質量部と、前記ベース樹脂にグラフト反応しうるグラフト化反応部位を有し、前記無機フィラーと結合又は吸着しうるシランカップリング剤2質量部を越え15.0質量部以下とを、前記有機過酸化物の分解温度以上の温度で溶融混合し、前記ベース樹脂と前記シランカップリング剤とをグラフト反応させることによりシラン架橋性樹脂を含むシランマスターバッチを調製する工程(a)と、
前記工程(a)で得られたシランマスターバッチとシラノール縮合触媒とを混合した後に成形する工程(b)と、
前記工程(b)で得られた成形体を水分と接触させてシラン架橋させる工程(c)と、を有し、
かつ前記塩素化ポリエチレンが、結晶融解熱が5〜60J/gである結晶性塩素化ポリエチレン7〜60質量%と、残部として非結晶性塩素化ポリエチレンとを含む、塩素含有架橋樹脂成形体の製造方法。
前記非結晶性塩素化ポリエチレンのメルトフローレート(190℃、21.6kg)が10g/10分未満である請求項1又は2に記載の塩素含有架橋樹脂成形体の製造方法。
前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランである請求項1〜6のいずれか1項に記載の塩素含有架橋樹脂成形体の製造方法。
前記無機フィラーが、シリカ、水酸化アルミニウム、水酸化マグネシウム、若しくは炭酸カルシウム又はこれらの組合せを含む請求項1〜7のいずれか1項に記載の塩素含有架橋樹脂成形体の製造方法。
【発明を実施するための形態】
【0016】
まず、本発明において用いる各成分について説明する。
〈ベース樹脂〉
本発明に用いられるベース樹脂は、塩素含有樹脂のうち、塩素化ポリエチレンを含む。ベース樹脂として塩素化ポリエチレンを含有すると、塩素含有架橋樹脂成形体に、優れた、耐油性を付与することができる。また、必要により耐熱性を付与することもできる。
【0017】
塩素化ポリエチレンとしては、ポリエチレン主鎖に結合する水素原子が塩素原子で置換されているポリエチレンであれば特に限定されず、例えば、エチレン(共)重合体を塩素化して得られるもの等が挙げられる。塩素化ポリエチレンは、塩素含有量が20質量%以上のものが好ましく、さらに好ましくは25質量%以上のもの、さらに好ましくは30質量%以上のものである。塩素含有量が多い方が、耐油性及び耐候性に優れ、またゴム弾性にも優れた成形体を得ることが可能となる。塩素含有率の上限は、塩素化する前のポリエチレンが有する、塩素原子で置換可能な水素原子のすべてを塩素原子で置換した場合の質量割合となり、塩素化する前のポリエチレンの分子量、塩素原子で置換可能な水素原子の数等により、一義的に決定できない。例えば、75質量%程度である。塩素含有量は、塩素化ポリエチレン全量に対する塩素原子の質量割合をいい、JIS K 7229に記載の電位差滴定法により、定量できる。
【0018】
本発明の塩素化ポリエチレンは、結晶融解熱5〜60J/gの結晶性塩素化ポリエチレン(以下、結晶性塩素化ポリエチレンともいう)と、非結晶性塩素化ポリエチレンとを含む。結晶性塩素化ポリエチレンとしては、上述の塩素化ポリエチレンの内、上記結晶性融解熱を有する塩素化ポリエチレンを使用することができる。
結晶性塩素化ポリエチレンを、ベース樹脂の成分として用いると、押出速度を速めても外観に優れた塩素含有架橋樹脂成形体とできる。また、成形後の(未架橋)成形体表面の粘着性(タック性)を低減でき、塩素含有樹脂成形体の生産性向上に高い効果を示す。
結晶性塩素化ポリエチレンの結晶融解熱は、8〜57J/gが好ましく、15〜55J/gがより好ましい。結晶融解熱が5J/g未満であると、非結晶部分が多すぎて所望の成形性や粘着性を得ることができないことがある。また、結晶融解熱が60J/g超であると、結晶性が高すぎて所望の耐油性を得ることができないことがある。結晶融解熱は、示差操作熱量測定法(DSC法)により測定することができる。本発明では、置換ガスヘリウム50ml/min、昇温条件10℃/minにて測定して、DSCチャートより求められた融解による吸熱ピークより計算された値を結晶融解熱という。
【0019】
結晶性塩素化ポリエチレンのメルトフローレート(MFR、190℃、21.6kg)は、10g/10分以上が好ましく、15〜70g/10分がより好ましい。MFRが10g/10分以上であると、より高い成形性を得ることができる。MFR(190℃、21.6kg)は、JIS K 7210に規定の「A法(手動切取り法)」に基づき、190℃、21.6kgの条件Gで計測した値である。
【0020】
本発明における、非結晶性塩素化ポリエチレンは、結晶融解熱が5J/g未満であるものをいう。非結晶性塩素化ポリエチレンとしては、上述の塩素化ポリエチレンの内、上記結晶性融解熱を示す塩素化ポリエチレンを使用することができる。
【0021】
非結晶性の塩素化ポリエチレンのMFR(190℃、21.6kg)は、10g/10分未満が好ましく、0.1〜8g/10分が好ましい。塩素含有架橋樹脂成形体の外粘着による観荒れを低減する観点からは、MFR(190℃、21.6kg)を10g/10分未満とすることが好ましい。
【0022】
本発明において、ベース樹脂は、さらに他の樹脂、オイル成分や可塑剤を含有していてもよい。
他の樹脂としては、特に限定されないが、シランカップリング剤のグラフト化反応部位と有機過酸化物の存在下でグラフト化反応可能な部位、例えば炭素鎖の不飽和結合部位や、水素原子を有する炭素原子を主鎖中又はその末端に有する重合体の樹脂が挙げられる。例えば、熱可塑性エラストマー、エチレン系共重合体の樹脂、変性ポリエチレン、ポリオレフィン樹脂、ポリエステル及び各種ゴム等が挙げられる。
また、他の樹脂として、塩素化ポリエチレン以外の塩素含有樹脂(JIS K 7229−1995に規定する樹脂)、又は、フッ素ゴム等のフッ素含有樹脂も挙げられる。すなわち、本発明において、ベース樹脂は、塩素化ポリエチレン以外の塩素含有樹脂、及び、フッ素含有樹脂の少なくとも一方を含有する態様と、上記塩素含有樹脂及びフッ素含有樹脂を含有しない態様が挙げられる。
【0023】
熱可塑性エラストマーとしては、特に限定されないが、例えば、ポリエステル系エラストマー、スチレン系エラストマー、ポリウレタンエラストマー、オレフィン系エラストマー、ポリアミドエラストマーが挙げられる。本発明において、ベース樹脂は、熱可塑性エラストマーを含有しない態様と、熱可塑性エラストマーを含有する態様とを含む。
エチレン系共重合体の樹脂としては、特に限定されないが、エチレン−α−オレフィン共重合体、酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体が挙げられる。具体的には、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸アルキル共重合体等が挙げられる。
変性ポリエチレンは、塩素化ポリエチレン以外であれば特に限定されないが、例えば、上記エチレン系共重合体の樹脂を変性したものであればよい。例えば、ポリオルガノシロキサンで変性したエチレン−酢酸ビニル共重合体の樹脂、不飽和カルボン酸で変性されたポリオレフィン樹脂、不飽和カルボン酸で変性されたエチレン−酢酸ビニル共重合体の樹脂、及び不飽和カルボン酸で変性されたエチレン−(メタ)アクリル酸エステル共重合体の樹脂等が挙げられる。
ポリオレフィン樹脂としては、エチレン性不飽和結合を有する化合物を重合又は共重合して得られる重合体であって、変性ポリエチレン、エチレン系共重合体及び変性ポリエチレン以外の重合体の樹脂であれば特に限定されるものではなく、従来、耐熱性樹脂組成物に使用されているものを使用することができる。例えば、ポリエチレン、ポリプロピレン等が挙げられる。
ゴムとしては、エチレンゴム、アクリルゴム、ニトリルゴム、スチレンゴムが挙げられる。エチレンゴムとしては、具体的には、エチレン−プロピレンゴム、エチレン−ブテンゴム、エチレン−オクテンゴム、エチレン−プロピレン−ジエンゴム、エチレン−ブテン−ジエンゴム等が挙げられる。
塩素含有樹脂としては、ポリ塩化ビニル等が挙げられる。
【0024】
オイル成分は、特に限定されないが、有機油又は鉱物油が挙げられる。
有機油又は鉱物油として、大豆油、パラフィンオイル、ナフテンオイルが挙げられる。
