【実施例】
【0038】
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
【0039】
(実施例1)
両面研磨装置を用いてウェーハの両面研磨を行った際に、ウェーハ保持用キャリアが変位する量を、有限要素法を用いたシミュレーションを行うことにより評価し、さらに、ウェーハ保持用キャリアの設計を行った。
【0040】
なお、有限要素法を用いたシミュレーションには、ムラタソフトウェア株式会社製ソフトのFemtetを用いて算出した。
【0041】
まず、Femtetを立上げ、解析項目として応力解析を選択し、3Dキャドで作成したウェーハ保持用キャリアの図面をFemtetに入力した。
解析メッシュサイズの設定で5mmを選択し、材質の選択画面から適用材質としてTi(チタン)を選択した。すると、Femtetの既存情報からポアソン比0.32、ヤング率1.157E11等が抽出された。
【0042】
境界条件として、ウェーハ保持孔のウェーハと接する面に、
図6に示すような方向で、大きさ1000Nの力Fを掛けた際のシミュレーションを行った。
その際に、
図5に示すようなウェーハ保持用キャリア1aの研磨剤通過孔9の直径を、5mmから40mmまで変化させた。このときの研磨剤通過孔9同士の間隔、及び、研磨剤通過孔9と隣合うウェーハ保持孔5の距離は、研磨剤通過孔9の直径と同じ距離に設定した。
また、
図2に示すような、直径が50mmと135mmの研磨剤通過孔9を有するウェーハ保持用キャリア101についても上記と同様にしてシミュレーションを行い、評価を行った。
これらのシミュレーションした結果を表1及び表2さらに、
図7に示した。
【0043】
なお、表1及び表2において、モデルにはシミュレーションを行った研磨剤通過孔を配置したウェーハ保持用キャリアを示した。また、最小変位量とは、キャリアの裏面側へ飛び出した最大部分の変位量のことを示し、最大変位量とは、キャリアの表面側へ飛び出した最大部分の変位量のことを示す。そして、変位量とは、最小変位量と最大変位量の絶対値の和を示すものとする。そして、各シミュレーションした各ウェーハ保持用キャリアの変位量を示す度合を示した。
【0044】
【表1】
【0045】
【表2】
【0046】
表1、表2及び、
図7に示したように、研磨剤通過孔の直径が10mmから20mmの間の範囲の長さで、ウェーハ保持用キャリアの変位量が極小値をとることが分かる。
そして、研磨剤通過孔の直径が15mmのときに、ウェーハ保持用キャリアの変位量が最も小さく、31.4μmであった。そこで、研磨剤通過孔の直径を15mmとして設計をする。
【0047】
次に、研磨剤通過孔の直径が15mmの場合に、研磨剤通過孔同士の間隔を10mmから40mmまでの間で変化させた際の、ウェーハ保持用キャリアの変位量を、上記と同様にしてシュミレーションを行って、ウェーハ保持用キャリアの評価を行った。このときのシュミレーションの結果を表3、表4及び、
図8、
図9に示した。
また、
図8には、研磨剤通過孔の直径が30mmの際のウェーハ保持用キャリアの変位量の結果についても示した。
【0048】
また、表3、表4において、モデルにはシミュレーションを行った研磨剤通過孔を配置したウェーハ保持用キャリアを示した。また、上記と同様、最小変位量とは、キャリアの裏面側へ飛び出した最大部分の変位量のことを示し、最大変位量とは、キャリアの表面側へ飛び出した最大部分の変位量のことを示す。そして、変位量とは、最小変位量と最大変位量の絶対値の和を示すものとする。そして、各シミュレーションした各ウェーハ保持用キャリアの変位量を示す度合を示した。
【0049】
【表3】
【0050】
【表4】
【0051】
表3、表4及び、
図8に示したように、研磨剤通過孔同士の間隔が15mmから30mmの範囲の距離で、ウェーハ保持用キャリアの変位量が極小値をとることが分かった。
つまり、
図9に示したように、研磨剤通過孔同士の距離が、研磨剤通過孔の直径の1〜2倍の範囲の距離で、ウェーハ保持用キャリアの変位量が極小値をとることが分かった。
そして、研磨剤通過孔同士の間隔が22mmのときに、ウェーハ保持用キャリアの変位量が最も小さく31.1μmであった。
【0052】
また、
