(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
1.水性ポリウレタン樹脂エマルジョン組成物の原材料
アロファネート変性ジイソシアネート
本発明において使用される、アロファネート変性ジイソシアネート化合物は、本発明の水性のポリウレタン樹脂エマルジョン組成物において、合成皮革・人工皮革に用いた場合の柔軟性、低温屈曲性を高めるための主要な成分材料である。
【0010】
具体的には、有機ジイソシアネートとモノオールから得られるアロファネート変性ジイソシアネートが例示される。
有機ジイソシアネートとしては、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートを使用することができるが、耐候性を考慮した場合、脂肪族ジイソシアネート、及び/又は脂環族ジイソシアネートが好ましい。また、性能が低下しない範囲で、これらのアロファネート変性ポリイソシアネート、イソシアヌレート変性ポリイソシアネート、ウレトジオン変性ポリイソシアネート、ウレタン変性ポリイソシアネート、ビュレット変性ポリイソシアネート、ウレトイミン変性ポリイソシアネート、アシルウレア変性ポリイソシアネート等を併用することもできる。
【0011】
<芳香族ジイソシアネート>
芳香族ジイソシアネートの具体例としては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,4−トリレンジイソシアネート/2,6−トリレンジイソシアネート混合物、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、2,4′−ジフェニルメタンジイソシアネート、2,4´−ジフェニルメタンジイソシアネート/4,4´−ジフェニルメタンジイソシアネート混合物、4,4′−ジフェニルエーテルジイソシアネート、2−ニトロジフェニル−4,4′−ジイソシアネート、2,2′−ジフェニルプロパン−4,4′−ジイソシアネート、3,3′−ジメチルジフェニルメタン−4,4′−ジイソシアネート、4,4′−ジフェニルプロパンジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、ナフチレン−1,4−ジイソシアネート、ナフチレン−1,5−ジイソシアネート、3,3′−ジメトキシジフェニル−4,4′−ジイソシアネート等を挙げることができる。
【0012】
<芳香脂肪族ジイソシアネート>
芳香脂肪族ジイソシアネートの具体例としては、1,3−または1,4−キシリレンジイソシアネート若しくはその混合物、1,3−または1,4−ビス(1−イソシアナト−1−メチルエチル)ベンゼン若しくはその混合物、ω,ω′−ジイソシアナト−1,4−ジエチルベンゼン等を挙げることができる。
【0013】
<脂肪族ジイソシアネート>
脂肪族ジイソシアネートの具体例としては、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、2−メチル−ペンタン−1,5−ジイソシアネート、3−メチル−ペンタン−1,5−ジイソシアネート、リジンジイソシアネート、トリオキシエチレンジイソシアネート等を挙げることができる。
【0014】
<脂環族ジイソシアネート>
脂環族ジイソシアネートの具体例としては、イソホロンジイソシアネート、シクロヘキシルジイソシアネート、水素添加ジフェニルメタンジイソシアネート、ノルボルナンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加テトラメチルキシレンジイソシアネート等を挙げることができる。
【0015】
モノオールとしてはメタノール、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、iso−ブタノール、n−ペンタノール、n−ヘキサノール、トリデカノールなどを挙げることができる。
【0016】
ポリイソシアネート(A)においてアロファネート変性ジイソシアネートは、好ましくは10〜70mol%、より好ましくは15〜60mol%含有されている。70mol%を超えると耐磨耗性が低下し、10mol%未満では柔軟性が低下して好ましくない。
ポリイソシアネートにアロファネート基を含有することによって、柔軟でありながら強靭な塗膜が形成でき、良好な屈曲性と耐摩耗性の塗膜を得ることができる。
【0017】
2.アロファネート変性ジイソシアネート(a1)の製造方法