【0025】
可塑剤は、特に限定されず、塩素化ポリエチレン等に通常用いられる各種のものが挙げられる。例えば、トリメリット酸系可塑剤(トリメリット酸トリアルキル(C8、C10)等)、ピロメリット酸エステル系可塑剤、フタル酸エステル系可塑剤、アジピン酸エステル可塑剤、ポリエステル系可塑剤等が挙げられる。
【0026】
ベース樹脂においては、塩素化ポリエチレン、必要により含有される、他の樹脂、オイル成分や可塑剤等の、ベース樹脂に含まれる各成分の総計が100質量%となるように、各成分の含有率が適宜に決定され、好ましくは下記範囲内から選択される。
【0027】
ベース樹脂中の、塩素化ポリエチレンの含有率は、50〜100質量%であり、30〜95質量%が好ましく、35〜85質量%がより好ましく、45〜85質量%がさらに好ましい。この含有率が少なすぎると、塩素化ポリエチレン本来の難燃性、耐油性、耐候性等を付与することができないことがある。
【0028】
結晶性塩素化ポリエチレンの含有率は、塩素化ポリエチレンの合計含有率100質量%中、7〜60質量%であり、15〜50質量%が好ましい。非結晶性塩素化ポリエチレンの含有率は、塩素化ポリエチレン合計含有率100質量%中の、塩素化ポリエチレンを除いた残部である。結晶性塩素化ポリエチレンの含有率が7質量%未満であると、塩素含有架橋樹脂成形体に優れた外観を付与することができないことがある。含有率が60質量%超であると、塩素含有架橋樹脂成形体に耐油性を付与することができないことがある。
【0029】
他の樹脂の含有量は、特に限定されないが、ベース樹脂100質量%中0〜45質量%が好ましく、0〜25質量%がより好ましい。
オイルの含有率は、特に限定されないが、ベース樹脂がオイルを含有する場合、ベース樹脂100質量%中、0〜75質量%であることが好ましく、0〜60質量%であることがより好ましい。オイルの含有量があまり多すぎるとブリードしたり、強度が低下したりする。
可塑剤の含有率は、特に限定されないが、ベース樹脂が可塑剤を含有する場合、ベース樹脂100質量%中、0〜75質量%であることが好ましく、0〜60質量%であることがより好ましい。可塑剤の含有量が多すぎるとブリードしたり、強度が低下したりする。
【0030】
〈有機過酸化物〉
有機過酸化物は、少なくとも熱分解によりラジカルを発生して、触媒として、シランカップリング剤の樹脂成分へのラジカル反応によるグラフト反応を生起させる働きをする。特にシランカップリング剤の反応部位が例えばエチレン性不飽和基を含む場合、エチレン性不飽和基と樹脂成分とのラジカル反応(樹脂成分からの水素ラジカルの引き抜き反応を含む)によるグラフト反応を生起させる働きをする。
有機過酸化物としては、ラジカルを発生させるものであれば、特に制限はなく、例えば、一般式:R
1−OO−R
2、R
3−OO−C(=O)R
4、R
5C(=O)−OO(C=O)R
6で表される化合物が好ましい。ここで、R
1〜R
6は各々独立にアルキル基、アリール基又はアシル基を表す。各化合物のR
1〜R
6のうち、いずれもアルキル基であるもの、又は、いずれかがアルキル基で残りがアシル基であるものが好ましい。
【0031】
このような有機過酸化物としては、例えば、ジクミルパーオキサイド(DCP)、ジ−tert−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ−(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p−クロロベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert−ブチルクミルパーオキサイド等を挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3が好ましい。
【0032】
有機過酸化物の分解温度は、80〜195℃が好ましく、125〜180℃が特に好ましい。
本発明において、有機過酸化物の分解温度とは、単一組成の有機過酸化物を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味する。具体的には、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
【0033】
〈無機フィラー〉
本発明において、無機フィラーは、その表面に、シランカップリング剤のシラノール基等の反応部位と水素結合若しくは共有結合等、又は分子間結合により、化学結合しうる部位を有するものであれば特に制限なく用いることができる。この無機フィラーにおける、シランカップリング剤の反応部位と化学結合しうる部位としては、OH基(水酸基、含水若しくは結晶水の水分子、カルボキシ基等のOH基)、アミノ基、SH基等が挙げられる。
【0034】
無機フィラーとしては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミニウムウイスカ、水和珪酸アルミニウム、水和珪酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト、タルク等の水酸基あるいは結晶水を有する化合物のような金属水和物が挙げられる。また、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカ等)、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、ほう酸亜鉛、ホワイトカーボン、ほう酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛等が挙げられる。
【0035】
無機フィラーは、シランカップリング剤等で表面処理した表面処理無機フィラーを使用することができる。例えば、シランカップリング剤表面処理無機フィラーとして、キスマ5L、キスマ5P(いずれも商品名、水酸化マグネシウム、協和化学工業社製等)等が挙げられる。シランカップリング剤による無機フィラーの表面処理量は、特に限定されないが、例えば、3質量%以下である。
【0036】
これらの無機フィラーのうち、シリカ、水酸化アルミニウム、水酸化マグネシウム、若しくは炭酸カルシウム又はこれらの組合せが好ましい。
無機フィラーは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
【0037】
無機フィラーが粉体である場合、無機フィラーの平均粒径は、0.2〜10μmが好ましく、0.3〜8μmがより好ましく、0.4〜5μmがさらに好ましく、0.4〜3μmが特に好ましい。平均粒径が上記範囲内にあると、シランカップリング剤の保持効果が高く、引張強さ又は耐熱性に優れたものとなる。また、シランカップリング剤との混合時に無機フィラーが2次凝集しにくく、外観に優れたものとなる。平均粒径は、無機フィラーをアルコールや水で分散させて、レーザ回折/散乱式粒子径分布測定装置等の光学式粒径測定器によって求められる。
無機フィラーについて、その作用はその名称に限定されず、例えば塩素含有樹脂の安定剤として作用してもよい。
【0038】
〈シランカップリング剤〉
本発明に用いられるシランカップリング剤は、有機過酸化物の分解により生じたラジカルの存在下でベース樹脂、特に塩素含有樹脂にグラフト反応しうるグラフト化反応部位(基又は原子)と、無機フィラーの化学結合しうる部位と反応し、シラノール縮合可能な反応部位(加水分解して生成する部位を含む。例えばシリルエステル基等)とを、少なくとも有するものであればよい。このようなシランカップリング剤として、従来、シラン架橋法に使用されているシランカップリング剤が挙げられる。
【0039】
シランカップリング剤としては、例えば下記の一般式(1)で表される化合物を用いることができる。
【0041】
一般式(1)中、R
a11はエチレン性不飽和基を含有する基、R
b11は脂肪族炭化水素基、水素原子又はY
13である。Y
11、Y
12及びY
13は加水分解しうる有機基である。Y
11、Y
12及びY
13は互いに同じでも異なっていてもよい。
【0042】
R
