(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6572049
(24)【登録日】2019年8月16日
(45)【発行日】2019年9月4日
(54)【発明の名称】受信機
(51)【国際特許分類】
H04L 27/14 20060101AFI20190826BHJP
H04L 27/38 20060101ALI20190826BHJP
H04B 1/30 20060101ALI20190826BHJP
【FI】
H04L27/14 J
H04L27/14 A
H04L27/38
H04B1/30
【請求項の数】4
【全頁数】9
(21)【出願番号】特願2015-154438(P2015-154438)
(22)【出願日】2015年8月4日
(65)【公開番号】特開2017-34545(P2017-34545A)
(43)【公開日】2017年2月9日
【審査請求日】2018年5月10日
(73)【特許権者】
【識別番号】303046277
【氏名又は名称】旭化成エレクトロニクス株式会社
(74)【代理人】
【識別番号】100066980
【弁理士】
【氏名又は名称】森 哲也
(74)【代理人】
【識別番号】100103850
【弁理士】
【氏名又は名称】田中 秀▲てつ▼
(72)【発明者】
【氏名】湯本 哲也
(72)【発明者】
【氏名】多賀 史朗
【審査官】
谷岡 佳彦
(56)【参考文献】
【文献】
特開平09−162939(JP,A)
【文献】
特開2011−029717(JP,A)
【文献】
特開2005−252631(JP,A)
【文献】
特開2012−235371(JP,A)
【文献】
特開2016−139856(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 27/14
H04B 1/30
H04L 27/38
(57)【特許請求の範囲】
【請求項1】
RF受信信号が入力され、互いに直交するI信号及びQ信号を出力する直交復調部と、
前記直交復調部から出力される前記I信号から所定のI信号オフセットを減算すると共に前記Q信号から所定のQ信号オフセットを減算するオフセット減算部と、
前記オフセット減算部で前記I信号オフセットが減算された前記I信号と前記Q信号オフセットが減算された前記Q信号とから、前記I信号オフセットが減算された前記I信号及び前記Q信号オフセットが減算された前記Q信号の極座標系での振幅及び位相を算出する振幅位相算出部と、
前記振幅位相算出部が算出した前記振幅と基準振幅との差分である振幅誤差を算出する振幅誤差算出部と、
前記振幅誤差と前記振幅位相算出部が算出した前記位相とから前記I信号オフセット及び前記Q信号オフセットを算出するオフセット算出部と、
を備え、
前記オフセット算出部は、
前記振幅誤差をA、前記位相をnとする場合に、前記I信号オフセット及び前記Q信号オフセットを次式(1)及び次式(2)として算出する受信機。
I信号オフセット=A・cos(n)……(1)
Q信号オフセット=A・sin(n)……(2)
【請求項2】
前記I信号オフセットが減算された前記I信号及び前記Q信号オフセットが減算された前記Q信号に対して復調処理を行うデジタル信号処理部、をさらに備える請求項1に記載の受信機。
【請求項3】
前記オフセット算出部は、前記振幅誤差と前記位相とを用いて直交座標変換しI信号のオフセット成分及びQ信号のオフセット成分からなる誤差ベクトルを得る直交座標変換部と、
当該直交座標変換部で得られたI信号のオフセット成分及びQ信号のオフセット成分をそれぞれ積分し、積分結果を前記I信号オフセット及び前記Q信号オフセットとして出力する積分器と、
を備える請求項1又は請求項2に記載の受信機。
【請求項4】
前記振幅位相算出部が算出した前記振幅の移動平均値を前記基準振幅として演算する基準振幅演算部をさらに備える請求項1から請求項3のいずれか一項に記載の受信機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は受信機に関する。
【背景技術】
【0002】
従来、受信した無線信号を、無線周波数からベースバンド信号に変換する方法として、直接復調方式(以後、ダイレクトコンバージョン受信方式ともいう。)が知られている。
ダイレクトコンバージョン受信方式は、受信したRF信号を一段階で直流成分付近まで周波数変換する方式である。
ミキシングに用いるローカル信号は、RF受信信号と同一の周波数を用いる。このとき、ローカル信号は高周波信号であるため、ローカル信号成分がデバイスの外部に漏洩する現象が発生する。
【0003】
そして、漏洩したローカル信号は、
図5に一点鎖線で示すように、自身のアンテナ81で受信され、アンテナ81で受信されたRF受信信号に重畳された状態で低雑音増幅器(LNA)82を介してミキサー83に入力され、ベースバンド信号に変換される。そのため、ミキサー83では、ローカル信号同士がミキシングされることになり、ベースバンド信号にDCオフセットが発生する。なお