第1工程:モノオールと、有機ジイソシアネート(a2)とを水酸基に対して、イソシアネート基が過剰量になる量を仕込んで、有機溶剤の存在下、又は非存在下、20〜100℃でウレタン化反応させてアロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIを製造する。
第2工程:アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIにアロファネート化触媒を仕込み、赤外分光分析(IR分析)でウレタン基が実質的に存在しなくなるまで、70〜150℃にてアロファネート化させて、アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIIを製造する。
第3工程:アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIIに反応停止剤を添加することによって、反応の停止を行う。これら第1工程〜第3工程においては、窒素ガス、若しくは、乾燥空気気流下で反応を進行させる。
第4工程:アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIIを薄膜蒸留又は溶剤抽出によって、遊離の有機ジイソシアネートの含有量を1質量%未満になるまで除去し、アロファネート変性ジイソシアネート(a1)を製造する。
【0018】
ここで、「イソシアネート基が過剰量になる量」とは、原料仕込みの際、有機ジイソシアネートのイソシアネート基をモノオールの水酸基のモル比が、R=イソシアネート基/水酸基で6〜40になるように仕込むことが好ましく、更に好ましくは、R=7〜30になるように仕込むことが好ましい。下限未満の場合には、目的物中にイソシアヌレート変性ポリイソシアネートが多く含有する恐れがある。上限を超える場合には、アロファネート変性ジイソシアネートの前駆体であるウレタン基を含有したポリイソシアネートが多くなり、官能基数の低下、及び生産性や収率の低下を招く恐れがある。
【0019】
アロファネート変性ジイソシアネートの製造を有機溶剤の存在下で行う場合には、反応に影響を与えない各種有機溶剤を用いることができる。
<有機溶剤>
有機溶剤の具体例としては、オクタン等の脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素類、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸ブチル、酢酸イソブチル等のエステル類、エチレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3−メチル−3−メトキシブチルアセテート、エチル−3−エトキシプロピオネート等のグリコールエーテルエステル類、ジオキサン等のエーテル類、ヨウ化メチレン、モノクロロベンゼン等のハロゲン化炭化水素類、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミド等の極性非プロトン溶剤などが挙げられる。これらの溶剤は、単独、又は二種以上を組み合わせて用いることができる。
【0020】
<第1工程:アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIを製造する工程>
アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIを製造する際のウレタン化反応の反応温度は、20〜120℃であり、好ましくは50〜100℃である。尚、ウレタン化反応の際、公知のウレタン化触媒を用いることができる。具体的には、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート等の有機金属化合物や、トリエチレンジアミンやトリエチルアミン等の有機アミンやその塩を選択して用いる。これらの触媒は、単独、又は二種以上併用して用いることができる。ウレタン化反応の反応時間は、触媒の有無、種類、及び温度により異なるが、一般には10時間以内、好ましくは1〜5時間で十分である。
【0021】
<第2工程:アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIIを製造する工程>
ウレタン化反応が終了したら、アロファネート化反応を行い、アロファネート変性ジイソシアネート用イソシアネート基末端プレポリマーIIを製造する。この時、アロファネート化反応は、ウレタン化反応と同時に行ってもウレタン化反応後に行ってもよい。ウレタン化反応とアロファネート化反応とを同時に行う場合には、アロファネート化触媒の存在下で反応を行えばよく、ウレタン化反応後にアロファネート化反応を行う場合には、アロファネート化触媒の非存在下で、所定時間ウレタン化反応を行った後、アロファネート化触媒を添加してアロファネート化反応を行えばよい。