a11は、グラフト化反応部位であり、エチレン性不飽和基を含有する基が好ましい。エチレン性不飽和基を含有する基としては、例えば、ビニル基、(メタ)アクリロイルオキシアルキレン基、p−スチリル基を挙げることができる。なかでも、ビニル基が好ましい。
【0043】
R
b11は、脂肪族炭化水素基、水素原子又は後述のY
13を示す。脂肪族炭化水素基としては、脂肪族不飽和炭化水素基を除く炭素数1〜8の1価の脂肪族炭化水素基が挙げられる。R
b11は、好ましくは後述のY
13である。
【0044】
Y
11、Y
12及びY
13は、シラノール縮合可能な反応部位(加水分解しうる有機基)を示す。例えば、炭素数1〜6のアルコキシ基、炭素数6〜10のアリールオキシ基、炭素数1〜4のアシルオキシ基が挙げられ、アルコキシ基が好ましい。加水分解しうる有機基としては、具体的には例えば、メトキシ、エトキシ、ブトキシ、アシルオキシ等を挙げることができる。このなかでも、シランカップリング剤の反応性の点から、メトキシ又はエトキシがさらに好ましい。
【0045】
シランカップリング剤としては、好ましくは、加水分解速度の速いシランカップリング剤であり、より好ましくは、R
b11がY
13であり、かつY
11、Y
12及びY
13が互いに同じであるシランカップリング剤、又は、Y
11、Y
12及びY
13の少なくとも1つがメトキシ基であるシランカップリング剤である。
【0046】
シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン等のビニルシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシランを挙げることができる。
上記シランカップリング剤のなかでも、末端にビニル基とアルコキシ基を有するシランカップリング剤がさらに好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましい。
【0047】
シランカップリング剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、そのままで用いても、溶媒等で希釈して用いてもよい。
【0048】
〈シラノール縮合触媒〉
シラノール縮合触媒は、ベース樹脂にグラフトしたシランカップリング剤を水分の存在下で縮合反応させる働きがある。このシラノール縮合触媒の働きに基づき、シランカップリング剤を介して、ベース樹脂同士が架橋される。その結果、優れた引張強さ又は耐熱性を有する塩素含有架橋樹脂成形体が得られる。
【0049】
本発明に用いられるシラノール縮合触媒としては、有機スズ化合物、金属石けん、白金化合物等が挙げられる。一般的なシラノール縮合触媒としては、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物等が用いられる。これらのなかでも、特に好ましくは、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物である。
【0050】
〈キャリア樹脂〉
シラノール縮合触媒は、所望により樹脂に混合されて、用いられる。このような樹脂(キャリア樹脂ともいう)としては、特に限定されないが、ベース樹脂で説明した各樹脂成分又はゴム成分を用いることができる。
キャリア樹脂は、シランマスターバッチとの相溶性の兼ね合いで、シランマスターバッチに使用されている樹脂成分の1種類又は2種類以上の樹脂成分を含有していることが好ましい。
キャリア樹脂は、非結晶性塩素化ポリエチレンを含有していることが好ましい。
【0051】
〈添加剤〉
塩素含有架橋樹脂成形体等は、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプにおいて、一般的に使用されている各種の添加剤を本発明の効果を損なわない範囲で含有してもよい。このような添加剤として、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、安定剤又は、充填剤(難燃(助)剤を含む。)等が挙げられる。
【0052】
架橋助剤とは、有機過酸化物の存在下において、ベース樹脂との間に部分架橋構造を形成するものをいう。例えば、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート等の(メタ)アクリレート系化合物、トリアリルシアヌレート等のアリル系化合物、マレイミド系化合物、ジビニル系化合物等の多官能性化合物が挙げられる。
【0053】
酸化防止剤としては、特に限定されないが、例えば、アミン酸化防止剤、フェノール酸化防止剤又は硫黄酸化防止剤等が挙げられる。アミン酸化防止剤としては、例えば、4,4’−ジオクチルジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物等が挙げられる。フェノール酸化防止剤としては、例えば、ペンタエリスリチル−テトラキス(3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート)、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。硫黄酸化防止剤としては、例えば、ビス(2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−tert−ブチルフェニル)スルフィド、2−メルカプトベンズイミダゾール及びその亜鉛塩、ペンタエリスリトール−テトラキス(3−ラウリル−チオプロピオネート)等が挙げられる。酸化防止剤は、ベース樹脂100質量部に対して、好ましくは0.1〜15.0質量部、さらに好ましくは0.1〜10質量部で加えることができる。
【0054】
金属不活性剤としては、N,N’−ビス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル)ヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、2,2’−オキサミドビス(エチル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)等が挙げられる。
【0055】
安定剤としては、塩素含有樹脂に通常使用されるものが使用でき、例えば、カルシウム−亜鉛系安定剤、バリウム−亜鉛系安定剤、スズ系安定剤、鉛系安定剤が挙げられる。
【0056】
難燃(助)剤、充填剤としては、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化マグネシウム、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、炭酸カルシウム、炭酸マグネシウム、ほう酸亜鉛、ホワイトカーボン等が挙げられる。これらの充填剤はフィラーとしてシランカップリング剤を混合させる際に使用してもよいし、キャリア樹脂に加えてもよい。
【0057】
滑剤としては、炭化水素系、シロキサン系、脂肪酸系、脂肪酸アミド系、エステル系、アルコール系、金属石けん系等が挙げられる。これらの滑剤はキャリア樹脂に加えた方がよい。
【0058】
次に、本発明の製造方法を具体的に説明する。
本発明の塩素含有架橋樹脂成形体の製造方法は、下記工程(a)〜工程(c)を行う。
本発明のシランマスターバッチは下記工程(a)により製造され、本発明のマスターバッチ混合物は下記工程(a)及び工程(b)により製造される。
【0059】
工程(a):塩素化ポリエチレンを50〜100質量%含有するベース樹脂100質量部に対して、有機過酸化物0.003〜0.3質量部と、無機フィラー0.5〜400質量部と、シランカップリング剤2質量部を越え15.0質量部以下とを、前記有機過酸化物の分解温度以上の温度で溶融混練し、シランマスターバッチを調製する工程
工程(b):工程(a)で得られたシランマスターバッチとシラノール縮合触媒とを混合した後に成形する工程
工程(c):工程(b)で得られた成形体を水分と接触させて架橋させる工程
上記塩素化ポリエチレンは、結晶融解熱が5〜60J/gである結晶性塩素化ポリエチレン7〜60質量%と、残部として非結晶性塩素化ポリエチレンとを含む。