図5中の84はローカル信号を生成する局部発振回路である。
このDCオフセットは受信感度の劣化を引き起こすため、ダイレクトコンバージョン受信方式を利用する上での課題とされている。また、周囲の環境によってローカル信号成分の受信レベルが変化するため、DCオフセットのレベルが動的に変化し、DCオフセットの除去をより難しくしている。
【0004】
DCオフセットを除去する方法として、従来、HPF(High Pass Filter)でDCオフセットを除去する手法が用いられている。例えば、特開平10-247953号公報(特許文献1)の
図11に記載されているように、周波数変換後のベースバンド信号に対し、HPFを挿入することでDC成分を除去することができる。
しかしながら、HPFはDC近傍の希望波成分も除去してしまうため、HPF挿入による受信感度の劣化に注意が必要である。例えば、携帯電話のW−CDMA規格では、信号帯域が数MHzと広いことに加え、π/4−DQPSK変調方式が採用されているため、希望波に含まれるDC成分が少ない。したがって、W−CDMA規格のように、DC近傍の希望波成分の損失による受信感度への影響が少ない通信方式において、HPFによるDC除去は有効である。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10-247953号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、業務用無線機等には、狭帯域なFM/FSK変調方式を採用しているものもある。このように狭帯域なFM/FSK変調方式を採用している業務用無線機にダイレクトコンバージョン受信方式を適用した場合、FM/FSK変調方式の規格では信号帯域が数kHzと狭いことに加え、DC近傍に信号成分を持つ特徴があるため、DCオフセット除去の目的でHPFを用いると受信感度が劣化してしまう。すなわち、従来のHPFを用いたDCオフセット除去手法では、FM/FSK変調方式に対して十分なオフセット除去を行うことが困難である。
そこで、本願発明は、FM/FSK変調方式で通信を行う受信機におけるDCオフセットを、十分除去することの可能な受信機を提供することを目的としている。
【課題を解決するための手段】
【0007】
本発明の一態様による受信機は、RF受信信号が入力され、互いに直交するI信号及びQ信号を出力する直交
復調部と、前記直交
復調部から出力される前記I信号から所定のI信号オフセットを減算すると共に前記Q信号から所定のQ信号オフセットを減算するオフセット減算部と、前記オフセット減算部で前記I信号オフセットが減算された前記I信号と前記Q信号オフセットが減算された前記Q信号とから、前記I信号オフセットが減算された前記I信号及び前記Q信号オフセットが減算された前記Q信号の
極座標系での振幅及び位相を算出する振幅位相算出部と、前記振幅位相算出部が算出した前記振幅と基準振幅との差分である振幅誤差を算出する振幅誤差算出部と、前記振幅誤差と前記振幅位相算出部が算出した前記位相とから前記I信号オフセット及び前記Q信号オフセットを算出するオフセット算出部と、を備え
、前記オフセット算出部は、前記振幅誤差をA、前記位相をnとする場合に、前記I信号オフセット及び前記Q信号オフセットを次式(1)及び次式(2)として算出することを特徴としている。
I信号オフセット=A・cos(n)……(1)
Q信号オフセット=A・sin(n)……(2)
【発明の効果】
【0008】
本発明の一態様によれば、FM/FSK変調を用いた狭帯域通信方式のRF信号を受信する場合であっても、DCオフセットによる受信感度の劣化を抑制することができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の一実施形態に係る受信機の一例を示す構成図である。
【
図2】FM/FSK変調されたRF受信信号の振る舞いを説明するための説明図である。
【
図3】DCオフセットキャンセル回路の一例を示す構成図である。
【
図4】振幅誤差の導出方法を説明するための説明図である。
【
図5】ローカル信号のリーク経路を説明するための説明図である。
【発明を実施するための形態】
【0010】
以下、図面を参照して本発明を実施するための形態(以下、本実施形態という)について説明する。
なお、以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかであろう。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0011】
図1は、本発明の一実施形態における、ダイレクトコンバージョン受信方式を用いた受信機10の回路構成の一例である。