【0022】
<アロファネート化触媒>
アロファネート化反応で使用されるアロファネート化触媒としては、公知の触媒から適宜選択して用いることができ、例えば、カルボン酸の金属塩を用いることができる。
カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、カプロン酸、オクチル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、2−エチルヘキサン酸等の飽和脂肪族カルボン酸、シクロヘキサンカルボン酸、シクロペンタンカルボン酸等の飽和単環カルボン酸、ビシクロ(4.4.0)デカン−2−カルボン酸等の飽和複環カルボン酸、ナフテン酸等の上述したカルボン酸の混合物、オレイン酸、リノール酸、リノレン酸、大豆油脂肪酸、トール油脂肪酸等の不飽和脂肪族カルボン酸、ジフェニル酢酸等の芳香脂肪族カルボン酸、安息香酸、トルイル酸等の芳香族カルボン酸等のモノカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、クルタコン酸、アゼライン酸、セバシン酸、1,4−シクロヘキシルジカルボン酸、α−ハイドロムコン酸、β−ハイドロムコン酸、α−ブチル−α−エチルグルタル酸、α,β−ジエチルサクシン酸、マレイン酸、フマル酸、トリメリット酸、ピロメリット酸等のポリカルボン酸類が挙げられる。
【0023】
また、カルボン酸の金属塩を構成する金属としては、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム、バリウム等のアルカリ土類金属、スズ、鉛等のその他の典型金属、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム等の遷移金属などが挙げられる。
これらのカルボン酸金属塩は、単独、又は二種以上を組み合わせて用いることができる。尚、アロファネート化触媒の使用量は、ポリオールと有機ジイソシアネート(a2)との合計質量に対して、0.001〜0.1質量%が好ましく、0.005〜0.03質量%がより好ましい。下限未満の場合には、アロファネート変性ジイソシアネートがあまり生成せず、ウレタン変性ポリイソシアネートの副生成物量が多くなり、得られるイソシアネートの官能基数が低下することになる。また、上限を超える場合には、貯蔵安定性の低下を招く恐れがある。
【0024】
ここで、アロファネート化反応の反応温度は70〜150℃、好ましくは90〜130℃であることが好ましい。反応温度が低すぎる場合には、アロファネート変性ジイソシアネートがあまり生成せず、ウレタン変性ポリイソシアネートの副生成物量が多くなり、得られるイソシアネートの官能基数が低下することになる。また、反応温度が高すぎる場合には、イソシアヌレート変性ジイソシアネートの副生成物が多くなり、柔軟性の低下を招く恐れがある。
【0025】
<第3工程:反応停止工程>
アロファネート化反応後、触媒の活性を失活させる反応停止剤を添加してアロファネート化反応を停止させる。反応停止剤の添加時期は、アロファネート化反応後であれば、特に限定されないが、副反応の進行を抑制するためにも、反応終了後、速やかな添加が好ましい。
【0026】
<反応停止剤>
ここで使用される反応停止剤としては、具体的にはリン酸、塩酸等の無機酸、スルホン酸基、スルファミン酸基等を有する有機酸、及びこれらのエステル類、アシルハライド等公知の化合物が使用される。これらは、単独、又は二種以上を併用することができる。また、反応停止剤の添加量は、触媒の種類によって異なるが、触媒の0.5〜10当量となるのが好ましく、0.8〜5.0当量が特に好ましい。反応停止剤の添加量が少ない場合には、得られるアロファネート変性ジイソシアネートの貯蔵安定性が低下する場合がある。また、添加量が多すぎる場合は、着色が生じる恐れがある。
【0027】
前記の反応工程終了後、遊離の未反応の有機ジイソシアネートを除去する精製工程を経ることができる。この精製工程は、主に低粘度タイプのアロファネート変性ジイソシアネートを製造する場合に用いられる。
<第4工程:精製工程>