ここで、混合するとは、均一な混合物を得ることをいう。
【0060】
工程(a)において、有機過酸化物の配合量は、ベース樹脂100質量部に対して、0.003〜0.3質量部であり、0.005〜0.3質量部が好ましく、0.005〜0.1質量部がより好ましい。有機過酸化物の配合量が0.003質量部未満では、グラフト反応が進行せず、未反応のシランカップリング剤同士が縮合又は未反応のシランカップリング剤が揮発して、引張強さ又は耐熱性を十分に得ることができないことがある。一方、0.3質量部超であると、副反応によって樹脂成分の多くが直接的に架橋してブツを形成し、外観不良が生じることがある。また、押し出し性に優れたシランマスターバッチ等が得られないことがある。すなわち、有機過酸化物の配合量をこの範囲内にすることにより、適切な範囲でグラフト反応を行うことができ、ゲル状のブツ(凝集塊)も発生することなく押し出し性に優れたシランマスターバッチ等を得ることができる。
【0061】
無機フィラーの配合量は、ベース樹脂100質量部に対して、0.5〜400質量部であり、30〜280質量部が好ましい。無機フィラーの配合量が0.5質量部未満では、シランカップリング剤のグラフト反応が不均一となり、塩素含有架橋樹脂成形体に優れた引張強さ又は耐熱性を付与できないことがある。また、シランカップリング剤のグラフト反応が不均一となり、塩素含有架橋樹脂成形体の外観が低下することがある。一方、400質量部を超えると、成形時や混練時の負荷が非常に大きくなり、2次成形が難しくなることがある。また、引張強さ又は耐熱性や外観が低下することがある。
【0062】
シランカップリング剤の配合量は、ベース樹脂100質量部に対して、2.0質量部を超え15.0質量部以下である。シランカップリング剤の配合量が2.0質量部以下では、架橋反応が十分に進行せず、優れた引張強さ又は耐熱性を発揮しないことがある。また、シラノール縮合触媒とともに成形する際に、外観不良やブツを生じ、また押出機を止めた際にブツが多く生じることがある。一方、15.0質量部を超えると、それ以上の無機フィラー表面にシランカップリング剤が吸着しきれず、シランカップリング剤は混練中に揮発してしまい、経済的でない。また、吸着しないシランカップリング剤が縮合してしまい、成形体に架橋ゲルブツや焼けが生じて外観が悪化するおそれがある。
上記観点により、このシランカップリング剤の配合量は、ベース樹脂100質量部に対して、3〜12.0質量部が好ましく、4〜12.0質量部がより好ましい。
【0063】
シラノール縮合触媒の配合量は、特に限定されず、好ましくは、ベース樹脂100質量部に対して、0.0001〜0.5質量部、より好ましくは0.001〜0.2質量部である。シラノール縮合触媒の配合量が上述の範囲内にあると、シランカップリング剤の縮合反応による架橋反応がほぼ均一に進みやすく、塩素含有架橋樹脂成形体の引張強さ又は耐熱性、外観及び物性が優れ、生産性も向上する。すなわち、シラノール縮合触媒の配合量が少なすぎると、シランカップリング剤の縮合反応による架橋が進みにくくなり、塩素含有架橋樹脂成形体の引張強さ又は耐熱性がなかなか向上せずに生産性が低下し、又は架橋が不均一になることがある。一方、多すぎると、シラノール縮合反応が非常に速く進行し、部分的なゲル化が生じて、外観が低下することがある。また、塩素含有架橋樹脂成形体(樹脂)の物性が低下することがある。
【0064】
本発明において、「ベース樹脂に対して、有機過酸化物、無機フィラー及びシランカップリング剤を溶融混合する」とは、溶融混合する際の混合順を特定するものではなく、どのような順で混合してもよいことを意味する。工程(a)における混合順は特に限定されない。本発明においては、無機フィラーは、シランカップリング剤と混合して用いることが好ましい。すなわち、本発明においては、上記各成分を、下記工程(a−1)及び(a−2)により、(溶融)混合することが好ましい。
工程(a−1):少なくとも無機フィラー及びシランカップリング剤を混合して混合物を調製する工程
工程(a−2):工程(a−1)で得られた混合物と、ベース樹脂の全部又は一部とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度において、溶融混合する工程
【0065】
上記工程(a−2)においては、「ベース樹脂の全量(100質量部)が配合される態様」と、「ベース樹脂の一部が配合される態様」とを含む。工程(a−2)において、ベース樹脂の一部が配合される場合、ベース樹脂の残部は、好ましくは工程(b)で配合される。
本発明において、「ベース樹脂の一部」とは、ベース樹脂のうち工程(a−2)で使用する樹脂であって、ベース樹脂そのものの一部(ベース樹脂と同一組成を有する)、ベース樹脂を構成する樹脂成分の一部、ベース樹脂を構成する一部の樹脂成分(例えば、複数の樹脂成分のうちの特定の樹脂成分全量)をいう。
また、「ベース樹脂の残部」とは、ベース樹脂のうち工程(a−2)で使用する一部を除いた残りのベース樹脂であって、具体的には、ベース樹脂そのものの残部、ベース樹脂を構成する樹脂成分の残部、ベース樹脂を構成する残りの樹脂成分をいう。
工程(a−2)でベース樹脂の一部を配合する場合、工程(a)及び工程(b)におけるベース樹脂の配合量100質量部は、工程(a−2)及び工程(b)で混合されるベース樹脂の合計量である。
ここで、工程(b)でベース樹脂の残部が配合される場合、ベース樹脂は、工程(a−2)において、好ましくは55〜99質量%、より好ましくは60〜95質量%が配合され、工程(b)において、好ましくは1〜45質量%、より好ましくは5〜40質量%が配合される。
【0066】
本発明においては、シランカップリング剤は、上記のように、無機フィラーと前混合等されることが好ましい(工程(a−1))。
無機フィラーとシランカップリング剤を混合する方法としては、特に限定されないが、湿式処理、乾式処理等の混合方法が挙げられる。具体的には、アルコールや水等の溶媒に無機フィラーを分散させた状態でシランカップリング剤を加える湿式処理、無処理の無機フィラー中に、又は予めステアリン酸やオレイン酸、リン酸エステル若しくは一部をシランカップリング剤で表面処理した無機フィラー中に、シランカップリング剤を、加熱又は非加熱で加え混合する乾式処理、及び、その両方が挙げられる。本発明においては、無機フィラー、好ましくは乾燥させた無機フィラー中にシランカップリング剤を、加熱又は非加熱で加え混合する乾式処理が好ましい。
このようにして前混合されたシランカップリング剤は、無機フィラーの表面を取り囲むように存在し、その一部又は全部が無機フィラーに吸着又は結合する。これにより、後の溶融混合の際にシランカップリング剤の揮発を低減できる。また、無機フィラーに吸着又は結合しないシランカップリング剤が縮合して溶融混練が困難になることも防止できる。さらに、押出成形の際に所望の形状を得ることもできる。
【0067】
このような混合方法として、好ましくは、有機過酸化物の分解温度未満の温度、好ましくは室温(25℃)で無機フィラーとシランカップリング剤を、数分〜数時間程度、乾式又は湿式で混合(分散)した後に、この混合物と樹脂とを、有機過酸化物の存在下で、溶融混合させる方法が挙げられる。この混合は、好ましくは、バンバリーミキサーやニーダー等のミキサー型混練機で行われる。このようにすると、樹脂成分同士の過剰な架橋反応を防止することができ、外観が優れたものとなる。
この混合方法においては、上記分解温度未満の温度が保持されている限り、樹脂が存在していてもよい。この場合、樹脂とともに金属酸化物及びシランカップリング剤を上記温度で混合(工程(a−1))した後に溶融混合することが好ましい。
【0068】
有機過酸化物を混合する方法としては、特に限定されず、上記混合物とベース樹脂とを溶融混合する際に、存在していればよい。有機過酸化物は、例えば、無機フィラー等と同時に混合されても、また無機フィラーとシランカップリング剤との混合段階のいずれにおいて混合されてもよく、無機フィラーとシランカップリング剤との混合物に混合されてもよい。例えば、有機過酸化物は、シランカップリング剤と混合した後に無機フィラーと混合されてもよいし、シランカップリング剤と分けて別々に無機フィラーに混合されてもよい。生産条件によっては、シランカップリング剤のみを無機フィラーに混合し、次いで有機過酸化物を混合してもよい。