本実施形態における受信機10は、FM/FSK変調方式で通信を行うダイレクトコンバージョン方式の受信機である。この受信機10は、ベースバンドの信号処理において直交座標で表現されたI/QのRF受信信号を極座標形式に変換し、振幅のデータから導出した基準振幅と振幅との差分を振幅誤差とする。さらに受信機10は、この振幅誤差を再び直交座標系に変換して振幅誤差を蓄積し、蓄積した振幅誤差をRF受信信号のI/Qデータから減算するフィードバック制御を行うことで、動的にDCオフセットを除去するようにしたものである。
【0012】
本発明の一実施形態における受信機10は、アンテナ11と、低雑音増幅器(LNA:Low Noise Amplefier)12と、局部発振回路13と、移相器14と、直交
復調部15及び16と、増幅器17及び18とを備える。さらに受信機10は、フィルタ回路19及び20と、AD変換器21及び22と、デジタルフィルタ23と、DCオフセットキャンセル回路24と、デジタル信号処理部(DSP:Digital Signal Processor)25と、を備える。
低雑音増幅器12は、アンテナ11を介して受信したRF(高周波)信号(以後、RF受信信号ともいう。)を増幅し、直交
復調部15及び16に出力する。
【0013】
局部発振回路13は、RF受信信号を周波数変換するためのローカル信号を生成する。ローカル信号の周波数は、RF受信信号と略同一の周波数を用いる。
移相器14は、ローカル信号の位相を90°移相する。局部発振回路13で生成されたローカル信号は、直交
復調部16に出力されると共に、移相器14で90°移相されたローカル信号が直交
復調部15に出力される。
直交
復調部15は、例えばI/Q直交
復調器(
DEMOD:
demodulator)を含んで構成され、RF受信信号をI信号のベースバンド(BB)信号に周波数変換し増幅器17に出力する。直交
復調部16は、RF受信信号をQ信号のベースバンド(BB)信号に周波数変換し増幅器18に出力する。
【0014】
増幅器17及び18はゲイン調整が可能な増幅器であって、例えばプログラマブルゲインアンプ(PGA:Programmable Gain Amp.)等を含んで構成される。増幅器17及び18は、AD変換器21及び22の入力レベルが一定となるように、I信号、Q信号それぞれの信号振幅を調整する。調整後のI信号はフィルタ回路19に入力され、調整後のQ信号はフィルタ回路20に入力される。
フィルタ回路19及び20は、例えばアンチエイリアシングフィルタ(AAF:Anti−Aliasing Filter)を含んで構成され、AD変換器21及び22においてAD変換する際に発生するエイリアシングを抑制するためのLPFとして機能する。
【0015】
AD変換器21及び22は、フィルタ回路19及び20で調整後のアナログデータからなるI信号、Q信号をデジタルデータに変換する。
デジタルフィルタ23は、挟帯域のLPFであって、チャネル外の妨害波を抑圧する。
DCオフセットキャンセル回路24は、動的にDCオフセットをキャンセルする回路である。
DCオフセットキャンセル回路24によりDC成分がキャンセルされたI信号及びQ信号は、デジタル信号処理部25に入力され、デジタル信号処理部25は入力されたI信号及びQ信号を復調処理し、受信データを得る。
【0016】
次に、DCオフセットキャンセル回路24で、DCオフセットキャンセルを行うための基礎理論について説明する。
ベースバンド周波数において、FM/FSK変調されたRF受信信号は
図2(a)に示すように、「振幅一定の円運動」を行うことが知られている。
図2(a)、
図2(b)は、RF受信信号をI/Q直交座標で表したものであって、横軸はI軸、縦軸はQ軸である。なお、FMはアナログ変調、FSKはデジタル変調であり、どちらも周波数を変化させる変調方式である。I/Q直交座標で表現すると位相のみが変化する。
【0017】
図2(a)に示すRF受信信号にDCオフセットが付加されると、
図2(b)に示すように、円の中心が原点から移動する。そのため、DCオフセットが存在すると原点から見た振幅が変動する。
そこで、本実施形態では、「FM/FSK変調のRF受信信号は振幅が一定である」という特徴に着目し、振幅が一定になるようにフィードバック制御を行うことで、DCオフセットを除去する。
この基礎理論を実現するための、DCオフセットキャンセル回路24の構成を
図3に示す。
【0018】
DCオフセットキャンセル回路24は、振幅位相算出部31と、振幅誤差算出部32と、オフセット算出部33と、オフセット減算部34及び35と、を備える。
振幅位相算出部31は、ベースバンドのRF受信信号、すなわちデジタルフィルタ23から出力されるデジタルデータからなるI信号及びQ信号を極座標変換し、I/Qの直交座標系から振幅及び位相のデータを得る。
振幅誤差算出部32は、振幅位相算出部31で得られた振幅のデータを入力し、振幅誤差Aを次式(
