特許第6571330号(P6571330)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三星エスディアイ株式会社の特許一覧

特許6571330二次電池用正極活物質層、巻回素子、及び二次電池
<>
  • 特許6571330-二次電池用正極活物質層、巻回素子、及び二次電池 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6571330
(24)【登録日】2019年8月16日
(45)【発行日】2019年9月4日
(54)【発明の名称】二次電池用正極活物質層、巻回素子、及び二次電池
(51)【国際特許分類】
   H01M 4/13 20100101AFI20190826BHJP
   H01M 4/131 20100101ALI20190826BHJP
   H01M 4/62 20060101ALI20190826BHJP
   H01M 10/0587 20100101ALI20190826BHJP
【FI】
   H01M4/13
   H01M4/131
   H01M4/62 Z
   H01M10/0587
【請求項の数】6
【全頁数】14
(21)【出願番号】特願2014-264984(P2014-264984)
(22)【出願日】2014年12月26日
(65)【公開番号】特開2016-126852(P2016-126852A)
(43)【公開日】2016年7月11日
【審査請求日】2017年10月4日
(73)【特許権者】
【識別番号】590002817
【氏名又は名称】三星エスディアイ株式会社
【氏名又は名称原語表記】SAMSUNG SDI Co., LTD.
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】野村 圭介
(72)【発明者】
【氏名】深堀 博宣
【審査官】 宮田 透
(56)【参考文献】
【文献】 特開2013−214394(JP,A)
【文献】 特開2013−131381(JP,A)
【文献】 国際公開第2011/052126(WO,A1)
【文献】 特開2007−103263(JP,A)
【文献】 特開2015−015183(JP,A)
【文献】 特表2015−537347(JP,A)
【文献】 米国特許出願公開第2014/0231719(US,A1)
【文献】 特開2014−026777(JP,A)
【文献】 特開平09−161768(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00− 4/62
H01M 10/05−10/0587
(57)【特許請求の範囲】
【請求項1】
正極集電体上に設けられ、第1の正極活物質と、高弾性率バインダとを含む高弾性率層と、
前記高弾性率層上に設けられ、第2の正極活物質と、前記高弾性率バインダよりも引張弾性率が低い低弾性率バインダと、を含む低弾性率層と、を備え、
前記高弾性率層の引張弾性率は、前記低弾性率層の引張弾性率よりも大きく、
前記高弾性率バインダは、ポリフッ化ビニリデン(polyvinylidene
fluoride)、ポリフッ化ビニリデンの変性物、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体の変性物、フッ化ビニリデン(VDF)−アクリレート(acrylate)共重合体、及び水素化アクリロニトリルブタジエン共重合体(hydrogenated acylonitrile−butadieneからなる群から選択されるいずれか1種以上で構成されることを特徴とする、二次電池用正極活物質層。
【請求項2】
前記高弾性率バインダの引張弾性率は、400〜1200MPaであり、
前記低弾性率バインダの引張弾性率は、150〜700MPaであることを、請求項1記載の二次電池用正極活物質層。
【請求項3】
前記高弾性率バインダ及び低弾性率バインダのうち、少なくとも一方は、共重合体を含むことを特徴とする、請求項1または2記載の二次電池用正極活物質層。
【請求項4】
前記第1の正極活物質及び第2の正極活物質のうち、少なくとも一方は、リチウム含有遷移金属酸化物を含むことを特徴とする、請求項1〜3の何れか1項に記載の二次電池用正極活物質層。
【請求項5】
請求項1〜4の何れか1項に記載の二次電池用正極活物質層を備えることを特徴とする、巻回素子。
【請求項6】
請求項5記載の巻回素子を備えることを特徴とする、二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、二次電池用正極活物質層及び二次電池に関する。
【背景技術】