図8に示したように、研磨剤通過孔の直径が30mmでは、研磨剤通過孔同士の距離が30mmで最も変位量が小さくなるが、研磨剤通過孔の直径が15mmのときに比べて変位量が大きいことが分かる。
【0053】
上記の結果を踏まえて、
図5に示すような、研磨剤通過孔9の直径が15mm、研磨剤通過孔9同士、及び、研磨剤通過孔9と隣合うウェーハ保持孔5の距離が15mmであるウェーハ保持用キャリア1aと、
図10に示すような研磨剤通過孔9の直径が15mm、研磨剤通過孔9同士、及び、研磨剤通過孔9と隣合うウェーハ保持孔5の距離が22mmであるウェーハ保持用キャリア1bの設計を行った。
【0054】
このようにして、両面研磨時のウェーハ保持用キャリアの変位量を抑えつつ、研磨剤を十分に供給することができるウェーハ保持用キャリアを設計することができた。
【0055】
(実施例2、比較例1)
実施例1で設計した、研磨剤通過孔9の直径が15mm、研磨剤通過孔9同士の間隔、及び、研磨剤通過孔9と隣合うウェーハ保持孔5の距離が15mmのウェーハ保持用キャリア1aと、研磨剤通過孔9の直径が15mm、研磨剤通過孔9同士の間隔、及び、研磨剤通過孔9と隣合うウェーハ保持孔5の距離が22mmのウェーハ保持用キャリア1bを用いて直径300mmのウェーハWを各45枚ずつ両面研磨を行った(実施例2)。
また、
図2に示すようなウェーハ保持用キャリア101についても同様にウェーハWを各45枚両面研磨を行った(比較例1)。
【0056】
ウェーハWの両面研磨には、スピードファム(株)製の両面研磨装置を使用し、研磨布には厚さt=1.3mmのウレタンパッドを用い、研磨液にはコロイダルシリカを用いた。
研磨する際の両面研磨装置の条件は、上定盤の回転数を−5〜−15rpmとし、下定盤の回転数を10〜25rpmとし、サンギアの回転数を10〜20rpmとし、インターナルギアの回転数を0〜10rpmとし、研磨圧を100〜150g/cm
2として両面研磨を行った。
【0057】
上記のような条件で両面研磨されたウェーハWの表面の平坦度を平坦度測定器(WaferSight)にて、ウェーハ表面の平坦度としてSFQR
max(M49モード @26×8/0×0mm E・E
x=2mm)とESFQR
max(Length35mm Wedges72 E・E
x=1mm)を測定した。
【0058】
なお、SFQR(site front least squares range)やESFQR(edge site front least squares range)とは、ウェーハ裏面を平面に矯正した状態で、設定されたサイト内でデータを最小二乗法にて算出したサイト内平面を基準平面とし、各サイト毎のこの平面からの最大、最小の位置変位の差を示す。
また、SFQR
maxあるいはESFQR
maxとは、各サイト毎のその差のうち最大のものを示す。
【0059】
上記のようにして行った、実施例2のウェーハ保持用キャリア1aのSFQR
maxと、ESFQR
maxの測定結果をそれぞれ
図11、
図12に示し、ウェーハ保持用キャリア1bの測定結果をそれぞれ
図13、
図14に示した。
同様に、比較例1のSFQR
maxと、ESFQR
maxの測定結果をそれぞれ
図15、
図16に示した。
また、表5、表6に、実施例2、比較例1のそれぞれのSFQR
max及びESFQR
maxの平均値、最大値、最小値をそれぞれ示した。
さらに、このときのSFQR
maxとESFQR
maxの平均値とキャリア変位量との関係を
図17及び
図18に示した。
【0060】
なお、図表で示すSFQR
maxの値は、比較例1のSFQR
maxの平均値を1として規格化したものを用いた。
同様に、ESFQR
maxの値も、比較例1のESFQR
maxの平均値を1として規格化したものを用いた。
【0061】
【表5】
【0062】
【表6】
【0063】
その結果、実施例2では、比較例1と比べて、SFQR
maxとESFQR
maxの両方の値が小さく、平坦度が良く両面研磨が行われたことが分かった。
また、
図17及び
図18の結果から、ウェーハ保持用キャリアの変位量が小さい方が、SFQR
max及びESFQR
maxが小さくなることが分かった。
【0064】
(比較例2)