3)に基づき演算する。
(振幅誤差A)=(現在の振幅データ)−(基準振幅) ……(
3)
(
3)式で表される関係を
図4に示す。
【0019】
振幅誤差算出部32は、基準振幅を演算する基準振幅演算部32aを備える。基準振幅演算部32aは、振幅データを平均化処理して基準振幅を演算する。なお、ここでいう振幅データとは、振幅位相算出部31で極座標変換して得られる振幅のデータである。基準振幅演算部32aは、振幅位相算出部31で極座標変換して得られる振幅データを逐次移動平均処理し、移動平均処理により得た移動平均値を基準振幅とする。
オフセット算出部33は、直交座標変換部41と、積分器43及び44と、を備える。
直交座標変換部41は、振幅誤差算出部32で演算した振幅誤差Aと、振幅位相算出部31で取得した位相のデータとを入力し、これらを用いて直交座標変換し、DC誤差ベクトルを得る。
【0020】
DC誤差ベクトルは、I信号のオフセット成分とQ信号のオフセット成分とから構成される。つまり、DC誤差ベクトル=(I信号のオフセット成分,Q信号のオフセット成分)と表すことができる。
ここで、振幅誤差をA、I/Q 信号の位相を(n)とすると、I信号及びQ信号のオフセット成分は、次式(
4)で表すことができる。
I信号のオフセット成分=A・
cos(n)
Q信号のオフセット成分=A・
sin(n) ……(
4)
【0021】
積分器43及び44は、DC誤差ベクトルを蓄積する。すなわち、積分器43はI信号のオフセット成分を蓄積し、積分器44はQ信号のオフセット成分を蓄積する。
オフセット減算部34は、デジタルフィルタ23から出力されるデジタルデータからなるI信号から、積分器43の出力であるI信号オフセットを減算する。オフセット減算部35は、デジタルフィルタ23から出力されるデジタルデータからなるQ信号から、積分器44の出力であるQ信号オフセットを減算する。
このオフセット減算部34、オフセット減算部35の出力、すなわち、I信号からI信号オフセットを減算した信号及びQ信号からQ信号オフセットを減算した信号が、DCオフセットが除去されたI信号及びQ信号として、デジタル信号処理部25に入力される。デジタル信号処理部25は入力された、I信号オフセット、Q信号オフセットが減算された後の、RF受信信号に応じたI信号、Q信号に基づき復調処理を行い、受信データを得る。
【0022】
DCオフセットキャンセル回路24において、以上の動作を連続動作することによって、DCオフセットによって中心が原点からずれていた入力信号(RF受信信号)は、原点に向かって移動していく。そして、最終的には、振幅が一定になるポイントでフィードバックループが安定し、DCオフセットを除去することができる。
つまり、DCオフセットキャンセル回路24を用いることで、FM/FSK変調を用いた狭帯域通信方式において、信号データを損なわず、動的にDCオフセットを除去することができる。したがって、FM/FSK変調を用いた狭帯域通信方式のRF信号を受信する場合であっても、DCオフセットによる受信感度の劣化を抑制することができる。
【0023】
ここで、積分器43及び44を設けずに、DCオフセットキャンセル回路24に入力されるI信号及びQ信号から、直交座標変換部41で得たDC誤差ベクトルである、I信号のオフセット成分及びQ信号のオフセット成分をそれぞれ減算する構成とした場合、DCオフセットを精度良く推定することができず、DCオフセットに収束誤差が残る。
本実施形態における受信機10では、
図3に示すように、積分器43及び44により、I信号のオフセット成分、Q信号のオフセット成分をそれぞれ積分し、得られたI信号オフセット及びQ信号オフセットをI信号及びQ信号それぞれから減算することによって、DCオフセットの収束誤差をより零に近づけることができ、すなわちDCオフセットをより高精度に推定することができる。その結果、DCオフセットをより高精度にキャンセルすることができる。
【0024】
なお、本発明は、以上に記載した実施形態に限定されるものではない。その技術適思想の範囲内において、当業者の知識に基づいて実施形態に設計の変更等を加えてもよく、そのような変更が加えられた態様も本発明の範囲に含まれる。
また、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
【産業上の利用可能性】
【0025】
業務用無線機等のFM/FSK変調を利用した無線機に利用できる。
【符号の説明】
【0026】
10 受信機
11 アンテナ
12 低雑音増幅器(LNA)
13 局部発振回路
14 移相器
15、16 直交
復調部
17、18 増幅器
19、20 フィルタ回路
21、22 A D 変換器
24 DCオフセットキャンセル回路
25 デジタル信号処理部(DSP)
31 振幅位相算出部
32 振幅誤差算出部
34、35 オフセット減算部
41 直交座標変換部
43、44 積分器