【0002】
近年、携帯電話、ノートパソコン(note PC)等の情報処理装置の小型化に伴い、これらの情報処理装置の電源として用いられるリチウムイオン(lithium ion)二次電池のさらなる特性向上が求められている。
【0003】
例えば、特許文献1には、正極活物質層を高密度化することで、リチウムイオン二次電池の特性(容量、サイクル特性)を向上させる技術が開示されている。この技術では、平均粒子径が互いに異なる複数種類の活物質粒子を所定の配合比で配合し、かつ、カーボンブラックと膨張黒鉛とを所定の配合比で配合する。
【0004】
しかし、単に正極活物質層を高密度化しただけではリチウムイオン二次電池の特性を十分に向上することができなかった。このため、正極活物質層を高密度化するとともに、厚膜化することが提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2012−146590号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、正極活物質層を高密度化した上でさらに厚膜化すると、正極活物質層の柔軟性が低下するという問題があった。このため、巻回型のリチウムイオン二次電池を作製する際に、正極が損傷する可能性があった。このため、従来の技術では、正極活物質層の厚膜化に限界があった。
【0007】
一方、正極活物質層の柔軟性を確保する技術としては、低弾性率のバインダを正極活物質層のバインダとすることが考えられる。しかし、低弾性率のバインダは、リチウムイオン二次電池の特性、特にサイクル特性を低下させる要因となりうる。したがって、低弾性率のバインダを使用して正極活物質層を厚膜化しても、リチウムイオン二次電池の特性を向上することはできない。
【0008】
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、二次電池のサイクル特性を維持しつつ、正極活物質層の柔軟性を高めることが可能な、新規かつ改良された二次電池用正極活物質層、巻回素子、及び二次電池を提供することにある。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明のある観点によれば、正極集電体上に設けられ、第1の正極活物質と、高弾性率バインダとを含む高弾性率層と、高弾性率層上に設けられ、第2の正極活物質と、高弾性率バインダよりも引張弾性率が低い低弾性率バインダと、を含む低弾性率層と、を備えることを特徴とする、二次電池用正極活物質層が提供される。
【0010】
この観点によれば、正極活物質層は、高弾性率層及び低弾性率層を備え、かつ、高弾性率層が正極集電体側に存在するので、二次電池のサイクル特性を維持しつつ、正極活物質層の柔軟性を高めることができる。
【0011】
ここで、高弾性率バインダの引張弾性率は、400〜1200MPaであり、低弾性率バインダの引張弾性率は、150〜700MPaであってもよい。
【0012】
この観点によれば、高弾性率バインダ及び低弾性率バインダが上記範囲の引張弾性率を有するので、二次電池のサイクル特性を維持しつつ、正極活物質層の柔軟性を高めることができる。
【0013】
また、高弾性率バインダ及び低弾性率バインダのうち、少なくとも一方は、共重合体を含んでいてもよい。
【0014】
この観点によれば、二次電池のサイクル特性を維持しつつ、正極活物質層の柔軟性を高めることができる。さらに、共重合体を構成するモノマーの組成比を調整することで、各バインダの引張弾性率を任意に調整することができる。
【0015】
また、第1の正極活物質及び第2の正極活物質のうち、少なくとも一方は、リチウム含有遷移金属酸化物を含んでいてもよい。
【0016】
この観点によれば、二次電池のサイクル特性を維持しつつ、正極活物質層の柔軟性を高めることができる。さらに、二次電池の高容量化も期待できる。
【0017】
本発明の他の観点によれば、上記二次電池用正極活物質層を備えることを特徴とする、巻回素子が提供される。
【0018】
この観点による巻回素子は、上記正極活物質層を含むので、巻回素子内での正極の破断を抑制し、かつ、サイクル寿命を向上することができる。
【0019】
本発明の他の観点によれば、上記巻回素子を備えることを特徴とする、二次電池が提供される。
【0020】
この観点による二次電池は、上記巻回素子を含むので、巻回素子内での正極の破断を抑制し、かつ、サイクル寿命を向上することができる。
【発明の効果】
【0021】
以上説明したように本発明によれば、正極活物質層は、高弾性率層及び低弾性率層を備え、かつ、高弾性率層が正極集電体側に存在するので、二次電池のサイクル特性を維持しつつ、正極活物質層の柔軟性を高めることができる。