ウェーハ保持孔の周辺の厚さのバラツキが異なるウェーハ保持用キャリアを用意して、それぞれのウェーハ保持用キャリアを用いて、ウェーハを両面研磨した後の、ウェーハの平坦度を測定した。
【0065】
ウェーハ保持用キャリアには、
図2に示すような直径が50mm、135mmの研磨剤通過孔9を有する、チタン製のウェーハ保持用キャリア101を5枚用意した。
ウェーハ保持用キャリア101はそれぞれウェーハ保持孔5の周辺の厚さのバラツキが異なるものである。
【0066】
ウェーハ保持孔5の周辺の厚さの測定は、ウェーハ保持用キャリア101を水平な測定台の上に置き、キーエンス製レーザ変位計LK−G15を用いて行った。
測定位置は、
図19のようにウェーハ保持孔5から5〜7mmの位置である、ウェーハ保持孔5の周辺のa〜hの8ポイントとして、厚さの測定を行った。
そして、このときのウェーハ保持孔の周辺の厚さの測定結果の最大値と最小値の差分を厚さのバラツキとした。
【0067】
そして、これらのウェーハ保持用キャリア101を用いて直径300mmのウェーハをそれぞれ15枚ずつ両面研磨を行った。
【0068】
ウェーハを両面研磨する際の条件は、実施例2と同様にして行い、両面研磨されたウェーハの表面の平坦度も実施例2と同様にして測定した。
測定結果から、ウェーハ保持孔周辺部の厚さのバラツキと、SFQR
maxの平均値との関係を
図20に示した。同様に、ウェーハ保持孔周辺部の厚さのバラツキと、平坦度ESFQR
maxの平均値との関係を
図21に示した。
【0069】
図20、
図21から、ウェーハ保持孔周辺部の厚さのバラツキが大きいウェーハ保持用キャリアを用いて両面研磨を行うと、SFQR
max、ESFQR
maxはともに大きく、バラツキが小さいウェーハ保持用キャリアを用いて研磨を行うとSFQR
max、ESFQR
maxはともに小さいということが分かった。
【0070】
(実施例3、比較例3)
図5に示すような、研磨剤通過孔9の直径が15mm、研磨剤通過孔9同士の間隔、及び、研磨剤通過孔9と隣合うウェーハ保持孔5の距離が15mmのチタン製のウェーハ保持用キャリア1aを用いて、両面研磨装置でウェーハを両面研磨した。そして両面研磨終了後に、ウェーハ保持用キャリア1aのウェーハ保持孔5の周辺の厚さの測定を行った(実施例3)。
また、同様に、
図2に示すような50mmと135mmの研磨剤通過孔9を有する、チタン製のウェーハ保持用キャリア101を両面研磨加工で使用後に、ウェーハ保持孔5の周辺の厚さの測定を行った(比較例3)。
【0071】
両面研磨加工は、実施例2と同様の条件で行い、ウェーハを両面研磨した。
また、厚さの測定は、比較例2と同様に行い、
図19に示すようにウェーハ保持孔の周辺のa〜hの8ポイントについて測定を行った。
【0072】
測定は、それぞれのウェーハ保持用キャリアを70000分以上使用した後に行った。
70000分使用後の比較例3でのウェーハ保持孔周辺部の厚さは
図22に示すようになった。
また、実施例3でのウェーハ保持孔の周辺の厚さは
図23に示ようになった。
【0073】
その結果、
図22に示した比較例3では、測定位置b、fのようにウェーハ保持孔の周辺の厚さが局所的に薄くなっている部分が見られることが分かった。
一方で、
図23に示した実施例3では、ウェーハ保持孔の周辺の厚さが全体的に均一であることが分かった。
【0074】
これは、前述の表1で示したように、ウェーハ保持用キャリア101の変位量が246.6μmであるのに対して、ウェーハ保持用キャリア1aの変位量は31.4μmと、両面研磨時の変位量が小さいためである。
【0075】
このように、実施例3のウェーハ保持用キャリア1aは両面研磨時の変位量が小さいため、両面研磨加工で使用した後のウェーハ保持孔の周辺の厚さのバラツキが小さい。
そのため、比較例2での結果から分かるように、ウェーハ保持孔の周辺の厚さのバラツキが小さくなり、本発明のウェーハ保持用キャリアを用いて両面研磨を行えば、SFQR
max、ESFQR
maxがともに小さい、平坦度が高いウェーハを得られるということが分かった。
【0076】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。