また、有機過酸化物は、他の成分と混合させたものでもよいし、単体でもよい。
【0069】
無機フィラーとシランカップリング剤との混合方法において、湿式混合では、シランカップリング剤と無機フィラーとの結合力が強くなるため、シランカップリング剤の揮発を効果的に抑えることができるが、シラノール縮合反応が進みにくくなることがある。一方、乾式混合では、シランカップリング剤が揮発しやすいが、無機フィラーとシランカップリング剤の結合力が比較的弱くなるため、効率的にシラノール縮合反応が進みやすくなる。
【0070】
本発明の製造方法においては、次いで、得られた混合物とベース樹脂の全部又は一部と、工程(a−1)で混合されていない残余の成分とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度に加熱しながら、溶融混練する(工程(a−2))。
【0071】
工程(a−2)において、上記成分を溶融混合(溶融混練、混練りともいう)する温度は、有機過酸化物の分解温度以上、好ましくは有機過酸化物の分解温度+(25〜110)℃の温度である。この分解温度は樹脂成分が溶融してから設定することが好ましい。上記混合温度であれば、上記成分が溶融し、有機過酸化物が分解、作用して必要なシラングラフト反応が工程(a−2)において十分に進行する。その他の条件、例えば混合時間は適宜設定することができる。
混合方法としては、ゴム、プラスチック等で通常用いられる方法であれば、特に限定されない。混合装置は、例えば無機フィラーの配合量に応じて適宜に選択される。混練装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダー等が用いられる。樹脂成分の分散性、及び架橋反応の安定性の面で、バンバリーミキサー又は各種のニーダー等のうち密閉型ミキサーが好ましい。
また、通常、このような無機フィラーが、ベース樹脂100質量部に対して100質量部を超える量で混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサー等の密閉型ミキサーで混練りするのがよい。
ベース樹脂の混合方法は、特に限定されない。例えば、予め混合調製された樹脂を用いてもよく、各成分、例えば塩素化ポリエチレン等の樹脂成分、オイル成分、可塑剤それぞれを別々に混合してもよい。
【0072】
本発明において、上記各成分を一度に溶融混合する場合、溶融混合の条件は、特に限定されないが、工程(a−2)の条件を採用できる。
この場合、溶融混合時にシランカップリング剤の一部又は全部が無機フィラーに吸着又は結合する。
【0073】
工程(a)、特に工程(a−2)においては、シラノール縮合触媒を実質的に混合せずに上述の各成分を混練することが好ましい。これにより、シランカップリング剤の縮合反応を抑えることができ、溶融混合しやすく、また押出成形の際に所望の形状を得ることができる。ここで、「実質的に混合せず」とは、不可避的に存在するシラノール縮合触媒をも排除するものではなく、シランカップリング剤のシラノール縮合による上述の問題が生じない程度に存在していてもよいことを意味する。例えば、工程(a−2)において、シラノール縮合触媒は、ベース樹脂100質量部に対して0.01質量部以下であれば、存在していてもよい。
【0074】
工程(a)においては、上記成分の他に用いることができる他の樹脂や上記添加物の配合量は、本発明の目的を損なわない範囲で、適宜に設定される。
工程(a)において、上記添加剤、特に酸化防止剤や金属不活性剤は、いずれの工程で又は成分に混合されてもよいが、無機フィラーに混合されたシランカップリング剤の樹脂へのグラフト反応を阻害しない点で、キャリア樹脂に混合されるのがよい。
工程(a)、特に工程(a−2)において、架橋助剤は実質的に混合されないことが好ましい。架橋助剤が実質的に混合されないと、溶融混合中に有機過酸化物により樹脂成分同士の架橋反応が生じにくく、外観が優れたものになる。また、シランカップリング剤の樹脂へのグラフト反応が生じにくく、引張強さ又は耐熱性が優れたものになる。ここで、実質的に混合されないとは、不可避的に存在する架橋助剤をも排除するものではなく、上述の問題が生じない程度に存在していてもよいことを意味する。
【0075】
このようにして、工程(a)を行い、マスターバッチ混合物の製造に用いられるシランマスターバッチ(シランMBともいう)が調製される。このシランMBは、後述の工程(b)により成形可能な程度にシランカップリング剤がベース樹脂にグラフトしたシラン架橋性樹脂を含有している。
【0076】
本発明の製造方法において、次いで、工程(a)で得られたシランMBとシラノール縮合触媒とを混合した後に成形する工程(b)を行う。
工程(b)においては、上記工程(a−2)でベース樹脂の一部を溶融混合した場合、ベース樹脂の残部とシラノール縮合触媒とを溶融混合し、触媒マスターバッチ(触媒MBともいう)を調製して、この触媒MBを用いる。なお、ベース樹脂の残部に加えて他の樹脂を用いることもできる。
【0077】
キャリア樹脂としての上記ベース樹脂の残部とシラノール縮合触媒との混合割合は、特に限定されないが、好ましくは、工程(a)における上記配合量を満たすように、設定される。
混合は、均一に混合できる方法であればよく、ベース樹脂の溶融下で行う混合(溶融混合)が挙げられる。溶融混合は上記工程(a−2)の溶融混合と同様に行うことができる。例えば、混合温度は、80〜250℃、より好ましくは100〜240℃で行うことができる。その他の条件、例えば混合時間は適宜設定することができる。
このようにして調製される触媒MBは、シラノール縮合触媒及びキャリア樹脂、所望により添加されるフィラーの混合物である。
【0078】
一方、工程(a−2)でベース樹脂の全部を溶融混合する場合、シラノール縮合触媒そのもの、又は、他の樹脂とシラノール縮合触媒との混合物を用いる。他の樹脂とシラノール縮合触媒との混合方法は、上記触媒MBと同様である。
他の樹脂の配合量は、工程(a−2)においてグラフト反応を促進させることができるうえ、成形中にブツが生じにくい点で、ベース樹脂100質量部に対して、好ましくは1〜60質量部、より好ましくは2〜50質量部、さらに好ましくは2〜40質量部である。
【0079】
本発明の製造方法においては、シランMBと、シラノール縮合触媒(シラノール縮合触媒そのもの、準備した触媒MB、又は、シラノール縮合触媒と他の樹脂との混合物)とを混合する。
混合方法は、上述のように均一な混合物を得ることができれば、どのような混合方法でもよい。例えば、混合は、工程(a−2)の溶融混合と基本的に同様である。DSC等で融点が測定できない樹脂成分、例えばエラストマーもあるが、少なくともベース樹脂が溶融する温度で混練する。溶融温度は、ベース樹脂又はキャリア樹脂の溶融温度に応じて適宜に選択され、例えば、好ましくは80〜250℃、より好ましくは100〜240℃である。その他の条件、例えば混合(混練)時間は適宜設定することができる。
工程(b)においては、シラノール縮合反応を避けるため、シランMBとシラノール縮合触媒が混合された状態で高温状態に長時間保持されないことが好ましい。
【0080】
工程(b)においては、シランMBとシラノール縮合触媒とを混合すればよく、シランMBと触媒MBとを溶融混合するのが好ましい。
【0081】
本発明においては、シランMBとシラノール縮合触媒とを溶融混合する前に、ドライブレンドすることができる。ドライブレンドの方法及び条件は、特に限定されず、例えば、工程(a−1)での乾式混合及びその条件が挙げられる。このドライブレンドにより、シランMBとシラノール縮合触媒とを含有するマスターバッチ混合物が得られる。
【0082】
工程(b)において、無機フィラーを用いてもよい。この場合、無機フィラーの配合量は、特には限定されないが、キャリア樹脂100質量部に対し、350質量部以下が好ましい。無機フィラーの配合量が多すぎるとシラノール縮合触媒が分散しにくく、架橋が進行しにくくなるためである。一方、無機フィラーの配合量が少なすぎると、成形体の架橋度が低下して、十分な引張強さ又は耐熱性が得られない場合がある。
