(58)【調査した分野】(Int.Cl.,DB名)
多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法であって、Siからなる保持基板の片面に単結晶SiC層を設けて単結晶SiC層担持体を作製した後、該単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、上記単結晶SiC層担持体に反りを付与し、次いで該単結晶SiC層上に物理的又は化学的手段により多結晶SiCを堆積して保持基板上に単結晶SiC層と多結晶SiC基板とを積層したSiC積層体を作製し、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするSiC複合基板の製造方法。
多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法であって、Siからなる保持基板の片面に単結晶SiC層を設けて単結晶SiC層担持体を作製した後、該単結晶SiC層上に物理的又は化学的手段により多結晶SiCを堆積して保持基板上に単結晶SiC層と多結晶SiC基板とを積層したSiC積層体を作製し、次いで該SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加え、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするSiC複合基板の製造方法。
サンドブラスト加工、研削加工、切削加工、レーザー加工及び放電加工の中から選ばれる少なくとも一つの加工方法により上記物理的ダメージを加えることを特徴とする請求項1〜3のいずれか1項記載のSiC複合基板の製造方法。
上記保持基板の片面に酸化珪素、窒化珪素又は酸窒化珪素からなる中間層を介して単結晶SiC層を設けることを特徴とする請求項1〜4のいずれか1項記載のSiC複合基板の製造方法。
イオン注入剥離法により単結晶SiC基板から剥離させた単結晶SiC薄膜を上記保持基板上に転写して上記単結晶SiC層を設けることを特徴とする請求項1〜5のいずれか1項記載のSiC複合基板の製造方法。
請求項1〜7のいずれか1項記載のSiC複合基板の製造方法によりSiC複合基板を製造し、該SiC複合基板をテンプレートとし、その単結晶SiC層上に更にSiC単結晶をヘテロエピタキシャル成長させ、単結晶SiCを積層することを特徴とする半導体基板の製造方法。
【背景技術】
【0002】
現在、半導体用基板として単結晶Si基板は広く使われている。しかし、その特性上、最近の高耐圧や高周波化に対しては必ずしも適さないため、高価ではあるが単結晶SiCや単結晶GaNの基板が使われ始めている。例えば、シリコン(Si)よりも禁制帯幅の広い半導体材料である炭化珪素(SiC)を用いた半導体素子を使用してインバータやAC/DCコンバータなどの電力変換装置を構成することによりシリコンを用いた半導体素子では到達し得ない電力損失の低減が実現されている。SiCによる半導体素子を用いることにより、従来よりも電力変換に付随する損失が低減するほか、装置の軽量化、小型化、高信頼性が促進される。また、次世代のデバイス材料としてナノカーボン薄膜(グラフェンも含む)の原材料としても単結晶SiC基板が検討されている。
【0003】
これらの単結晶SiC基板や単結晶GaN基板の製造として、(1)単結晶SiC基板は、高純度SiC粉を2000℃以上の高温でSiCを昇華させながら種結晶を成長させるSiC昇華法で作製され、(2)単結晶GaN基板は、高温高圧のアンモニア中でGaNの種結晶を成長させる方法やサファイヤあるいは単結晶SiC基板上に更にGaNをヘテロエピタキシャル成長させて作製されるのが通常である。しかし、その製造工程は極めて厳しい条件下で複雑なため、どうしても基板の品質や歩留まりが低く、非常に高コストの基板となり、実用化や広範囲の利用を妨げている。
【0004】
ところで、これらの基板上では、実際にデバイス機能を発現する厚みはいずれの場合においても0.5〜100μmであり、残りの厚み部分は主として基板取り扱い時の機械的な保持・保護機能の役割を担っているだけの部分、所謂、ハンドル部材(基板)である。
【0005】
そこで、近年はハンドリングができる程度の比較的薄い単結晶SiC層を多結晶SiC基板にSiO
2、Al
2O
3、Zr
2O
3、Si
3N
4、AlN等のセラミックス、やSi、Ti、Ni、Cu、Au、Ag、Co、Zr、Mo、W等の金属を介して接合した基板が検討されている。しかしながら、単結晶SiC層と多結晶SiC基板とを接合するために介在するものが前者(セラミックス)の場合は絶縁体であることからデバイス作成時の電極作製が難しく、後者(金属)の場合はデバイスに金属不純物が混入してデバイスの特性劣化を引き起こし易いため、実用的ではない。
