【実施例】
【0042】
実施例9及び比較例25において、以下の方法で各種物性を測定した。
(1)熱伝導率
ASTM E1530に従い、熱流量法により測定した。
(2)潜熱量
建材試験センター規格 JSTM O6101:2018に従い、以下の条件で測定し、解析した。
一定の速度で昇温および降温できる平板状の2 枚の熱板で試験体を挟み、(1)熱板を60℃で5時間保持し、次に(2)0.1℃/分の速度で60℃から―10℃まで降温し、次に(3)-10℃で5時間間保持し、次に(4)0.1℃/分の速度で―10℃から60℃まで昇温する。過程(4)において熱流計で測定した熱流より各温度の見かけの比熱と潜熱を求めた。
(3)透湿抵抗
JIS A1324に従い、カップ法により測定温度15℃で測定した。
(4)流入熱量、流入熱流束
栄弘精機株式会社製ヒートセンサー(熱流計)HF−30sを屋外実験棟の北側外壁の積層体の室内側に設置し、測定した。
(5)外壁の室外側温度及び室内側温度
北側外壁の積層体の室内側と室外側にそれぞれ熱電対を設置し、測定した。
【0043】
[実施例9]
長野県中野市に設置した屋外実験棟で実験を行った。室外側断熱層(A31)と室内側断熱層(B31)との間に蓄熱層(C31)を有する積層体(31)を屋外実験棟の外壁とした。屋外実験棟の延床面積は3.31m
2、階数は1階で、UA値(外皮平均熱貫流率)は0.45W/m
2/Kである。
【0044】
室外側断熱層(A31)及び室内側断熱層(B31)はそれぞれ、JIS A9511で規定される押出法ポリスチレンフォーム保温材3種(厚み:75mm)を用いた。室外側断熱層(A31)及び室内側断熱層(B31)の熱伝導率は、いずれも、0.026であった。したがって、R1は0.5である。また、蓄熱層(C31)は−10℃から60℃の温度範囲内の潜熱量が46300J/kg、15℃から40℃の温度範囲内の潜熱量が35300J/kg、L5が16300J/kg、X’が20℃、L20が38700J/kgであった。したがって、R2は0.76、R3は0.42であり、Rは0.080である。蓄熱層(C31)の厚みは1.5mmであり、蓄熱層の熱伝導率は0.19W/m/Kであった。
なお、上記蓄熱層は、次の方法により作製した。エチレンに由来する構成単位とヘキサデシルアクリレートに由来する構成単位とメチルアクリレートに由来する構成単位からなる共重合体80重量部とポリプロピレン20重量部と有機過酸化物と架橋助剤とを二軸押出機で溶融混錬し、架橋されている樹脂組成物を得た。該樹脂組成物をシート状に成形することで蓄熱層を得た。
【0045】
実験は、屋外実験棟内に設置した冷房設備の設定温度を20℃として、24時間連続運転させて、2018年8月22日の北側外壁の室内への流入熱量を評価した。2018年8月22日の外気温、外壁の室外側温度、外壁の室内側温度を
図9に示す。実験開始から24時間後までの流入熱量を求めた。実験結果を
図10および表1に示す。
【0046】
[比較例25]
比較例25は、実施例9の屋外実験棟の隣に設置した同形状の屋外実験棟で実験を行った。室外側断熱層(A32)と室内側断熱層(B32)とを有する積層体(32)を実験棟の外壁とした。屋外実験棟の延床面積は3.31m
2、階数は1階で、UA値(外皮平均熱貫流率)は0.45W/m
2/Kである。
【0047】
室外側断熱層(A32)と室内側断熱層(B32)として、それぞれJIS A9511で規定される押出法ポリスチレンフォーム保温材3種(厚み:75mm)を用いた。室外側断熱層(A32)及び室内側断熱層(B32)の熱伝導率は、いずれも、0.026W/m/Kであった。2枚の押出法ポリスチレンフォーム保温材3種を重ね合せて外壁とした。外壁は蓄熱層を含まないものであった。
【0048】
実験は、屋外実験棟内に設置した冷房設備の設定温度を20℃として、24時間連続運転させて、2018年8月22日の北側外壁の室内への流入熱量を評価した。2018年8月22日の外気温、外壁の室外側温度、外壁の室内側温度を
図9に示す。実験開始から24時間後までの流入熱量を求めた。実験結果を
図10および表1に示す。
【0049】
【表1】
【0050】
実施例9は比較例25に対して流入熱量を10.2%削減できた。また、実施例9は比較例25に対してピーク時の流入熱流束を20.8%削減できた。このことから、冷房設備によって、室温を一定に制御した建築物において、本発明は流入熱量を削減することで、冷房負荷を低減し、高い省エネルギー効果を実現することができる。
【0051】
[実施例10]
実施例9の蓄熱層を構成する樹脂組成物と同等の樹脂組成物を成形し、厚さ1mmのシートを得た。表面に四角錐状(四角錐の形状:底辺2.35mmの正方形で高さ1.64mmの四角錐)の突起を設けたロールAと、ロールAの四角錐状の突起を受け込むことのできるロールBとの峡間に、該シートを通すことで、貫通孔を有する蓄熱層(C33)を得た。貫通孔形成時、ロールAとロールBの表面温度をそれぞれ60℃とした。蓄熱層(C33)の透湿抵抗を、15℃、90%湿度の環境のもと、JIS A1324に従い、カップ法で測定した。透湿抵抗は47m
2h・mmHg/gであった。
実施例9の室外側断熱層(A31)と室内側断熱層(B31)との間に蓄熱層(C33)を有する積層体(33)を屋外実験棟の外壁とし、実施例9と同等の環境下で実験を行うと、流入熱量は実施例9と同等となる。
【0052】
実施例1〜8、及び比較例1〜24では、
図1に記載の構成の積層体(外壁部材)により囲われた部屋について、室内への熱流出入のコンピュータシミュレーションを行った。
シミュレーションは、 Livermore Software Technology Corporation製の LS−DYNA V971 R8.1.0の熱伝導解析機能を用いて実施した。時間積分は完全陰解法を用い、行列計算ソルバーは対称ダイレクトソルバーを用いた。
積層体の室内側の表面温度については、室内空間利用者の選択肢を想定して、24℃と26℃と28℃の3水準とし、室外側の表面温度については、松本市の2017年の夏季の中から気温の高かった7月21日、低かった9月10日、その中間の8月21日の気温を、3水準の室外側の表面温度としてシミュレーションを行った。3水準の室外側の表面温度を
図7に示す。
なお、シミュレーション開始時は、積層体全体を25℃一定としてシミュレーションを行い、積層体の性能はシミュレーション開始後24時間から48時間までの間に室内側に流入する熱量を評価した。