【0083】
本発明において、上記工程(a)及び工程(b)の混合は、同時又は連続して行うことができる。
【0084】
工程(b)においては、このようにして得られた混合物を成形する。
この成形工程は、混合物を成形できればよく、本発明の成形品の形態に応じて、適宜に成形方法及び成形条件が選択される。成形方法は、押出機を用いた押出成形、射出成形機を用いた押出成形、その他の成形機を用いた成形が挙げられる。押出成形は、本発明の成形品が電線又は光ファイバーケーブルである場合に、好ましい。
工程(b)を押出成形により行う場合、架橋性樹脂組成物の成形速度(押出速度)は、特に限定されないが、生産性のさらなる向上のため成形速度を線速で40〜200m/分の高速に設定することもできる。
【0085】
工程(b)において、成形工程は、上記混合工程と同時に又は連続して、行うことができる。すなわち、混合工程における溶融混合の一実施態様として、溶融成形の際、例えば押出成形の際に、又は、その直前に、成形原料を溶融混合する態様が挙げられる。例えば、ドライブレンド等のペレット同士を常温又は高温で混ぜ合わせて成形機に導入(溶融混合)してもよいし、混ぜ合わせた後に溶融混合し、再度ペレット化をして成形機に導入してもよい。より具体的には、シランMBとシラノール縮合触媒との混合物(成形材料)を被覆装置内で溶融混練し、次いで、導体等の外周面に押出被覆して、所望の形状に成形する一連の工程を採用できる。
このようにして、シランマスターバッチとシラノール縮合触媒とをドライブレンドしてマスターバッチ混合物を調製し、マスターバッチ混合物を成型機に導入して成形した、架橋性塩素含有樹脂組成物の成形体が得られる。
【0086】
ここで、マスターバッチ混合物の溶融混合物は、架橋方法の異なるシラン架橋性樹脂を含有する。このシラン架橋性樹脂において、シランカップリング剤の反応部位は、無機フィラーと結合又は吸着していてもよいが、後述するようにシラノール縮合していない。したがって、シラン架橋性樹脂は、無機フィラーと結合又は吸着したシランカップリング剤がベース樹脂、特に塩素化ポリエチレンに、グラフトした架橋性樹脂と、無機フィラーと結合又は吸着していないシランカップリング剤がベース樹脂にグラフトした架橋性樹脂とを少なくとも含む。また、シラン架橋性樹脂は、無機フィラーが結合又は吸着したシランカップリング剤と、無機フィラーが結合又は吸着していないシランカップリング剤とを有していてもよい。さらに、シランカップリング剤と未反応の樹脂成分を含んでいてもよい。
上記のように、シラン架橋性樹脂は、シランカップリング剤がシラノール縮合していない未架橋体である。実際的には、工程(b)で溶融混合されると、一部架橋(部分架橋)は避けられないが、得られる架橋性塩素含有樹脂組成物について、少なくとも成形時の成形性が保持されたものとする。
工程(b)により得られる成形体は、上記混合物と同様に、一部架橋は避けられないが、工程(b)で成形可能な成形性を保持する部分架橋状態にある。したがって、この発明の塩素含有架橋樹脂成形体は、工程(c)を実施することによって、架橋又は最終架橋された成形体とされる。
【0087】
本発明の塩素含有架橋樹脂成形体の製造方法においては、工程(b)で得られた成形体を水と接触させる工程(c)を行う。これにより、シランカップリング剤の反応部位が加水分解されてシラノールとなり、成形体中に存在するシラノール縮合触媒によりシラノールの水酸基同士が縮合して架橋反応が起こる。こうして、シランカップリング剤がシラノール縮合して架橋した塩素含有架橋樹脂成形体を得ることができる。
この工程(c)の処理自体は、通常の方法によって行うことができる。シランカップリング剤同士の縮合は、常温で保管するだけで進行するしたがって、工程(c)において、成形体を水に積極的に接触させる必要はない。
この架橋反応を促進させるために、成形体を水分と接触させることもできる。例えば、温水への浸水、湿熱槽への投入、高温の水蒸気への暴露等の積極的に水に接触させる方法を採用できる。また、その際に水分を内部に浸透させるために圧力をかけてもよい。
【0088】
このようにして、本発明の塩素含有架橋樹脂成形体の製造方法が実施され、塩素含有架橋樹脂成形体が製造される。この塩素含有架橋樹脂成形体は、(シラン架橋性)樹脂がシラノール結合(シロキサン結合)を介して縮合した架橋樹脂を含んでいる。このシラン架橋樹脂成形体の一形態は、シラン架橋樹脂と無機フィラーとを含有する。ここで、無機フィラーはシラン架橋樹脂のシランカップリング剤に結合していてもよい。したがって、ベース樹脂が、シラノール結合を介して無機フィラーと架橋してなる態様を含む。具体的には、このシラン架橋樹脂は、複数の架橋樹脂がシランカップリング剤により無機フィラーに結合又は吸着して、無機フィラー及びシランカップリング剤を介して結合(架橋)した架橋樹脂と、上記架橋性樹脂にグラフトしたシランカップリング剤の反応部位が加水分解して互いにシラノール縮合反応することにより、シランカップリング剤を介して架橋した架橋樹脂とを少なくとも含む。また、シラン架橋樹脂は、無機フィラー及びシランカップリング剤を介した結合(架橋)と、シランカップリング剤を介した架橋とが混在していてもよい。さらに、シランカップリング剤と未反応の樹脂成分及び/又は架橋していないシラン架橋性樹脂を含んでいてもよい。
【0089】
本発明の製造方法により得られた塩素含有架橋樹脂成形体は、結晶性塩素化ポリエチレンに由来する結晶融解熱が1〜10J/gであることが好ましい。結晶融解熱は、DSC法により、後述する条件で測定することができる。結晶性塩素化ポリエチレン由来の結晶融解熱のピーク位置は、製造に用いた結晶性塩素化ポリエチレンによって異なるため一義的に述べることはできないが、後述する測定条件下では110〜120℃付近に現れる。
【0090】
上記本発明の製造方法は、以下のように、表現できる。
下記工程(A)、工程(B)及び工程(C)を有する塩素含有架橋樹脂成形体の製造方法であって、工程(A)が下記工程(A1)〜工程(A4)を有する塩素含有架橋樹脂成形体の製造方法。
工程(A):塩素化ポリエチレンを50〜100質量%含有するベース樹脂100質量部に対して、有機過酸化物0.003〜0.2質量部と、無機フィラー0.5〜400質量部と、シランカップリング剤2質量部を越え15.0質量部以下と、シラノール縮合触媒とを混合して混合物を得る工程
工程(B):工程(A)で得られた混合物を成形して成形体を得る工程
工程(C):工程(B)で得られた成形体を水と接触させて塩素含有架橋樹脂成形体を得る工程
工程(A1):少なくとも無機フィラー及びシランカップリング剤を混合する工程
工程(A2):工程(A1)で得られた混合物とベース樹脂の全部又は一部を有機過酸化物の存在下で有機過酸化物の分解温度以上の温度で溶融混合する工程
工程(A3):シラノール縮合触媒とキャリア樹脂としてベース樹脂と異なる樹脂又はベース樹脂の残部とを混合する工程
工程(A4):工程(A2)で得られた溶融混合物と、工程(A3)で得られた混合物とを混合する工程
上記方法において、工程(A)は、上記工程(a)及び工程(b)の混合までに対応し、工程(B)は上記工程(b)の成形工程に対応し、工程(C)は上記工程(c)に対応する。また、工程(A1)は上記工程(a−1)に、工程(A2)は上記工程(a−2)に、工程(A3)及び工程(A4)は上記工程(b)の混合までに、それぞれ、対応する。
【0091】
本発明の製造方法における反応機構の詳細についてはまだ定かではないが、以下のように考えられる。
一般に、ベース樹脂、特に塩素化ポリエチレンに対して有機過酸化物を混合すると急激にラジカルが発生し、ベース樹脂同士の架橋反応や分解反応が生じやすくなる。これにより、得られる塩素含有架橋樹脂成形体には、ブツが発生し、物性が低下する。