【0006】
そこで、これらの欠点を改善すべく、これまでに種々の提案がなされており、例えば特許第5051962号公報(特許文献1)では、酸化珪素薄膜を有する単結晶SiC基板に水素などのイオン注入を施したソース基板と表面に酸化珪素を積層した多結晶窒化アルミニウム(中間サポート、ハンドル基板)とを酸化珪素面で貼り合わせ、単結晶SiC薄膜を多結晶窒化アルミニウム(中間サポート)に転写し、その後、多結晶SiCを堆積した後にHF浴に入れて酸化珪素面を溶かして分離する方法が開示されている。しかしながら、通常、酸化珪素面の接合面が極めて密に強く結合しているために、HFが酸化珪素面の全面、特に中心部にはなかなか浸透せず、分離が簡単ではなく、過大な時間を要し、生産性が極めて悪いという欠点がある。また、この発明を用いて大口径のSiC複合基板を製造する際には、多結晶SiC堆積層と窒化アルミニウム(中間サポート)との熱膨張係数差により大きな反りが発生し問題となる。
【0007】
また、特開2015−15401号公報(特許文献2)では、表面の平坦化が難しい基板に対し、酸化膜の形成なしに多結晶SiCの支持基板表面を高速原子ビームで非晶質に改質すると共に単結晶SiC表面も非晶質に改質した後、両者を接触させて熱接合を行うことにより多結晶SiC支持基板上に単結晶SiC層を積層する方法が開示されている。しかしながら、この方法では高速原子ビームで単結晶SiCの剥離界面のみならず結晶内部も一部変質するため、折角の単結晶SiCがその後の熱処理によってもなかなか良質の単結晶SiCに回復せず、デバイス基板やテンプレートなどに使用する場合、高特性のデバイスや良質なSiCエピ膜を得にくいという欠点がある。
【0008】
これらの欠点に加えて上記技術では単結晶SiCと支持基板の多結晶SiCとを貼り合わせるためには、貼り合わせ界面の表面粗さが算術平均表面粗さRaで1nm以下の平滑性が不可欠であるが、ダイヤモンドに次ぐ難削材と言われるSiCは単結晶SiC表面を非晶質に改質してもその後の研削、研磨或いは化学機械研磨(Chemical Mechanical Polishing,CMP)などの平滑化プロセスに極めて多くの時間を要し、高コスト化は避けられず、加えて多結晶は粒界があるため、高速原子ビームによる非晶質化を面内均一にすることが難しく、貼り合わせ強度や反りの発生が問題となって実用化の大きな障害となっている。
【発明を実施するための形態】
【0015】
以下に、本発明に係るSiC複合基板の製造方法について説明する。
本発明に係るSiC複合基板の製造方法は、多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法であって、Siからなる保持基板の片面に単結晶SiC層を設けて単結晶SiC層担持体を作製した後、該単結晶SiC層上に物理的又は化学的手段により多結晶SiCを堆積して保持基板上に単結晶SiC層と多結晶SiC基板とを積層したSiC積層体を作製し、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするものである。
【0016】
ここで、シリコン(Si)からなる基板は機械的強度があると共に物理的及び/又は化学的な除去(即ち、研削加工や化学的エッチング)が行い易いため、本発明の製造方法における保持基板に好適である。なお、保持基板は、多結晶Siウエハ、単結晶Siウエハのいずれでもよい。保持基板として単結晶Siウエハを採用する場合、高品質な大口径基板を低価格で入手可能であることから、SiC複合基板の製造コストも低減できる。
【0017】
なお、上記保持基板の片面に酸化珪素、窒化珪素又は酸窒化珪素からなる中間層(介在層ともいう)を介して単結晶SiC層を設けることが好ましい。この中間層は、保持基板に単結晶SiC層を強固に付着させるだけではなく、Siからなる保持基板について研削可能などにより大部分を除去した後に、残りを化学的にエッチングして除去する際にエッチストップ層として機能させることもできる。
【0018】
また、本発明のSiC複合基板の製造方法では、イオン注入剥離法により単結晶SiC基板から剥離させた単結晶SiC薄膜を上記保持基板上に転写して設けることが好ましい。これにより、一度のイオン注入剥離処理により、必要最低限の膜厚を有し、SiC複合基板の特性を左右する単結晶SiC層が得られるので、経済的に高特性のSiC複合基板を製造することができる。
【0019】