【図面の簡単な説明】
【0022】
図1】本発明の実施形態に係るリチウムイオン二次電池の概略構成を示す平断面図である。
【発明を実施するための形態】
【0023】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0024】
<1.リチウムイオン二次電池の構成>
まず、図1を参照して、本発明の実施形態に係るリチウムイオン二次電池の構成について説明する。図1は、巻回素子1aの平断面図と、巻回素子1aの領域Aを拡大した拡大図とを示す。リチウムイオン二次電池は、巻回素子1aと、非水電解質溶液と、外装材とを備える。巻回素子1aは、帯状正極10、セパレータ20、帯状負極30、及びセパレータ20がこの順で積層された電極積層体を長手方向に巻回し、矢印B方向に圧縮したものである。
【0025】
帯状正極10(以下、「正極10」とも称する)は、正極集電体11と、正極活物質層12とを備える。正極集電体11は、特に限定されないが、例えばアルミニウム(Al)、ステンレス鋼、及びニッケルメッキ鋼等で構成される。正極集電体11には、正極端子が接続される。
【0026】
さらに、正極活物質層12は、高弾性率層12aと、低弾性率層12bとを備える。高弾性率層12aは、集電体11上、具体的には、集電体11の表裏両面上に設けられる。高弾性率層12aは、低弾性率層12bよりも引張弾性率が大きい。すなわち、高弾性率層12aは、低弾性率層12bよりも硬い。このように、本実施形態では、正極活物質層12を2層構造とし、正極活物質層12の表層側(正極集電体11から遠い側)を柔らかくしている。この理由は以下のとおりである。すなわち、正極10を折り曲げた際、正極10の表層側でひずみが生じやすい。正極10を折り曲げた際、正極10の表層側には大きな応力が掛かるからである。そこで、本実施形態では、正極10の表層側に柔らかい層を配置することで、ひずみの発生を抑制する。以下、正極活物質層12を構成する各層について詳細に説明する。
【0027】
高弾性率層12aは、少なくとも第1の正極活物質及び高弾性率バインダを含み、導電剤をさらに含んでいてもよい。第1の正極活物質は、リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば特に限定されず、例えば、リチウム含有遷移金属酸化物、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。リチウム含有遷移金属酸化物の例としては、コバルト酸リチウム(LCO)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、「NCA」と称する場合もある。)、ニッケルコバルトマンガン酸リチウム(以下、「NCM」と称する場合もある。)、マンガン酸リチウム、リン酸鉄リチウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。
【0028】
第1の正極活物質は、上記で列挙した例のうち、リチウム含有遷移金属酸化物が好ましく、特に、層状岩塩型構造を有する遷移金属酸化物のリチウム塩であることが好ましい。このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、Li1−x−y−zNiCoAl(NCA)またはLi1−x−y−zNiCoMn(NCM)(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩が挙げられる。
【0029】
また、第1の正極活物質は、高電圧時の電解液との副反応を抑制するため、上記の各物質に表面処理を施したものであってもよい。第1の正極活物質の平均凝集粒径としては、第1の正極活物質の安全性や充填性の観点から10〜30μmが望ましい。なお、第1の正極活物質の平均凝集粒径は、第1の正極活物質の1次粒子が凝集した2次粒子を球体とみなした場合における直径の分布の50%積算値(D50値)であり、レーザ(laser)回折・散乱法によって測定することができる。
【0030】
なお、第1の正極活物質の高弾性率層12aにおける含有量(例えば体積密度)は、特に制限されず、従来のリチウムイオン二次電池の正極活物質層に適用される含有量であればいずれであってもよい。
【0031】