精製工程では、反応混合物中に存在している遊離の未反応の有機ジイソシアネートを、例えば、10〜100Paの高真空下での120〜140℃における薄膜蒸留により、1.0質量%以下の残留含有率まで除去することが好ましい。上限値を超える場合、臭気や貯蔵安定性の低下を招く恐れがある。
また、反応工程で有機溶剤を使用した場合には、この精製工程で除去される。
【0028】
このように、一連の工程を経て得られたアロファネート変性ジイソシアネート(a1)は、モル分率でイソシアヌレート変性ポリイソシアネートが5モル%を超えないように調整することが好ましい。上限値を超える場合には、柔軟性の低下を招く恐れがある。
【0029】
次に、有機ジイソシアネート(a2)について説明する。
有機ジイソシアネート(a2)としては、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートを使用することができるが、耐候性を考慮した場合、脂肪族ジイソシアネート、及び/又は脂環族ジイソシアネートが好ましい。また、性能が低下しない範囲で、これらのアロファネート変性ポリイソシアネート〔(a1)除く〕、イソシアヌレート変性ポリイソシアネート、ウレトジオン変性ポリイソシアネート、ウレタン変性ポリイソシアネート、ビュレット変性ポリイソシアネート、ウレトイミン変性ポリイソシアネート、アシルウレア変性ポリイソシアネート等を併用することもできる。
【0030】
<芳香族ジイソシアネート>
芳香族ジイソシアネートの具体例としては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,4−トリレンジイソシアネート/2,6−トリレンジイソシアネート混合物、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、2,4′−ジフェニルメタンジイソシアネート、2,4´−ジフェニルメタンジイソシアネート/4,4´−ジフェニルメタンジイソシアネート混合物、4,4′−ジフェニルエーテルジイソシアネート、2−ニトロジフェニル−4,4′−ジイソシアネート、2,2′−ジフェニルプロパン−4,4′−ジイソシアネート、3,3′−ジメチルジフェニルメタン−4,4′−ジイソシアネート、4,4′−ジフェニルプロパンジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、ナフチレン−1,4−ジイソシアネート、ナフチレン−1,5−ジイソシアネート、3,3′−ジメトキシジフェニル−4,4′−ジイソシアネート等を挙げることができる。
【0031】
<芳香脂肪族ジイソシアネート>
芳香脂肪族ジイソシアネートの具体例としては、1,3−または1,4−キシリレンジイソシアネート若しくはその混合物、1,3−または1,4−ビス(1−イソシアナト−1−メチルエチル)ベンゼン若しくはその混合物、ω,ω′−ジイソシアナト−1,4−ジエチルベンゼン等を挙げることができる。
【0032】
<脂肪族ジイソシアネート>
脂肪族ジイソシアネートの具体例としては、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、2−メチル−ペンタン−1,5−ジイソシアネート、3−メチル−ペンタン−1,5−ジイソシアネート、リジンジイソシアネート、トリオキシエチレンジイソシアネート等を挙げることができる。
【0033】
<脂環族ジイソシアネート>
脂環族ジイソシアネートの具体例としては、イソホロンジイソシアネート、シクロヘキシルジイソシアネート、水素添加ジフェニルメタンジイソシアネート、ノルボルナンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート、水素添加テトラメチルキシレンジイソシアネート等を挙げることができる。
【0034】
本発明で用いるポリオール化合物(B)は(I)ラクトン化合物などの環状エステル化合物を開環付加重合することで得られるポリエステルポリオールと(II)ポリカーボネートジオールとをエステル交換反応することによって得ることができる。
【0035】
(I)のポリエステルポリオールはラクトン類などの環状エステル化合物を開環付加重合することで得られる。好ましいラクトン類としてはβ−プロピオラクトン、β−ブチロラクトン、γ−ブチロラクトン、β−バレロラクトン、γ−バレロラクトン、δ−バレロラクトン、α−カプロラクトン、β−カプロラクトン、γ−カプロラクトン、δ−カプロラクトン、ε−カプロラクトン、α−メチル−ε−カプロラクトン、β−メチル−ε−カプロラクトン、4−メチルカプロラクトン、γ−カプリロラクトン、ε−カプリロラクトン、ε−パルミトラクトンなどが挙げられ、これらの中から選ばれる1種または2種以上を混合して使用することができる。中でもε−カプロラクトンが重合時の安定性及び経済性の点から好ましい。