また、多結晶SiC基板を形成するための化学的又は物理的手段としては、気相成長法が好ましく、化学的気相成長法がより好ましく、熱CVD法を用いることが更に好ましい。単結晶SiC層上に多結晶SiCを堆積して形成するため、従来技術の如き、難研削材のSiCの研削、研磨、CMPなどに依る高平坦化の工程を不要とすることができる。
【0020】
以上のように、本発明に係るSiC複合基板の製造方法によれば、保持基板が難加工性のAlN基板でなく、易加工性のSi基板であることから機械加工や化学処理が極めて容易にできるため、簡便な研削や研磨、あるいはKOH、HFなどの安価な化学的エッチング処理で保持基板を簡単に除去でき、特許文献1の様な面倒で高コストなAlNの再生・リサイクルの必要もなくなり、高品質のSiC複合基板を低コストで製造することが可能となる。また、保持基板と単結晶SiC層の間に上記中間層を設けておけば、上記化学的エッチング処理の際に中間層の表面全体にHF等のエッチング液が直に接するため、中間層を容易にかつ均一に完全除去することができ、その結果、単結晶SiC層の表面は極めて平滑、清浄な状態で得られる。
【0021】
ところで、Siからなる保持基板は単結晶SiC層や多結晶SiC基板と熱膨張係数が異なるため、複合基板製造中の温度変化により保持基板を含む積層体に反りが発生しやすい。製造過程でこのような反りが発生すると、そのままではSiC複合基板の形状は保持基板の反りを反映してしまうので、平坦な基板が得られないおそれがある。SiC複合基板が平坦性を欠いてしまうと、次工程以降のSiC複合基板の扱いが難しくなるばかりでなく、精密で微細なデバイスを製造することが困難になる。例えば、デバイス製造工程などのフォトリソグラフィー工程を適用することが難しくなり、SiC複合基板の実用化が妨げられる。
【0022】
そこで、発明者らは、この反りの問題について種々検討したところ、SiC複合基板の製造工程において単結晶SiC層担持体に多結晶SiCを堆積する際に、Siからなる保持基板に単結晶SiC層を担持させた単結晶SiC層担持体と多結晶SiCとの間に熱膨張率の差に起因する熱応力を生じ、その結果、SiC複合基板に反りが発生していることを把握した。また、更に検討を進めたところ、単結晶SiC層担持体に多結晶SiCを体積する前にSiからなる保持基板に物理的なダメージを加えておき、多結晶SiCを堆積するときに発生する熱応力を適宜開放しつつ、この熱応力に耐えられる厚みまで多結晶SiCを堆積することにより、反りがほとんどないSiC複合基板が得られることを見出した。また、単結晶SiC層担持体に多結晶SiCを堆積して多結晶SiC基板を形成した後に、このSiC積層体における多結晶SiC基板に反りを軽減するに足る物理的ダメージを加えることにより、反りがほとんどないSiC複合基板が得られることを見出した。発明者らは、これらの知見に基づき更に鋭意検討を行い本発明を成すに至った。
【0023】
即ち、上記単結晶SiC層上に多結晶SiCを堆積する前に、上記単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、該単結晶SiC層担持体に反りを付与することが好ましい。
【0024】
また、上記単結晶SiC層上に多結晶SiCを堆積した後に、上記SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加えることが好ましい。
【0025】
このとき、上記いずれの場合においても物理的ダメージを加える手段は特に制限はないが、反り改善の効果の大きさや効率の観点からサンドブラスト加工、研削加工、切削加工などの機械的な加工で上記応力を緩和し反りを除去するようにしてもよいし、レーザー加工及び放電加工などで対象の基板(保持基板又は多結晶SiC基板)を構成する表層の非晶質化を生じさせ上記応力を緩和し反りを除去するようにしてもよい。
【0026】
物理的ダメージの付与は、上記基板の対象面の全面において出来る限り均等となるように付与することが好ましい。例えば、サンドブラスト加工の場合、上記基板の対象面の全面又は反り改善に有効な一部領域に処理を行うとよい。また、研削加工、切削加工の場合、粗い固定砥石で上記基板の対象面の全面又は一定ピッチで条状に処理を行うとよい。更に、レーザー加工、放電加工の場合、上記基板の対象面の表面又は対象面側内部に一定ピッチで点状又は線状(条状)に処理を行うとよい。
【0027】
これらの物理的ダメージ量は、多結晶SiC基板の内部応力やSiC積層体の反りの程度に応じてそれらを打ち消す程度に適宜調整するとよい。
【0028】
なお、Siからなる保持基板にこの物理的ダメージを付与すると、後の保持基板の除去の際に物理的、化学的のいずれの方法であれ、保持基板がダメージを受けたことにより化学的に活性化され、より容易に保持基板(Si)の除去ができるという付帯効果も得られる。