高弾性率バインダは、第1の正極活物質及び導電剤同士を結合すると共に、第1の正極活物質及び導電剤と正極集電体11とを結合する。高弾性率バインダは、後述する低弾性率バインダよりも引張弾性率が高いものが選択される。高弾性率バインダとしては、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリフッ化ビニリデンの変性物、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体の変性物、エチレンアクリル酸(ethylene acrylacid)共重合体、エチレンメチルアクリレート(ethylene methylacrylate)共重合体、フッ化ビニリデン(VDF)−アクリレート(acrylate)共重合体、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber、NBR)、水素化アクリロニトリルブタジエン共重合体(hydrogenated acylonitrile−butadiene)等が挙げられる。これらのバインダを単独で使用してもよく、混合して使用してもよい。
【0032】
なお、高弾性率バインダに共重合体が含まれる場合、共重合体を構成するモノマーの組成比(モル比等)を調整することで、共重合体の引張弾性率を調整することができる。具体的には、引張弾性率の高いポリマーを構成するモノマーの組成比を高くすることで、共重合体の引張弾性率を高くすることができる。高弾性率バインダには、少なくとも1種以上の共重合体を含むことが好ましい。
【0033】
高弾性率バインダの引張弾性率は、後述する低弾性率バインダの引張弾性率よりも高ければ特に制限されないが、400〜1200MPaであることが好ましく、500〜900MPa以下であることがより好ましい。高弾性率バインダの引張弾性率がこのような範囲内の値となる場合に、正極10の柔軟性を確保しつつ、高容量を実現できる。なお、本実施形態の引張弾性率は、例えば、ASTM D638に準拠した引張試験によって測定される値である。後述する実施例で示す引張試験は、この引張試験によって測定された値である。
【0034】
また、高弾性率バインダの高弾性率層12aにおける含有量は特に制限されないが、質量比率で0.3%〜7%、好ましくは0.5%〜3%であることが好ましい。高弾性率バインダの含有量が低いと集電体との密着性が低下し、含有量が多いと電極の充填性が低下する可能性があるからである。
【0035】
導電剤は、例えばケッチェンブラック(Ketjenblack)、アセチレンブラック(acetylene black)等のカーボンブラック、天然黒鉛、人造黒鉛等であるが、正極の導電性を高めるためのものであれば特に制限されない。
【0036】
低弾性率層12bは、各高弾性率層12aの表面上に設けられる。低弾性率層12bは、少なくとも第2の正極活物質及び低弾性率バインダを含み、導電剤をさらに含んでいてもよい。第2の正極活物質は、第1の正極活物質と同様の物質から選択される。第1の正極活物質と第2の正極活物質とは同じ物質で構成されていても、異なる物質で構成されていてもよい。第2の正極活物質の低弾性率層12bにおける含有量は、第1の正極活物質と同程度であればよい。導電剤は、高弾性率層12aに含まれるものと同種のものを使用することができる。
【0037】
低弾性率バインダは、第2の正極活物質及び導電剤同士を結合すると共に、第2の正極活物質及び導電剤と高弾性率層12aとを結合する。低弾性率バインダは、高弾性率バインダよりも引張弾性率が低いものが選択される。低弾性率バインダとしては、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリフッ化ビニリデンの変性物、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体の変性物、エチレンアクリル酸(ethylene acrylacid)共重合体、エチレンメチルアクリレート(ethylene methylacrylate)共重合体、フッ化ビニリデン(VDF)−アクリレート(acrylate)共重合体、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber、NBR)、水素化アクリロニトリルブタジエン共重合体(hydrogenated acylonitrile−butadiene)等が挙げられる。これらのバインダを単独で使用してもよく、混合して使用してもよい。
【0038】
なお、低弾性率バインダに共重合体が含まれる場合、共重合体を構成するモノマーの組成比(モル比等)を調整することで、共重合体の引張弾性率を調整することができる。具体的には、引張弾性率の低いポリマーを構成するモノマーの組成比を高くすることで、共重合体の引張弾性率を低くすることができる。低弾性率バインダには、少なくとも1種以上の共重合体を含むことが好ましい。
【0039】