しかし、本発明においては、工程(a)において、シランカップリング剤を多く配合し、さらにそのシランカップリング剤を無機フィラーとシラノール結合や水素結合、分子間結合によって予め結合させる。特に工程(a)の好ましい形態においては、この結合を生じる処理と、溶融混合処理とは、別に行う。これらにより、シランカップリング剤のグラフト化反応部位とベース樹脂、特に塩素化ポリエチレンとがグラフト反応する機会が増やされているものと考えられる。この無機フィラーに保持されたシランカップリング剤とベース樹脂に生じるラジカルの結合反応は、上記ベース樹脂同士の架橋反応や分解反応よりも、優勢になると考えられる。したがって、シラン架橋が可能となり、本反応中(工程(a))においてベース樹脂、特に塩素化ポリエチレンの分解やベース樹脂同士の架橋が生じないため、ブツの発生や物性の低下が生じにくいものと考えられる。
工程(a)において、これらが混練り(溶融混合)される際に、無機フィラーと弱い結合(水素結合による相互作用、イオン、部分電荷若しくは双極子間での相互作用、吸着による作用等)で結合又は吸着したシランカップリング剤は、無機フィラーから脱離し、結果的にベース樹脂にグラフト反応する。このようにしてグラフト反応したシランカップリング剤は、その後、シラノール縮合可能な反応部位が縮合反応(架橋反応)して、シラノール縮合を介して架橋したベース樹脂を形成する。この架橋反応により得られた塩素含有架橋樹脂成形体の耐熱性は高くなり、高温でも溶融しない塩素含有架橋樹脂成形体を得ることが可能となる。
一方、無機フィラーと強い結合(無機フィラー表面の水酸基等との化学結合等)で結合したシランカップリング剤は、このシラノール縮合触媒による水存在下での縮合反応が生じにくく、無機フィラーとの結合が保持される。そのため、シランカップリング剤を介した樹脂と無機フィラーの結合(架橋)が生じる。これによりベース樹脂と無機フィラーの密着性が強固になり、機械強さ、耐摩耗性が良好で、傷つきにくい成形体が得られる。特に、1つの無機フィラー粒子表面に複数のシランカップリング剤を複数結合でき、高い機械強さを得ることができる。
これらのシラングラフト樹脂を、シラノール縮合触媒とともに成形し、次いで水分と接触させることで、高い引張強さ又は耐熱性を有する塩素含有架橋樹脂成形体を得ることが可能となると推定される。
【0092】
本発明においては、ベース樹脂100質量部に対して、有機過酸化物を0.003質量部以上、好ましくは0.005質量部以上、また0.2質量部以下、好ましくは0.1質量部以下の割合で混合し、さらに、シランカップリング剤を、2質量部を超え15質量部以下の割合で無機フィラーの存在下に混合することにより、引張強さ又は耐熱性の高い塩素含有架橋樹脂成形体を得ることができる。
【0093】
本発明においては、ベース樹脂に、塩素化ポリエチレンとして、結晶性塩素化ポリエチレンと非結晶性塩素化ポリエチレンとを特定量で含む。そのため、塩素含有架橋樹脂成形体は、優れた耐油性及び外観を示し、また、本発明の製造方法においては、上述の優れた特性を有する塩素含有架橋樹脂成形体を生産性良く製造できる。
その理由は、詳細は不明であるが以下のように考えられる。
本発明においては、特定の結晶性塩素化ポリエチレンと非結晶性塩素化ポリエチレンとを特定の割合で混合することにより、ベース樹脂中に両者がアロイ化された状態になる。このアロイ化された状態のネットワーク構造は、架橋塩素含有樹脂成形体に優れた耐油性とを付与すると考えられる。また、このアロイ化された状態は優れた流動性を有するため外観不良の発生しやすい条件であっても、優れた押出外観を付与できると考えられる。
さらに、結晶性塩素化ポリエチレンは、タック性や接着性が小さい。そして、結晶性塩素化ポリエチレンは、高温において流動性が高い。このため、結晶性塩素化ポリエチレンが押出成形時に表面に露出しやすいことから、成形体表面のタック性を低減するものと考えられる。したがって、ベース樹脂の架橋反応が十分に進行していない段階において、ベース樹脂(シラン架橋樹脂成形体)同士が接触した状態にあっても、ベース樹脂同士が粘着しにくく、接触する前の状態(例えば形状)を維持できる。これにより、ベース樹脂の外観荒れ(外傷や破れ)を防止できる。
【0094】
本発明の製造方法は、耐油性の要求される製品(半製品、部品、部材も含む。)、さらには、耐候性、耐熱性及び強度のいずれかが求められる製品、難燃性が要求される製品、ゴム材料等の製品の構成部品又はその部材の製造に適用することができる。したがって、本発明の成形品はこのような製品とされる。このとき、成形品は、塩素含有架橋樹脂成形体を含む製品でもよく、塩素含有架橋樹脂成形体のみからなる製品でもよい。
本発明の成形品として、例えば、耐熱性難燃絶縁電線等の電線、耐熱難燃ケーブル又は光ファイバーケーブルの被覆材料、ゴム代替電線・ケーブルの材料、その他、耐熱難燃電線部品、難燃耐熱シート、難燃耐熱フィルム等が挙げられる。また、電源プラグ、コネクター、スリーブ、ボックス、テープ基材、チューブ、シート、パッキン、クッション材、防震材、電気・電子機器の内部配線及び外部配線に使用される配線材、特に電線や光ファイバーケーブルが挙げられる。
【0095】
本発明の製造方法は、上記製品のなかでも、特に電線及び光ファイバーケーブルの製造に好適に適用され、これらの被覆材料(絶縁体、シース)を形成することができる。
本発明の成形品が電線又は光ファイバーケーブル等の押出成形品である場合、好ましくは、成形材料を押出機(押出被覆装置)内で溶融混練して架橋性塩素含有樹脂組成物を調製しながら、この架橋性塩素含有樹脂組成物を導体等の外周に押し出して、導体等を被覆する等により、製造できる。このような成形品は、無機フィラーを大量に加えても架橋性塩素含有樹脂組成物を電子線架橋機等の特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添え若しくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚り線等を用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いることもできる。導体の周りに形成される絶縁層(架橋性塩素含有樹脂組成物からなる被覆層)の肉厚は特に限定しないが、通常、0.15〜5mm程度である。
【実施例】
【0096】
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されない。
表1及び表2において、各例の配合量に関する数値は特に断らない限り質量部を表す。
【0097】
表1及び表2中に示す各化合物の詳細を以下に示す。
塩素化ポリエチレンの塩素含有量及び結晶融解熱は上記測定方法による。MFRは下記測定方法による。
〈樹脂〉
(塩素化ポリエチレン)
塩素化PE1:「エラスレン401」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量40質量%、MFR1.6g/10分、結晶融解熱3J/g)
塩素化PE2:「エラスレン301」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量30質量%、MFR1.2g/10分、結晶融解熱3J/g)
塩素化PE3:「エラスレン303A」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量30質量%、MFR120g/10分、結晶融解熱3J/g)
塩素化PE4:「エラスレン402B」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量40質量%、MFR1.2g/10分、結晶融解熱10J/g)
塩素化PE5:「エラスレン404B」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量40質量%、MFR25g/10分、結晶融解熱29J/g)
塩素化PE6:「エラスレン303B」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量30質量%、MFR25g/10分、結晶融解熱50J/g)
(その他の成分)
PVC:「ZEST 1400」(商品名、新第一塩ビ社製、ポリ塩化ビニル)
EVA:「EV170」(商品名、三井・デュポンケミカル社製、エチレン−酢酸ビニル共重合体の樹脂(EVA)、VA含有量33質量%、密度0.96g/cm