【0029】
以上のように、上記単結晶SiC層上に多結晶SiCを堆積する前に、上記単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、該単結晶SiC層担持体に反りを付与しておけば、この反りがその後に形成される多結晶SiC基板による反りとは反対向きの反りとなるため、単結晶SiC層担持体の反りと多結晶SiC基板による反りとが互いに打ち消し合うこととなり反りが少なく、高品質なSiC複合基板を簡便に製造することができる。
また、上記単結晶SiC層上に多結晶SiCを堆積した後に、上記SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加えることにより、一旦反ったSiC積層体において多結晶SiC基板の内部応力を低減するため、SiC複合基板としての反りを除去することができ、反りが少なく、高品質なSiC複合基板を簡便に製造することが可能となる。
なお、SiC複合基板のBow量は、50μm以下が好ましく、0μm以上30μm以下がより好ましい。
【0030】
以下、本発明に係るSiC複合基板の製造方法の実施形態1、2を説明する。
【0031】
(実施形態1)
本発明の実施形態1について
図1を参照しながら説明する。
(工程1−1)
始めに、保持基板21に貼り合わせをする単結晶SiC基板12sを用意する。ここで、単結晶SiC基板12sは、結晶構造が4H−SiC、6H−SiC、3C−SiCのものから選択をすることが好ましい。単結晶SiC基板12s及び後述する保持基板21の大きさは、半導体素子の製造や窒化ガリウム、ダイヤモンド、ナノカーボン膜の成長に必要な大きさやコスト等から設定をする。また、単結晶SiC基板12sの厚さは、SEMI規格又はJEIDA規格の基板厚さ近傍のものがハンドリングの面から好ましい。なお、単結晶SiC基板12sとして、市販のもの、例えばパワーデバイス向けに市販されている単結晶SiCウエハを用いればよく、その表面がCMP(Chemical Mechanical Polishing(or Planarization))処理で仕上げ研磨された、表面が平坦かつ平滑なものを用いることが好ましい。
【0032】
また、単結晶SiC基板12sの少なくとも保持基板21と貼り合わせをする表面(おもて面)に所定の薄膜22aを形成することが好ましい(
図1(a))。ここで、薄膜22aは、厚さ50nm〜600nm程度の酸化珪素膜、窒化珪素膜又は酸窒化珪素膜の誘電体膜であるとよい。これにより、保持基板21との貼り合わせが容易になるだけではなく、この後に行われるイオン注入処理の注入イオンのチャネリングを抑制する効果も得られる。なお、後述するイオン注入処理後に薄膜22aを設けてもよい。
【0033】
薄膜22aの形成方法としては、単結晶SiC基板12sに密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば酸化珪素膜はPECVD法又は熱酸化法により形成し、窒化珪素膜、酸窒化珪素膜はスパッタリング法により形成するとよい。
【0034】
(工程1−2)
次に、Siからなる保持基板21を用意する。例えば、多結晶Siウエハ又は単結晶Siウエハを用いるとよい。
【0035】
また、保持基板21の少なくとも単結晶SiC基板12sと貼り合わせをする表面(おもて面)に、上記工程1−1と同様の薄膜22aを形成することが好ましい(
図1(b))。
【0036】
(工程1−3)
次に、単結晶SiC基板12sの薄膜22a形成面に水素イオン等を注入してイオン注入領域12iを形成する(
図1(c))。
【0037】
ここで、単結晶SiC基板12sへのイオン注入の際、その表面から所望の深さにイオン注入領域12iを形成できるような注入エネルギーで、所定の線量の少なくとも水素イオン(H
+)又は水素分子イオン(H
2+)を注入する。このときの条件として、所望の薄膜の厚さになるようにイオン注入エネルギーを設定すればよい。HeイオンやBイオン等を同時にインプラしても構わないし、同じ効果が得られるモノであればどのようなイオンを採用しても構わない。
【0038】
単結晶SiC基板12sに注入する水素イオン(H
+)のドーズ量は、1.0×10
16atom/cm
2〜9.0×10
17atom/cm
2であることが好ましい。1.0×10
16atom/cm
2未満であると、界面の脆化が起こらない場合があり、9.0×10
17atom/cm
2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。
【0039】
注入イオンとして水素分子イオン(H