【0036】
<ポリカーボネートジオール>
(II)のポリカーボネートジオールの具体例としては、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,9−ノナンジオール、3−メチル−1,5−ペンタンジオール、3,3−ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサン−1,4−ジオール、シクロヘキサン−1,4−ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β−ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオールの一種類以上と、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート類、ジフェニルカーボネート、ジナフチルカーボネート、ジアントリルカーボネート、ジフェナントリルカーボネート、ジインダニルカーボネート、テトラヒドロナフチルカーボネート等のジアリールカーボネート類との脱アルコール反応や脱フェノール反応から得られるものを挙げることができる。
【0037】
上記ポリエステルポリオール(I)とポリカーボネートジオール(II)をエステル交換反応することによって得られるポリオール化合物は、水性ポリウレタン樹脂エマルジョンに耐加水分解性、耐熱性、耐摩耗性などの耐久性を維持しつつ、柔軟性、特に低温屈曲性を付与することができる。ポリエステルポリオール(I)とポリカーボネートジオール(II)の重量比は(I):(II)=15:85〜50:50が好ましく、ポリカプロラクトンジオールが50%を超えると耐加水分解性が低下し、15%未満では柔軟性が低下して好ましくない。また,ポリカプロラクトンジオールとポリカーボネートジオールの共重合物の数平均分子量は1500〜5000が好ましく、5000を超えると製造時の水分散性の低下や耐摩耗性が低下し、1500未満では柔軟性、低温屈曲性が低下して好ましくない。
【0038】
樹脂粒子を得るために使用するジメチロール脂肪酸(C)は、末端水酸基を2個有し、イソシアネートとの反応により得られるイソシアネート基末端プレポリマーに親水性を付与し、最終的に得られる樹脂組成物を水系のものとするための親水性基含有モノマーである。
かかるジメチロール脂肪酸としては、ジメチロールプロピオン酸(DMPA)、ジメチロールブタン酸(DMBA)、ジメチロールペンタン酸、ジメチロールノナン酸などのジメチロールアルカン酸を挙げることができる。
【0039】
本発明で用いられるオキシエチレン基含有ポリイソシアネート(E)としては、アロファネート変性イソシアネートにオキシエチレン基を有する活性水素基含有化合物と反応させて得られるもの等が挙げられる。アロファネート変性イソシアネートは有機ジイソシアネートとアルコールとから得られる。有機ジイソシアネートとしてはアロファネート変性ジイソシアネート(a1)の製造に挙げたものと同じものが使用できる。
【0040】
アロファネート変性に用いるアルコールとしてはメタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、t−ブタノール等のモノオール類;エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2−メチル−1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,8−オクタンジオール、1,9−ノナンジオール、2,2−ジエチル−1,3−プロパンジオール、2−n−ブチル−2−エチル−1,3−プロパンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−n−ヘキサデカン−1,2−エチレングリコール、2−n−エイコサン−1,2−エチレングリコール、2−n−オクタコサン−1,2−エチレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4−シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイド付加物、水添化ビスフェノールA、3−ヒドロキシ−2,2−ジメチルプロピル−3−ヒドロキシ−2,2−ジメチルプロピオネート等のジオール類;トリメチロールプロパン、グリセリン等のトリオール類などが挙げられる。これらは、単独で用いても、2種以上組み合わせて用いてもよい。本発明では磨耗性や柔軟性のバランスを考慮すると3−メチル−1,5−ペンタンジオールが最適である。