低弾性率バインダの引張弾性率は、高弾性率バインダの引張弾性率よりも低ければ特に制限されないが、150〜700MPaであることが好ましく、200〜500MPaであることが好ましい。低弾性率バインダの引張弾性率がこのような範囲内の値となる場合に、正極10の柔軟性を確保しつつ、高容量を実現できる。なお、引張弾性率は、例えば、ASTM D638に準拠した引張試験によって測定される値である。後述する実施例で示す引張試験は、この引張試験によって測定された値である。
【0040】
また、低弾性率バインダの低弾性率層12bにおける含有量は特に制限されないが、質量比率で0.3%〜7%、好ましくは0.5%〜3%であることが好ましい。低弾性率バインダの含有量が低いと集電体との密着性が低下し、含有量が多いと電極の充填性が低下する可能性があるからである。
【0041】
なお、低弾性率バインダは、リチウムイオン二次電池1の容量密度を低減される要因となりうる。したがって、リチウムイオン二次電池1の容量密度を高くするという観点からは、低弾性率層12bはなるべく薄いことが好ましい。その一方で、低弾性率層12bが薄すぎると、正極活物質層12の柔軟性を十分に確保できない可能性がある。このため、高弾性率層12aと低弾性率層12bとの厚さの比(低弾性率層/高弾性率層)は0.2〜2であることが好ましい。
【0042】
正極活物質層12の厚さは特に制限されず、少なくとも従来のリチウムイオン二次電池と同程度の厚さとすることが可能である。さらに、本実施形態では、正極活物質層12が優れた柔軟性を有しているので、従来よりも正極活物質層12の厚膜化が可能である。
【0043】
セパレータ20(以下、「セパレータ20」とも称する)、帯状負極30(以下、「負極30」とも称する)、電解液、及び外装材については、一般的なリチウムイオン二次電池で使用可能なものを任意に使用することができる。これらについて、概略的に説明すると以下のようである。
【0044】
セパレータ20は、特に制限されず、一般的なリチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。また、セパレータは、Al、Mg(OH)、SiO等の無機物によってコーティングされていてもよい。セパレータを構成する材料としては、例えば、ポリエチレン(polyethylene),ポリプロピレン(polypropylene)等に代表されるポリオレフィン(polyolefin)系樹脂、ポリエチレンテレフタレート(polyethylene terephthalate),ポリブチレンテレフタレート(polybuthylene terephthalate)等に代表されるポリエステル(polyester)系樹脂、ポリフッ化ビニリデン(polyvinylidene difluoride)、フッ化ビニリデン−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン−パーフルオロビニルエーテル(perfluorovinylether)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−トリフルオロエチレン(trifluoroethylene)共重合体、フッ化ビニリデン−フルオロエチレン(fluoroethylene)共重合体、フッ化ビニリデン−ヘキサフルオロアセトン(hexafluoroacetone)共重合体、フッ化ビニリデン−エチレン(ethylene)共重合体、フッ化ビニリデン−プロピレン(propylene)共重合体、フッ化ビニリデン−トリフルオロプロピレン(trifluoropropylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を使用することができる。セパレータの気孔率も特に制限されず、リチウムイオン二次電池のセパレータが有する気孔率が任意に適用可能である。
【0045】
負極30は、集電体31と、負極活物質層32とを含む。集電体31は、例えば、銅(Cu)、ニッケル(Ni)等で構成される。ここで、負極活物質層32は、リチウムイオン二次電池の負極活物質層として使用されるものであれば、どのようなものであってもよい。例えば、負極活物質層32は、負極活物質を含み、負極用バインダをさらに含んでいてもよい。負極活物質は、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)、ケイ素(Si)もしくはスズ(Sn)もしくはそれらの酸化物の微粒子と黒鉛活物質との混合物、ケイ素もしくはスズの微粒子、ケイ素もしくはスズを基本材料とした合金、およびLiTi12等の酸化チタン(TiO)系化合物等を使用することができる。なお、ケイ素の酸化物は、SiO(0≦x≦2)で表される。また、負極活物質としては、これらの他に、例えば金属リチウム等を使用することができる。