2+)を用いる場合、そのドーズ量は5.0×10
15atoms/cm
2〜4.5×10
17atoms/cm
2であることが好ましい。5.0×10
15atoms/cm
2未満であると、界面の脆化が起こらない場合があり、4.5×10
17atoms/cm
2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。
【0040】
イオン注入された基板表面からイオン注入領域12iまでの深さ(即ち、イオン打ち込み深さ)は、保持基板21上に設ける単結晶SiC薄膜の所望の厚さに対応するものであり、通常100〜2,000nm、好ましくは300〜500nm、更に好ましくは400nm程度である。また、イオン注入領域12iの厚さ(即ち、イオン分布厚さ)は、機械衝撃等によって容易に剥離できる厚さが良く、好ましくは200〜400nm、更に好ましくは300nm程度である。
【0041】
(工程1−4)
続いて、単結晶SiC基板12sの薄膜22a形成面と保持基板21の薄膜22a形成面と(おもて面同士)を表面活性化処理を施して貼り合わせる。表面活性化処理としてはプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行うとよい。
【0042】
このうち、プラズマ活性化処理をする場合、真空チャンバ中に上記工程1−3までの処理が終了した単結晶SiC基板12s及び/又は保持基板21を載置し、プラズマ用ガスを減圧下で導入した後、100W程度の高周波プラズマに5〜10秒程度さらし、表面をプラズマ活性化処理する。プラズマ用ガスとしては、酸素ガス、水素ガス、窒素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。
【0043】
真空イオンビーム処理は、高真空のチャンバ内に単結晶SiC基板12s及び/又は保持基板21を載置し、Ar等のイオンビームを貼り合わせをする表面に照射して活性化処理を行う。
【0044】
オゾン水への浸漬処理は、オゾンガスを溶解させたオゾン水に単結晶SiC基板12s及び/又は保持基板21を浸漬し、その表面を活性化処理をする。
【0045】
上記した表面活性化処理は、単結晶SiC基板12sのみ又は保持基板21のみに行ってもよいが、単結晶SiC基板12s及び保持基板21の両方について行うのがより好ましい。
【0046】
また、表面活性化処理は上記方法のいずれか一つでもよいし、組み合わせた処理を行っても構わない。更に、単結晶SiC基板12s、保持基板21の表面活性化処理を行う面は、貼り合わせを行う面、即ち薄膜22a表面であることが好ましい。
【0047】
次に、この単結晶SiC基板12s及び保持基板21の表面活性化処理をした表面(薄膜22a、22a表面)を接合面として貼り合わせる。
【0048】
次いで、単結晶SiC基板12sと保持基板21と貼り合わせた後に、好ましくは150〜350℃、より好ましくは150〜250℃の熱処理を行い、薄膜22a、22aの貼り合わせ面の結合強度を向上させるとよい。このとき、単結晶SiC基板12sと保持基板21との間の熱膨張率差により基板の反りが発生するが、それぞれの材質に適した温度を採用して反りを抑制するとよい。熱処理時間としては、温度にもある程度依存するが、2時間〜24時間が好ましい。
【0049】
これにより、薄膜22a、22aは密着して一つの層、介在層22となると共に、単結晶SiC基板12sと保持基板21とが介在層22を介して強固に密着した貼り合わせ基板13となる(
図1(d))。
【0050】
(工程1−5)
貼り合わせ基板13について、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与してイオン注入領域12iで単結晶SiC基板12sから剥離した単結晶SiC薄膜を保持基板21上に転写する。
【0051】
このとき、薄膜22a、22aは強固に密着し、更に薄膜22a、22aはそれぞれ単結晶SiC基板12s、保持基板21と強固に密着しているため、イオン注入領域12iにおける剥離部分以外の部分での剥離は発生しない。
【0052】
剥離方法としては、例えば貼り合わせ基板13を高温に加熱して、この熱によってイオン注入領域12iにおいてイオン注入した成分の微小なバブル体を発生させることにより剥離を生じさせて単結晶SiC基板12sを分離する熱剥離法を適用することができる。あるいは、熱剥離が生じない程度の低温熱処理(例えば、500〜900℃、好ましくは500〜700℃)を施しつつ、イオン注入領域12iの一端に物理的な衝撃を加えて機械的に剥離を発生させて単結晶SiC基板12sを分離する機械剥離法を適用することができる。機械剥離法は単結晶SiC薄膜転写後の転写表面の粗さが熱剥離法よりも比較的小さいため、より好ましい。