3)
ポリエステルエラストマー:「ハイトレル2401」(商品名、東レ・デュポン社製、ポリエステルエラストマー)
可塑剤:「アデカサイザーC−9N」(商品名、ADECA製、トリメリット酸系可塑剤)
【0098】
〈無機フィラー〉
ハイドロタルサイト:「STABIACE HT−1」(商品名、堺化学工業社製)
炭酸カルシウム:「ソフトン1200」(商品名、備北粉化工業社製)
シリカ:「アエロジル200」(商品名、日本アエロジル社製、親水性フュームドシリカ、非結晶性シリカ)
【0099】
〈シランカップリング剤〉
「KBM−1003」(商品名、信越化学工業社製、ビニルトリメトキシシラン)
【0100】
〈有機過酸化物〉
「パーヘキサ25B」(商品名、日本油脂社製、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、分解温度149℃)
【0101】
〈シラノール縮合触媒〉
「アデカスタブOT−1」(商品名、ADEKA社製、ジオクチルスズジラウレート)
【0102】
上記において、塩素化ポリエチレンのMFRは、JIS K 7210に準じて測定した。測定温度は190℃で測定荷重は21.6kgとした。
【0103】
(実施例1〜11及び比較例1〜7)
実施例及び比較例において、ベース樹脂の一部を触媒MBのキャリア樹脂として用いた。
【0104】
まず、無機フィラーとシランカップリング剤とを、表1及び表2に示す質量比で、東洋精機製10Lヘンシェルミキサーに投入し、室温(25℃)で1時間混合して、粉体混合物を得た。次に、このようにして得られた粉体混合物と、表1及び表2のベース樹脂欄に示す各成分及び有機過酸化物とを、表1及び表2に示す質量比で、日本ロール製2Lバンバリーミキサー内に投入し、有機過酸化物の分解温度以上の温度、具体的には190℃において10分溶融混合した後、材料排出温度190℃で排出し、シランMBを得た。得られたシランMBは、ベース樹脂にシランカップリング剤がグラフト反応したシラン架橋性樹脂を含有している。
【0105】
一方、キャリア樹脂とシラノール縮合触媒と無機フィラーとを、表1及び表2に示す質量比で、180〜190℃でバンバリーミキサーにて溶融混合し、材料排出温度180〜190℃で排出して、触媒MBを得た。この触媒MBは、キャリア樹脂及びシラノール縮合触媒の混合物である。
次いで、シランMBと触媒MBを密閉型のリボンブレンダーに投入し、室温(25℃)で5分間ドライブレンドしてドライブレンド物(マスターバッチ混合物)を得た。このとき、シランMBと触媒MBとの混合比は、表1及び表2に示す質量比である。
【0106】
次いで、得られたドライブレンド物を、下記押出成形条件(1)又は(2)で溶融混合、成形して、被覆導体をそれぞれ得た(工程(c)及び工程(2))。
〈押出成形条件(1)〉
得られたドライブレンド物を、L/D(スクリュー有効長Lと直径Dとの比)=24、スクリュー直径45mmのスクリューを備えた押出機(圧縮部スクリュー温度170℃、ヘッド温度200℃)に導入した。この押出機内でドライブレンド物を溶融混合しながら、1/0.8TA導体(導体径0.8mm)の外側に被覆厚さ1mmとなるように線速10m/分押し出して、外径2.8mmの被覆導体を得た。
〈押出成形条件(2)〉
押出成形条件(1)において、線速を50m/分にしたこと以外は押出成形条件(1)と同様にして、被覆導体を得た。
【0107】
上記ドライブレンド物を押出機内で押出成形前に溶融混合することにより、架橋性塩素含有樹脂組成物が調製される。この架橋性塩素含有樹脂組成物は、シランMBと触媒MBとの溶融混合物であって、上述のシラン架橋性樹脂を含有している。
【0108】
上記押出成形条件(1)又は(2)により得られた被覆導体を胴経250mmのボビンに100m巻き取った。この状態で、温度40℃、相対湿度95%の雰囲気に1週間放置して、被覆導体(架橋性塩素含有樹脂組成物の成形体)を水と接触させた。こうして、上記導体の外周面に、塩素含有架橋樹脂成形体からなる被覆層を有する電線を製造した。
被覆層としての塩素含有架橋樹脂成形体は上述のシラン架橋樹脂を有している。
【0109】
製造した各電線について、下記試験をし、その結果を表1及び表2に示した。
【0110】
〈外観試験〉
1.押出外観試験1
押出外観試験1は、被覆導体を製造する際に、上記押出成形条件(1)により得られた被覆導体の外観を観察して評価した。
被覆導体の外観にブツがなく電線形状に成形できたものを「A」、ブツや肌荒れの発生を確認できたが外観に問題がない程度であり、電線形状に成形できたものを「B」、著しく外観不良が発生して電線形状に成形できなかったものを「D」とした。本試験において、評価「B」以上が合格レベルである。
2.押出外観試験2
押出外観試験2は、上記押出成形条件(2)により得られた被覆導体の外観を観察して評価した。評価基準は、押出外観試験1と同じである。
3.電線同士の耐粘着性試験(タック性)
押出成形条件(1)により得られた被覆導体を用いた電線をボビンから巻き返し、電線同士の粘着状態を確認して、塩素含有架橋樹脂成形体の外観を評価した。具体的には、巻き返した電線の表面を観察し、被覆層に外傷を確認できなかったものを「A」、表面にのみうっすらとした粘着(接着)跡を確認できたものを「B」、外傷を確認できたものを「D」とした。
本試験において、評価「B」以上が合格レベルである。
【0111】
〈耐油試験〉
押出成形条件(1)により得られた被覆導体を用いた各電線から導体を抜き取って作製した管状片を用いて、JIS C 3005に記載の「耐油試験」を行った。耐油試験においては、浸油温度を120℃、浸油時間を18時間とし、油としてJISC3005に規定される2号油を使用した。
耐油試験後の残率が、引張強さ及び伸びのいずれについても60%以上であったものを「A」とし、60%未満であったものを「D」とした。評価「A」が本試験の合格レベルである。
【0112】
〈引張強さ試験〉
押出成形条件(1)により得られた被覆導体を用いた各電線から導体を抜き取って作製した管状片を用いて、JIS C 3005に基づき、標線間20mm、引張速度500mm/分で引張試験を行い、引張強さを測定した。
本試験は、参考試験であるが、引張強さが11MPa以上である場合を「A」とし、11MPa未満のものを「D」とした。評価「A」が本試験の合格レベルである。
【0113】
さらに、実施例1、2、7、8、比較例5、6について、下記の試験を行った。
〈成形体の結晶融解熱〉
押出成形条件(1)により得られた被覆導体を用いた各電線から被覆層を採取して試料とした。試料について、示差走査熱測定装置を用い、下記条件下で測定されたDSCチャートから、結晶融解熱を求めた。
示差走査熱測定装置:メトラー・トレド社製(製品名:DSC822e)
置換ガス:ヘリウム 50ml/min
昇温条件:10℃/min
測定温度範囲:30〜190℃
【0114】
【表1】
【0115】
【表2】
【0116】
表1及び表2の結果から、以下のことが分かる。
結晶性塩素化ポリエチレンを含有しないベース樹脂を用いた比較例1〜4は、いずれも、押出外観試験2又は耐粘着性試験に合格しなかった。結晶性塩素化ポリエチレンが少なすぎるベース樹脂を用いた比較例5は、押出外観試験2に合格しなかった。結晶性塩素化ポリエチレンが多すぎるベース樹脂を用いた比較例6は、耐油性に劣った。塩素化ポリエチレンの合計量が少なすぎるベース樹脂を用いた比較例7は、耐油性に劣っていた。また、引張強さも劣っていた。
これに対して、結晶性塩素化ポリエチレンと非結晶性塩素化ポリエチレンを特定量及び特定の比率で含有するベース樹脂を用いた実施例1〜11はいずれも、押出外観試験1及び押出外観試験2に合格しており、押出成形時の線速を50m/分に速めても外観に優れていた。また、耐粘着性試験及び耐油性試験に合格しており、耐油性に優れた電線を、被覆層に外傷なく製造できた。さらに、引張強さも合格であった。
特に、メルトフローレートが10g/10分以上の結晶性塩素化ポリエチレン15〜50質量%とメルトフローレートが10g/10分未満の非結晶性塩素化ポリエチレンを含有する実施例2〜5、8〜11は、押出外観及び耐粘着性に優れていた。