【0041】
オキシエチレン基を有する活性水素基含有化合物としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、シクロヘキサノール、シクロヘキヘンメタノール等の低分子モノオール類、エチレングリコール、プロピレングリコール、グリセリン等の低分子ポリオール類、ブチルアミン、アニリン等の低分子モノアミン類、エチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン等の低分子ポリアミン類、フェノール、ハイドロキノン等のフェノール類等の低分子活性水素基含有化合物を開始剤として、エチレンオキサイドを含むアルキレンオキサイドを開環付加させることで得られる。得られるオキシエチレン基を有する活性水素基含有化合物におけるオキシエチレン基含有量は、50質量%以上が好ましく、70質量%以上が特に好ましい。また、得られるオキシエチレン基含有ポリイソシアネートの粘度、被膜の耐アルカリ性等を考慮すると、開始剤は低分子モノオール類が好ましく、メタノール、エタノールが特に好ましい。
【0042】
<中和剤>
中和剤の具体例としては、アンモニア、エチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−フェニルジエタノールアミン、モノエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン、N−メチルモルホリン、2−アミノ−2−エチル−1−プロパノール、高級アルキル変性モルホリン等の有機アミン類、リチウム、カリウム、ナトリウム等のアルカリ金属、水酸化ナトリウム、水酸化カリウムの無機アルカリ類等が挙げられる。また、塗膜の耐久性や平滑性を向上の観点から、アンモニア、トリメチルアミン、トリエチルアミン等の加熱によって容易に解離する揮発性の高い中和剤が好ましい。これらの中和剤は、単独、又は二種以上を併用することができる。
【0043】
また、エマルジョン組成物の水分散安定性を向上させるその他の手法として、アニオン性極性基、及びカチオン性極性基含有化合物の併用も可能である。
【0044】
<アニオン性極性基含有化合物>
アニオン性極性基含有化合物の具体例としては、活性水素基を1個以上有する有機酸と中和剤からなる。また、有機酸としては、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、ホスフィン酸塩、チオスルホン酸塩等が挙げられ、これらの基は、独立で導入されてもよいし、キレートのように関連付けられてもよい。
【0045】
<カチオン性極性基含有化合物>
カチオン性極性基含有化合物の具体例としては、活性水素基を1個以上有する3級アミンと、無機酸及び有機酸の中和剤、4級化剤のいずれから選択されるものからなる。活性水素基を1個以上有する3級アミンの具体例としては、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジプロピルエタノールアミン、N,N−ジフェニルエタノールアミン、N−メチル−N−エチルエタノールアミン、N−メチル−N−フェニルエタノールアミン、N,N−ジメチルプロパノールアミン、N−メチル−N−エチルプロパノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N−メチルジプロパノールアミン、N−フェニルジエタノールアミン、N−フェニルジプロパノールアミン、N−ヒドロキシエチル−N−ヒドロキシプロピル−メチルアミン、N,N′−ジヒドロキシエチルピペラジン、トリエタノールアミン、トリスイソプロパノールアミン、N−メチル−ビス−(3−アミノプロピル)−アミン、N−メチル−ビス−(2−アミノプロピル)−アミン等が挙げられる。また、アンモニア、メチルアミンのような第1アミン、ジメチルアミンのような第2アミンにアルキレンオキサイドを付加させたものも使用できる。
【0046】
また、無機、及び有機酸の具体例としては、塩酸、酢酸、乳酸、シアノ酢酸、燐酸及び硫酸等が挙げられる。4級化剤の具体例としては、硫酸ジメチル、塩化ベンジル、ブロモアセトアミド、クロロアセトアミド、または、臭化エチル、臭化プロピル、臭化ブチル等のハロゲン化アルキルが挙げられる。また、その他のカチオン性極性基含有化合物として、第1級アミン塩、第2級アミン塩、第3級アミン塩、ピリジニウム塩等のカチオン性化合物が挙げられる。