【0046】
負極用バインダは、例えば、ポリフッ化ビニリデン(polyvinylidene difluoride)、エチレンプロピレンジエン三元共重合体(ethylene−propylene−diene terpolymer)、スチレンブタジエンゴム(styrene−butadiene rubber、SBR)、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber)、フッ素ゴム(fluoroelastomer)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethyl methacrylate)、ポリエチレン(polyethylene)、ニトロセルロース(nitrocellulose)等である。なお、負極用バインダは、負極活物質および導電剤を集電体21上に結着させることができるものであれば、特に制限されない。また、負極用バインダの含有量は、特に制限されず、リチウムイオン二次電池の負極活物質層に適用される含有量であればいずれであってもよい。
【0047】
電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定されることなく使用することができる。ここで、電解液は、非水溶媒に電解質塩を含有させた組成を有する。非水溶媒としては、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(buthylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル(ester)類;γ−ブチロラクトン(butyrolactone)、γ−バレロラクトン(valerolactone)等の環状エステル類;ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethylmethyl carbonate)等の鎖状カーボネート(carbonate)類;ギ酸メチル(methyl formate)、酢酸メチル(methyl acetate)、酪酸メチル(methyl butyrate)等の鎖状エステル類;テトラヒドロフラン(tetrahydrofuran)またはその誘導体;1,3−ジオキサン(1,3−dioxane)、1,4−ジオキサン(1,4−dioxane)、1,2−ジメトキシエタン(1,2−dimethoxyethane)、1,4−ジブトキシエタン(1,4−dibutoxyethane)、メチルジグライム(methyldiglyme)等のエーテル(ether)類;アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル(nitrile)類;ジオキソラン(dioxolane)またはその誘導体;エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)またはその誘導体等を単独で、またはそれら2種以上を混合して使用することができるが、これらに限定されるものではない。
【0048】
また、電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n−CNClO、(n−CNI、(CN−maleate、(CN−benzoate、(CN−phtalate、ステアリルスルホン酸リチウム(lithium stearyl sulfate)、オクチルスルホン酸リチウム(lithium octyl sulfate)、ドデシルベンゼンスルホン酸リチウム(lithium dodecylbenzene sulphonate)等の有機イオン塩等を使用することができる。なお、これらのイオン性化合物は、単独、あるいは2種類以上混合して用いることが可能である。また、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本発明では、適当なリチウム化合物(電解質塩)を0.5〜2.0mol/L程度の濃度で含有させた電解液を使用することができる。外装材は、例えばアルミラミネートである。
【0049】
<2.非水電解質リチウムイオン二次電池の製造方法>
次に、非水電解質リチウムイオン二次電池の製造方法について説明する。
(帯状正極の製造方法)