また、別途、各実施例の積層体の蓄熱層を、−10℃から60℃の温度範囲内に潜熱を有しない層に置き換えた積層体についても同様に、室内側に流入する熱量を求めた。各実施例において、実施例の積層体を使用した場合に室内側に流入する熱量をZ[Wh/m
2/Day]とし、各実施例の積層体の蓄熱層を、−10℃から60℃の温度範囲内に潜熱を有しない層に置き換えた積層体を使用した場合に室内側に流入する熱量をZ’[Wh/m
2/Day]として、100(Z’−Z)/Z’を「流入熱量削減率」とした。さらに、「流入熱量削減ポイント」を以下の通りとした。流入熱量削減率が1%未満を「0」、1%以上5%未満を「1」、5%以上10%未満を「2」、10%以上20%未満を「3」、20%以上を「4」とした。「総合性能」を、各条件での流入熱量削減ポイントの相加平均と、各条件での流入熱量削減ポイントの相乗平均との和として表した。流入熱量削減ポイントの相加平均は、特定条件で発揮した高性能も加味した、各使用条件での性能の値を示し、流入熱量削減ポイントの相乗平均は、全条件を通して、どのような室外条件・室内条件でも安定して発揮できる、性能の値を示す。
【0053】
[実施例1]
室外側断熱層(A1)と室内側断熱層(B1)との間に蓄熱層(C1)を有する積層体(1)のシミュレーションを行った。室外側断熱層(A1)、室内側断熱層(B1)、及び蓄熱層(C1)の密度、顕熱、熱伝導率を表2に示す。実施例の蓄熱層(C1)を構成する蓄熱材1の見かけ比熱を
図3に、潜熱の温度分布を
図4に示す。
【0054】
積層体(1)の室外側断熱層(A1)の厚みTa、室内側断熱層(B1)の厚みTb、及び蓄熱層(C1)の厚みThsを、表3に示す層構成2とした。
【0055】
室内への流入熱量を表5に示す。流入熱量削減率を表9に示す。流入熱量削減ポイントを表13に示す。総合性能を表16に示す。
【0056】
[実施例2]
蓄熱層を構成する蓄熱材を蓄熱材2に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材2の潜熱の温度分布を
図4に示す。蓄熱材2の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表5、表9、表13、及び表16に示す。
【0057】
[実施例3]
蓄熱層を構成する蓄熱材を蓄熱材3に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材3の潜熱の温度分布を
図4に示す。蓄熱材3の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表5、表9、表13、及び表16に示す。
【0058】
[実施例4]
蓄熱層を構成する蓄熱材を蓄熱材4に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材4の潜熱の温度分布を
図4に示す。蓄熱材4の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表5、表9、表13、及び表16に示す。
【0059】
[実施例5]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、実施例1と同様にシミュレーションを行った。結果を表6、表10、表14、及び表16に示す。
【0060】
[実施例6]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、実施例2と同様にシミュレーションを行った。結果を表6、表10、表14、及び表16に示す。
【0061】
[実施例7]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、実施例3と同様にシミュレーションを行った。結果を表6、表10、表14、及び表16に示す。
【0062】
[実施例8]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、実施例4と同様にシミュレーションを行った。結果を表6、表10、表14、及び表16に示す。
【0063】
[比較例1]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、及び蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、実施例1と同様にシミュレーションを行った。結果を表4、表8、表12、及び表16に示す。
【0064】
[比較例2]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、及び蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、実施例2と同様にシミュレーションを行った。結果を表4、表8、表12、及び表16に示す。
【0065】
[比較例3]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、及び蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、実施例3と同様にシミュレーションを行った。結果を表4、表8、表12、及び表16に示す。
【0066】
[比較例4]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、及び蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、実施例4と同様にシミュレーションを行った。結果を表4、表8、表12、及び表16に示す。
【0067】
[比較例5]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例1と同様にシミュレーションを行った。結果を表7、表11、表15、及び表16に示す。
【0068】
[比較例6]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例2と同様にシミュレーションを行った。結果を表7、表11、表15、及び表16に示す。
【0069】
[比較例7]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例3と同様にシミュレーションを行った。結果を表7、表11、表15、及び表16に示す。
【0070】