【0047】
<鎖延長剤(G)>
次に、本発明のエマルジョン組成物に使用される鎖延長剤(G)について説明する。鎖延長剤(G)は、組成物の鎖延長剤として使用され、導入することによって、摩擦に対する耐久性を向上することができる。
【0048】
鎖延長剤(G)としては、主としては水又は2個以上の一級又は二級アミノ基を有するアミン化合物が使用され、脂肪族ジアミン及び/又は脂環族ジアミンが好適に用いられる。アミン化合物の具体例としては、エチレンジアミン、ヘキサメチレンジアミン、キシリレンジアミン、イソホロンジアミン、ジエチレントリアミン、N−アミノエチル−N−エタノールアミン等が挙げられる。これらの鎖延長剤は、単独、又は二種以上を併用することができる。
【0049】
ウレタン化反応の硬化触媒(重合触媒)としての樹脂化触媒(ウレタン化触媒)は、必要に応じて使用され、ジブチルチンジラウレートやナフテン酸亜鉛やビスマス化合物のような金属系触媒或いはトリエチレンジアミンやN−メチルモルホリンのようなアミン系触媒などの通常の硬化触媒が用いられ、反応速度を速くし反応温度を低くすることができる。
【0050】
本発明の水性ポリウレタン樹脂エマルジョン組成物においては、ポリウレタン樹脂を硬化させる硬化剤は必要により適宜使用してもよい。その場合には、二液システム(二液型の組成物)の一液として使用され、ヘキサメチレンジイソシアネート(HDI)やイソホロンジイソシアネート(IPDI)から由来する、1分子中のNCO基が3個以上のトリマー体やアダクト体が使用される。具体的には、有機ジイソシアネート類のウレタン変性体、ウレア変性体、アロファネート変性体、ビュレット変性体、ウレトジオン変性体、イソシアヌレート変性体などが挙げられる。
【0051】
より物性を高め、また、各種物性を付加するために、各種の添加剤として汎用されている、成膜剤、粘度調節剤、ゲル化防止剤、難燃剤、可塑剤、酸化防止剤、紫外線吸収剤、抗菌剤、充填剤、内部離型剤、補強材、艶消し剤、導電性付与剤、帯電制御剤、帯電防止剤、滑剤、染料、顔料その他の加工助剤を用いることができる。
【0052】
本発明における水性ポリウレタン樹脂エマルジョン組成物の製造は、少なくともアロファネート変性ジイソシアネート(a1)及び有機ジイソシアネート(a2)を含有するポリイソシアネート(A)とポリオール化合物(B)及び水分散性を高めるためのジメチロール脂肪酸(C)によりウレタン化反応を行いウレタンプレポリマー(D)を形成し、次いで架橋のためのオキシエチレン基含有ポリイソシアネート(E)を混合し、中和剤にてカルボキシル基を中和してカルボン酸塩とした後に、水を混合して乳化分散させ、更に鎖延長剤(F)と反応させ鎖延長することにより行われる。尚、オキシエチレン基含有ポリイソシアネートは予めイソシアネートとオキシエチレン基含有活性水素化合物を反応させ、別途合成して混合しても良いし、ウレタンプレポリマー(D)系内に有機ジイソシアネートとオキシエチレン基含有活性水素化合物を混合し系内で反応させる方法でも良い。
【0053】
ウレタンプレポリマー(D)合成時において、イソシアネート基に対して不活性な、有機溶剤にて任意の固形分に希釈されていてもよい。この有機溶剤としては例えば、トルエン、キシレン、スワゾ−ル(コスモ石油株式会社製の芳香族系炭化水素溶剤)、ソルベッソ(エクソン化学株式会社製の芳香族系炭化水素溶剤)等の芳香族系溶剤、ヘキサン等の脂肪族炭化水素形容剤、シクロヘキサン、イソホロン等の脂環族炭化水素系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル系溶剤、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコール3−メチル−3−メトキシブチルアセテート、エチレングリコールエチル−3−エトキシプロピオネート等のグリコールエーテルエステル系溶剤、エチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル系溶剤、テトラヒドロフラン、ジオキサン等のエーテル系溶剤が挙げられる。前記溶剤は1種又は2種以上含有していてもよい。
【0054】
本発明においては、蒸気圧が高く、エマルジョン中に存在していても引火点を示すことのないグリコールエーテルエステル系溶剤やグリコールエーテル系溶剤が好ましく、特に耐加水分解性の良好なグリコールエーテル系溶剤が好ましい。