【0053】
なお、剥離処理後に、単結晶SiC薄膜担持体を加熱温度700〜1000℃であって剥離処理時よりも高い温度、加熱時間1〜24時間の条件で加熱して、単結晶SiC薄膜と保持基板21との密着性を改善する熱処理を行ってもよい。
【0054】
保持基板21上の単結晶SiC薄膜表面を鏡面仕上げして単結晶SiC層12とし、単結晶SiC層担持体14を得る(
図1(e))。具体的には、単結晶SiC薄膜に化学機械研磨(CMP研磨)を施してイオン注入によるダメージ層を除去すると共に表面を鏡面に仕上げる。ここではシリコンウエハの平坦化等に用いられる従来公知のCMP研磨でよい。
【0055】
また、単結晶SiC層12は、厚さが5μm以下、好ましくは2μm以下、より好ましくは100nm以上1μm以下、更に好ましくは200nm以上800nm以下、特に好ましくは300nm以上500nm以下の単結晶SiCからなる薄膜である。単結晶SiC層の厚さが5μm以下であれば複合基板化のコストを考慮してもなお無垢の単結晶SiC基板よりも経済的メリットがある。
【0056】
なお、剥離した後の単結晶SiC基板12sは、表面を再度研磨や洗浄等を施すことにより再度当該単結晶SiC層担持体14の製造方法における貼り合わせ用の基板として再利用することが可能となる。
【0057】
(工程1−6)
次に、単結晶SiC層担持体14における保持基板21の単結晶SiC層担持面とは反対面(うら面、図中下側の面)に物理的ダメージを加えて、単結晶SiC層担持体14’に反りを付与する(
図1(f))。図中、14’は物理的ダメージ付与後の単結晶SiC層担持体であり、21’は物理的ダメージ付与後の保持基板である。
【0058】
ここで、物理的ダメージの付与は、上述した通りサンドブラスト加工、研削加工、切削加工、レーザー加工及び放電加工の中から選ばれる少なくとも一つの加工方法によればよい。
【0059】
これにより、単結晶SiC層担持体14’は後述する多結晶SiC基板11の内部応力による反りとは反対向き(例えば、単結晶SiC層12側(上側))に凸となるように若干反るようになる。
【0060】
(工程1−7)
次に、得られた単結晶SiC層担持体14’を用いて、化学気相成長法により単結晶SiC層12上に多結晶SiCを堆積して多結晶SiC基板11を形成してSiC積層体15を得る(
図1(g))。ここでのSiC積層体15は、保持基板21’上に中間層22、単結晶SiC層12、多結晶SiC基板11をこの順番で積層した構成となっている。
【0061】
ここで、化学気相成長法としては熱CVD法を用いることが好ましい。この熱CVD条件としては、多結晶SiCを堆積して成膜する一般的な条件でよい。
【0062】
多結晶SiC基板11の厚さは、50〜1000μmであることが好ましく、100〜800μmであることがより好ましい。厚さを50μm以上とすることによりハンドル基板としての機能を確保しやすくなり、1000μm以下とすることによりコスト面の抑制を図ることができる。
【0063】
また、多結晶SiC基板11の多結晶SiCは立方晶(3C−SiC)であることが好ましい。なお、多結晶SiC基板11に不純物を導入して抵抗率を調整してもよい。これにより縦型パワー半導体デバイスの基板として好適に使用することが可能となる。
【0064】
(工程1−8)
次に、工程1−7で得られたSiC積層体15における保持基板21’を物理的及び/又は化学的に除去して、SiC複合基板10を得る(
図1(h))。このとき、保持基板21’がシリコンからなるため、例えばまず保持基板21’の大部分を研削加工により除去し、次いで残りの保持基板21’及び中間層22をフッ硝酸溶液により選択的にエッチング除去することが好ましい。
【0065】
これにより、反りのほとんどないSiC複合基板10が得られる。このとき、多結晶SiC基板11は、上層の単結晶SiC層12と同じSiCからなり、単結晶SiC層12と多結晶SiC基板11の熱膨張係数がほぼ等しくなることからいかなる温度においてもSiC複合基板10の反りの発生が抑制される。
【0066】
(工程1−9)
必要に応じて、SiC複合基板10の単結晶SiC層12上にSiCエピタキシャル層12’を形成するとよい(
図1(i))。これにより、単結晶SiC層12がパワー半導体デバイスの活性層として用いるには薄すぎる場合でも、所定厚さのSiCエピタキシャル層12’を形成するのでパワー半導体の製造に適応したSiC複合基板を得ることが可能となる。
【0067】
(実施形態2)
本発明の実施形態2について
図2を参照しながら説明する。なお、本実施形態において、保持基板21上に単結晶SiC層12を担持する単結晶SiC層担持体14を作製するまでは(