[比較例8]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例4と同様にシミュレーションを行った。結果を表7、表11、表15、及び表16に示す。
【0071】
[比較例9]
蓄熱層を構成する蓄熱材を蓄熱材5に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材5の潜熱の温度分布を
図6に示す。蓄熱材5の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表18、表22、表26、及び表29に示す。
【0072】
[比較例10]
蓄熱層を構成する蓄熱材を蓄熱材6に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材6の潜熱の温度分布を
図6に示す。蓄熱材6の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表18、表22、表26、及び表29に示す。
【0073】
[比較例11]
蓄熱層を構成する蓄熱材を蓄熱材7に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材7の潜熱の温度分布を
図6に示す。蓄熱材7の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表18、表22、表26、及び表29に示す。
【0074】
[比較例12]
蓄熱層を構成する蓄熱材を蓄熱材8に変更した以外は、実施例1と同様にシミュレーションを行った。蓄熱材8の潜熱の温度分布を
図6に示す。蓄熱材8の密度、顕熱、及び熱伝導率は蓄熱材1と同じである。結果を表18、表22、表26、及び表29に示す。
【0075】
[比較例13]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、比較例9と同様にシミュレーションを行った。結果を表19、表23、表27、及び表29に示す。
【0076】
[比較例14]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、比較例10と同様にシミュレーションを行った。結果を表19、表23、表27、及び表29に示す。
【0077】
[比較例15]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、比較例11と同様にシミュレーションを行った。結果を表19、表23、表27、及び表29に示す。
【0078】
[比較例16]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成3に変更した以外は、比較例12と同様にシミュレーションを行った。結果を表19、表23、表27、及び表29に示す。
【0079】
[比較例17]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、比較例13と同様にシミュレーションを行った。結果を表17、表21、表25、及び表29に示す。
【0080】
[比較例18]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、比較例14と同様にシミュレーションを行った。結果を表17、表21、表25、及び表29に示す。
【0081】
[比較例19]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、比較例15と同様にシミュレーションを行った。結果を表17、表21、表25、及び表29に示す。
【0082】
[比較例20]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成1に変更した以外は、比較例16と同様にシミュレーションを行った。結果を表17、表21、表25、及び表29に示す。
【0083】
[比較例21]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例13と同様にシミュレーションを行った。結果を表20、表24、表28、及び表29に示す。
【0084】
[比較例22]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例14と同様にシミュレーションを行った。結果を表20、表24、表28、及び表29に示す。
【0085】
[比較例23]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例15と同様にシミュレーションを行った。結果を表20、表24、表28、及び表29に示す。
【0086】
[比較例24]
室外側断熱層の厚みTa、室内側断熱層の厚みTb、蓄熱層の厚みThsについて、表3に示す層構成4に変更した以外は、比較例16と同様にシミュレーションを行った。結果を表20、表24、表28、及び表29に示す。
【0087】
なお、層構成および蓄熱材と、実施例および比較例の関係について表30に示す。
【0088】
【表2】
【0089】
【表3】
【0090】
【表4】
【0091】
【表5】
【0092】
【表6】
【0093】
【表7】
【0094】
【表8】
【0095】
【表9】
【0096】
【表10】
【0097】
【表11】
【0098】
【表12】
【0099】
【表13】
【0100】
【表14】
【0101】
【表15】
【0102】
【表16】
【0103】
【表17】
【0104】
【表18】
【0105】
【表19】
【0106】
【表20】
【0107】
【表21】
【0108】
【表22】
【0109】
【表23】
【0110】
【表24】
【0111】
【表25】
【0112】
【表26】
【0113】
【表27】
【0114】
【表28】
【0115】
【表29】
【0116】
【表30】
【0117】
【表31】
【0118】
【表32】
【0119】
【表33】
【0120】
【表34】
【0121】
【表35】
【0122】
【表36】
【0123】
【表37】
【0124】
【表38】
【0125】
実施例1〜8および比較例1〜24の結果について、横軸をパラメータRとし、縦軸を流入熱量削減ポイントの相加平均と相乗平均の和(総合性能)としてプロットした図を
図8に示す。実施例1〜8および比較例1〜24の積層体は、全て総厚みが同一である。パラメータRが0.20以下の実施例1〜8の積層体を用いた場合、様々な室外の気温温状況や室内の設定温度であっても、室内への流出入熱量を小さくすることが可能となる。