正極10は、例えば、以下の方法により作製される。まず、正極集電体11上に高弾性率層12aを形成する。すなわち、高弾性率層12aの材料を有機溶媒や水に分散させることで高弾性率層用合剤スラリーを形成し、この合剤スラリーを正極集電体11上に塗工する。これにより、塗工層が形成される。ついで、塗工層が乾燥する前に高弾性率層12a上に低弾性率層12bを形成する。すなわち、低弾性率層12bの材料を有機溶媒や水に分散させることで低弾性率層用合剤スラリーを形成し、この合剤スラリーを高弾性率層12a上に塗工する。これにより、二層の塗工層が形成される。ついで、塗工層を乾燥する。これにより、低弾性率層12bが高弾性率層12a上に形成される。
【0050】
なお、塗工の方法は、特に限定されないが、例えば、ドクターブレード(doctor blade)法、スロットダイ(slot die)法、ナイフコーター(knife coater)法、グラビアコーター(gravure coater)法等を用いてもよい。また、各塗工工程も特に限定されず、高弾性率層と低弾性率層を同時に塗工してもよい。
【0051】
(帯状負極の製造方法)
負極30は、例えば、以下の方法により作製される。すなわち、負極活物質層の材料を溶剤(例えば水)に分散させることで負極合剤スラリーを形成し、この負極合剤スラリーを集電体上に塗工する。これにより、塗工層を形成する。ついで、塗工層を乾燥する。負極合剤スラリー中では、フッ素樹脂微粒子及びエラストマー系高分子の微粒子が負極活物質層10a内に分散している。ついで、乾燥した塗工層を負極集電体10bとともに圧延する。これにより、負極30が作製される。
【0052】
(巻回素子及び電池の製造方法)
ついで、正極10、セパレータ20、負極30、及びセパレータ20をこの順で積層することで電極積層体を作製する。ついで、電極積層体を巻回する。これにより、巻回素子1aを作製する。ついで、巻回素子1aを押しつぶすことで扁平状の巻回素子1aを作製する。ついで、扁平状の巻回素子1aを非水電解液とともに外装体(例えばラミネートフィルム)に挿入し、外装体を封止することで、リチウムイオン二次電池1を作製する。なお、外装体を封止する際には、各集電体に導通する端子を外装体の外部に突出させる。
【実施例】
【0053】
(実施例1)
つぎに、本発明の実施例を説明する。実施例1では、以下の工程により実施例1に係るリチウムイオン二次電池1を作製した。
【0054】
(正極の作製)
(高弾性率層の作製)
コバルト酸リチウム、カーボンブラック、及び高弾性率バインダを固形分の質量比97.6:1.2:1.2でN−メチルピロリドン中に溶解分散させることで高弾性率層用合剤スラリーを作製した。ここで、高弾性率バインダは、引張弾性率800MPaのVdF/TFE共重合体とした。ついで、この合剤スラリーを厚さ12μmのアルミ箔集電体(正極集電体11)の両面に塗工することで、塗工層を作製した。塗工層の厚さは、乾燥後の厚さ(すなわち、高弾性率層12aの厚さ)が60μmとなるように調製した。その後、塗工層を乾燥することで、高弾性率層12aを正極集電体11上に形成した。
【0055】
(低弾性率層の作製)
コバルト酸リチウム、カーボンブラック、及び低弾性率バインダを固形分の質量比97.6:1.2:1.2でN−メチルピロリドン中に溶解分散させることで低弾性率層用合剤スラリーを作製した。ここで、低弾性率バインダは、VdF/TFE共重合体と水素化NBRとの混合物とした。この混合物の引張弾性率は300MPaであった。ついで、この合剤スラリーを各高弾性率層12aの表面に塗工することで、塗工層を作製した。塗工層の厚さは、乾燥後の厚さ(すなわち、低弾性率層12bの厚さ)が60μmとなるように調製した。その後、塗工層を乾燥することで、低弾性率層12bを高弾性率層12a上に形成した。したがって、高弾性率層12aと低弾性率層12bとの厚さの比は1となる。その後、正極集電体11及び正極活物質層12を圧延することで、正極10を作製した。圧延後の正極活物質層12の厚さは72μmであった。また、正極10の総厚さは156μmであり、電極密度は4.15g/cmであった。ついで、アルミリード線を正極10端部に溶接した。
【0056】
(負極の作製)
黒鉛、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロースのナトリウム塩を固形分の質量比98:1:1で水溶媒中に溶解分散させることで、負極合剤スラリーを作製した。ついで、この負極合剤スラリーを厚さ6μmの銅箔集電体(負極集電体31)の両面に塗工後、乾燥した。乾燥後の塗工層を圧延することで負極活物質層32を得た。以上の工程により、負極30を得た。負極30の総厚さは186μmであり、電極密度は1.7g/cmであった。その後、ニッケルリード線を負極30の端部に溶接した。
【0057】
(巻回素子の作製)