図2(e)までは)、実施形態1における工程1−5(
図1(e))までの製造工程と同じである。ここではそれ以降の工程について説明する。
【0068】
(工程2−6)
得られた単結晶SiC層担持体14を用いて、化学気相成長法により単結晶SiC層12上に多結晶SiCを堆積して多結晶SiC基板11を形成してSiC積層体15を得る(
図2(f))。化学気相成長法や多結晶SiC基板11の条件は実施形態1と同じでよい。ここでのSiC積層体15は、保持基板21上に中間層22、単結晶SiC層12、多結晶SiC基板11をこの順番で積層した構成となっている。
【0069】
(工程2−7)
次に、SiC積層体15における多結晶SiC基板11の単結晶SiC層12との当接面とは反対面(露出面、図中上側の面)に物理的ダメージを加える(
図2(g))。図中、15’は物理的ダメージ付与後のSiC積層体であり、11’は物理的ダメージ付与後の多結晶SiC基板である。
これにより、SiC積層体15における多結晶SiC基板11の表面に物理的ダメージを加えることにより、該多結晶SiC基板11の内部応力を低減することができる。
【0070】
(工程2−8)
次に、工程2−7で得られたSiC積層体15’における保持基板21を物理的及び/又は化学的に除去して、多結晶SiC基板11’上に単結晶SiC層を有するSiC複合基板10’を得る(
図2(h))。保持基板21の除去方法及び条件は実施形態1と同じでよい。
【0071】
これにより、反りのほとんどないSiC複合基板10’が得られる。このとき、多結晶SiC基板11’は、上層の単結晶SiC層12と同じSiCからなり、単結晶SiC層12と多結晶SiC基板11’の熱膨張係数がほぼ等しくなることからいかなる温度においてもSiC複合基板10’の反りの発生が抑制される。
【0072】
(工程2−9)
必要に応じて、SiC複合基板10’の単結晶SiC層12上にSiCエピタキシャル層12’を形成するとよい(
図2(i))。
【0073】
なお、本発明の製造方法として、実施形態1と実施形態2を組み合わせてもよい。即ち、実施形態1において単結晶SiC層担持体14における保持基板21の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、単結晶SiC層担持体14’に反りを付与し、単結晶SiC層12上に多結晶SiC基板11を形成した後、SiC積層体15における多結晶SiC基板11表面に物理的ダメージを加え、その後、保持基板11’を除去するようにしてもよい。
【実施例】
【0074】
以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。なお、基板の反りとして、垂直入射方式のフィゾー干渉計(Corning Tropel社製、FlatMaster)によりBow量を測定した。ここで、
図3に示すように、Bow量b1、b2はSiC複合基板10、10’又はSiC積層体15、15’の中央部と端部との高低差として測定し、基板の中央部が
図3(a)に示すように下方向に凸の場合をマイナスの値、
図3(b)に示すように上方向に凸の場合をプラスの値とした。なお、SiC複合基板10、10’ 又はSiC積層体15、15’の単結晶SiC層12が上側(表面側)となる向きに配置して反りを測定した。
【0075】
[実施例1]
本実施例では、本発明の実施形態1の手順に従い、以下のようにしてSiC複合基板を作製した。
まず、単結晶SiC基板12sとして直径4インチφの4H−SiC単結晶ウエハを用意し、これの片面にイオン注入深さ700nmとなるようにH
+イオンをイオン注入した後、イオン注入面(おもて面)に薄膜22aとして厚さ300nmの酸化珪素膜を熱酸化法により形成した。
また、保持基板21として、直径4インチφの単結晶Siウエハを用意し、その片面(おもて面)に厚さ300nmの酸化珪素膜を形成した(
図1(b))。
次いで、単結晶SiC基板12s、保持基板21の酸化珪素膜形成面についてそれぞれプラズマ活性化処理を施した後、両者の酸化珪素膜形成面同士(おもて面同士)を貼り合わせて貼り合わせ基板13を作製した(
図1(d))。
次に、貼り合わせ基板13における単結晶SiC基板12sのイオン注入領域12iに機械的衝撃を加えて該単結晶SiC基板12sから単結晶SiC薄膜を剥離させ、保持基板21に転写した。この単結晶SiC薄膜表面のダメージ層除去後、表面研磨し、保持基板21上に酸化珪素膜(中間層22)を介して厚さ640nmmの4H−SiCの単結晶SiC層12を担持する単結晶SiC層担持体14を得た(
図1(e))。