正極10、セパレータ20(旭化成イーマテリアルズ社製ND314)、負極30、セパレータ20をこの順に積層し、直径3cmの巻き芯を用いて、この積層体を長手方向に巻きつけた。端部をテープにて固定した後、巻き芯を取り除き、厚さ3cmの2枚の金属プレートの間に円筒状電極巻回素子を挟み、3秒間保持することで、扁平状の巻回素子1aを得た。
【0058】
(電池の作製)
上記電極巻回素子をポリプロピレン/アルミ/ナイロンの3層からなるラミネートフィルムに、2本のリード線が外に出るように電解液とともに減圧封止することで、電池を作製した。電解液には、エチレンカーボネート/ジメチルカーボネートを3対7(体積比)で混合した溶媒に、10体積%のFEC(フルオロエチレンカーボネート)及び1.3MのLiPFを溶解させたものを使用した。この電池を90℃に加熱した厚さ3cmの2枚の金属プレートの間に挟み、5分間保持した。以上の工程により、リチウムイオン二次電池1を作製した。
【0059】
(折り曲げ試験)
正極10を株式会社安田精機製作所社製のMIT形耐折度試験機によって折り曲げた。そして、正極10が破断したときの荷重(N)を測定した。荷重が大きいほど、正極10の柔軟性が高いことを意味する。
【0060】
(サイクル試験)
まず、1サイクル目において、電圧が4.4Vとなるまで0.1CにてCC−CV充電(定電流定電圧充電)を行い、電圧が2.75Vとなるまで0.1CにてCC放電(定電流放電)を行った。次に、2サイクル目において、電圧が4.4Vとなるまで0.2CにてCC−CV充電を行い、電圧が2.75Vとなるまで0.2CにてCC放電を行った。さらに、3サイクル目以降において、電圧が4.4Vとなるまで1.0CにてCC−CV充電を行い、電圧が3.00Vとなるまで1.0CにてCC放電を行うサイクルを繰り返した。
【0061】
そして、300サイクル目の放電容量を3サイクル目の放電容量で除した数値を容量維持率として定義した。バインダの組成を表1に、評価結果を表2にまとめて示す。
【0062】
(実施例2〜9、比較例1〜5)
高弾性率バインダ及び低弾性率バインダを表1に示すものに変更した他は、実施例1と同様の処理を行った。評価結果を表2にまとめて示す。なお、正極の電極密度は全て4.15g/cmとした。
【0063】
【表1】

※二層比は、高弾性率層12aと低弾性率層12bとの厚さの比(低弾性率層/高弾性率層)を示す。
【0064】
【表2】
※比較例1、2、4、5では、巻回素子作製時に正極10が破断したため、容量維持率を評価できなかった。
【0065】
表1、2によれば、実施例1〜7は、比較例1、2、4、5よりも破断時の荷重が大きいので、比較例1、2、4、5よりも柔軟性が高いといえる。また、実施例1〜7は、高いサイクル特性を示した。一方、比較例3は、実施例1〜7よりも高い柔軟性を示したが、サイクル特性は非常に低くなった。
【0066】
したがって、実施例1〜7では、サイクル特性が高く、かつ、正極活物質層12の柔軟性が向上しているといえる。また、比較例1〜3によれば、高弾性率層12aまたは低弾性率層12bのみで正極活物質層12を形成しても、巻回素子を作製できないか、あるいは、サイクル特性が著しく低下することがわかった。また、比較例4〜5によれば、高弾性率層12a上に低弾性率層12bを形成しないと、効果が得られないことがわかった。
【0067】
さらに、実施例1〜4は実施例5〜7よりも良好な結果が得られている。したがって、高弾性率バインダの引張弾性率は500〜900MPaであり、かつ、低弾性率バインダの引張弾性率は200〜500MPaであることが好ましいといえる。
【0068】
以上のように、本実施形態に係る正極活物質12によれば、リチウムイオン二次電池1のサイクル特性を維持しつつ、正極活物質層12の柔軟性を向上することができる。この結果、正極活物質層12のさらなる厚膜化が可能となる。
【0069】
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
【0070】
例えば、上記実施形態では、巻回素子型のリチウムイオン二次電池を示したが、本発明はかかる例に限定されない。例えば、積層型のリチウムイオン二次電池等に本発明を適用してもよい。例えば、リチウムイオン二次電池は、円筒形、角形、ラミネート(laminate)形、ボタン(button)形等のいずれであってもよい。また、負極30も正極10と同様の構造としてもよい。
【符号の説明】
【0071】
1 リチウムイオン二次電池
1a 巻回素子
10 正極
11 正極集電体
12 正極活物質層
12a 高弾性率層
12b 低弾性率層
20 セパレータ
30 負極活物質層
31 負極集電体
32 負極活物質層
図1