次いで、この単結晶SiC層担持体14における保持基板21の単結晶SiC層12担持面とは反対面(うら面)の全面に物理的ダメージ付与として、レーザー出力1.5W、繰り返し周波数90kHz、レーザー波長1064nmのシングルモードのレーザー光を焦点深度140μm、0.3mmピッチ、走査速度350mm/sで照射したところ、単結晶SiC層担持体14は割れずに基板中央部が極僅か上方向に凸となるように変形した(
図1(f))。
次に、この物理的ダメージ付与後の単結晶SiC層担持体14’の単結晶SiC層12上に四塩化珪素とプロパンを原料に温度1330℃、圧力17Paの条件で6時間の熱CVD処理を行って、3C-SiCの多結晶SiCを堆積し、厚さ610μmの多結晶SiC基板11を形成し、SiC積層体15を作製した(
図1(g))。このとき、上記のように単結晶SiC層担持体14’が僅かに反っていることにより、多結晶SiC基板11形成時に発生する熱応力が打ち消されて、反りがほとんどないSiC積層体15が得られた。
続いて、このSiC積層体15の保持基板21’について固定砥石で研削した。詳しくは、固定砥石の番手を#1000、#2500、#4000の順で順次目の細かい砥石に変えて、保持基板21がほとんどなくなる状態まで研削した。次いで、酸化珪素膜の中間層22をHF水溶液でエッチングして除去して、多結晶SiC基板11上に表面が極めて平滑かつ清浄な単結晶SiC層12を有するSiC複合基板10が無垢の単結晶SiC基板に比べ遥かに低コストで得られた(
図1(h))。このSiC複合基板10のBow量は+20μmとほとんど反りがない状態であった。
【0076】
なお、得られたSiC複合基板10をSiCテンプレートとして、更に1550℃でジクロロシランとアセチレンで単結晶SiCのホモエピタキシャル成長を2時間行い、厚さ20μmのSiCエピタキシャル層12’を積層した(
図1(i))。こうして得られたSiCエピ基板は1KV以上の高耐圧、高容量のパワーデバイス用基板として極めて有用であった。
【0077】
[比較例1]
実施例1において、単結晶SiC層担持体14へのレーザー光照射による物理的ダメージ付与を行わず、それ以外は実施例1と同条件でSiC複合基板を作成した。
得られたSiC複合基板のBow量は+3mmと極めて大きく、デバイス作成のプロセスへの適合性が悪く、その結果、デバイス製造の歩留まりが大きく低下した。
【0078】
[実施例2]
本実施例では、本発明の実施形態2の手順に従い、以下のようにしてSiC複合基板を作製した。
実施例1における単結晶SiC層担持体14の作製において、中間層22を酸化珪素膜から酸窒化珪素膜に変え、それ以外は実施例1と同様にして単結晶SiC層担持体14を作製した(
図2(e))。
次に、単結晶SiC層担持体14の単結晶SiC層12上に四塩化珪素とプロパンを原料に温度1350℃、圧力20Paの条件で5時間の熱CVD処理を行って、3C−SiCの多結晶SiCを堆積し、厚さ500μmの多結晶SiC基板11を形成し、SiC積層体15を作製した(
図2(f))。このとき、SiC積層体15のBow量が+3.5mmの大きな反りが生じていた。
次いで、このSiC積層体15における多結晶SiC基板11の単結晶SiC層12との当接面とは反対面(露出している面)の全面に物理的ダメージ付与としてサンドブラスト加工を行い、その表面にPv値(断面曲線の最大谷深さ(JIS B0601:2013)が50μmの凹凸を形成した(
図2(g))。その結果、SiC積層体15’のBow量は+50μmに大きく減少した。
続いて、このSiC積層体15’の保持基板21について研削及び研磨を行った。詳しくは、固定砥石の番手を#1000、#2500、#4000の順で順次目の細かい砥石及び細かい遊離砥粒に変えて研削し、次いでCMP処理により研磨を行った。これにより保持基板21がほとんどなくなった状態とした。次いで、酸窒化珪素膜の中間層22をHF水溶液でエッチングして除去して、多結晶SiC基板11’上に表面が極めて平滑かつ清浄な単結晶SiC層12を有するSiC複合基板10’を得た(
図2(h))。このSiC複合基板10’のBow量は+35μmと反りが極めて少ない状態であった。
【0079】
なお、得られたSiC複合基板10’を用いて高周波加熱炉にて温度1550℃、圧力1bar(1×10
5Pa)のAr雰囲気下で10分間加熱を行い、グラフェン化を行った。得られたグラフェンのラマン分析を行ったところ、Gバンド及びG’バンドにグラフェンに由来する鋭い特性ピークが観察され、良質のグラフェンの生成を示した。
【0080】
なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。