【0055】
(A)成分と(B)成分の配合比は、乳化や被膜強度の観点から、100/10〜100/95mol%が好ましく、成分(A)における(a1)の使用割合は、段落0015に記載のとおりに、10〜70mol%が好ましい。(C)成分の使用量は、得られるエマルジョンの粒子径又は被膜の耐水性の観点から、樹脂中の0.1〜0.6mmol/gの割合である。
ウレタン化反応においては、触媒として段落0019に前記した通常のウレタン化触媒を使用してもよく、反応温度も通常の50〜100℃程度でよい。
【実施例】
【0056】
以下においては、本発明における成分材料及びエマルジョンの製法を提示し、各実施例によって、各比較例を対照しながら、本発明をより詳細に具体的に示して、本発明の構成と効果をより明確にし、本発明の構成の各要件の合理性と有意性及び従来技術に対する卓越性を実証する。
【0057】
〔アロファネート変性ジイソシアネートの合成〕
撹拌機、温度計、冷却器及び窒素ガス導入管を備えた容量が1Lの反応器に、ヘキサメチレンジアミン(HDI)を950g、イソプロピルアルコールを50g、オクチル酸ジルコニウムを0.1g仕込み、110℃で4時間反応を行った。次いで、リン酸エステルを0.11g仕込み50℃で1時間停止反応を行った。停止反応後の反応生成物のイソシアネート含量は40.5%であった。この反応生成物を130℃・0.04kPaにて薄膜蒸留を行い、アロファネート変性ジイソシアネート(ALP−1)を得た。
イソシアネート含量は19.3%、25℃の粘度は100mPa・s、遊離ジイソシアネート含有量は0.1%であった。また、ALP−1をFT−IR及び13C−NMRにて分析したところ、ウレタン基とイソシアヌレート基は殆ど確認されず、アロファネート基の存在が確認された。
【0058】
撹拌機、温度計、冷却器及び窒素ガス導入管を備えた容量が1Lの反応器に、ヘキサメチレンジアミン(HDI)を925g、ヘキサノールを75g、オクチル酸ジルコニウムを0.1g仕込み、110℃で4時間反応を行った。次いで、リン酸エステルを0.11g仕込み50℃で1時間停止反応を行った。停止反応後の反応生成物のイソシアネート含量は40.0%であった。この反応生成物を130℃・0.04kPaにて薄膜蒸留を行い、アロファネート変性ジイソシアネート(ALP−2)を得た。
イソシアネート含量は17.5%、25℃の粘度は120mPa・s、遊離ジイソシアネート含有量は0.1%であった。また、ALP−2をFT−IR及び13C−NMRにて分析したところ、ウレタン基とイソシアヌレート基は殆ど確認されず、アロファネート基の存在が確認された。
【0059】
撹拌機、温度計、冷却器及び窒素ガス導入管を備えた容量が1Lの反応器に、ヘキサメチレンジアミン(HDI)を900g、トリデカノールを100g、オクチル酸ジルコニウムを0.1g仕込み、110℃で4時間反応を行った。次いで、リン酸エステルを0.11g仕込み50℃で1時間停止反応を行った。停止反応後の反応生成物のイソシアネート含量は40.8%であった。この反応生成物を130℃・0.04kPaにて薄膜蒸留を行い、アロファネート変性ジイソシアネート(ALP−3)を得た。
イソシアネート含量は14.6%、25℃の粘度は180mPa・s、遊離ジイソシアネート含有量は0.1%であった。また、ALP−3をFT−IR及び13C−NMRにて分析したところ、ウレタン基とイソシアヌレート基は殆ど確認されず、アロファネート基の存在が確認された。
【0060】
〔アロファネート変性イソシアネートの製造〕
撹拌機、温度計、冷却器及び窒素ガス導入管を備えた容量が1Lの反応器に、ヘキサメチレンジアミン(HDI)を950g、3−メチル1,5−ペンタンジオールを50g、オクチル酸ジルコニウムを0.1g仕込み、110℃で4時間反応を行った。次いで、リン酸を0.04g仕込み80℃で1時間停止反応を行った。停止反応後の反応生成物のイソシアネート含量は40.3%であった。この反応生成物を130℃・0.04kPaにて薄膜蒸留を行い、アロファネート変性多官能イソシアネート(ALP−4)を得た。
イソシアネート含量は19.3%、25℃の粘度は1800mPa・s、遊離ジイソシアネート含有量は0.1%であった。また、ALP−4をFT−IR及び13C−NMRにて分析したところ、ウレタン基とイソシアヌレート基は殆ど確認されず、アロファネート基の存在が確認された。
【0061】
〔イソシアヌレート変性ポリイソシアネートの製造〕
撹拌機、温度計、窒素シール管、及び冷却器を装着した容量500mlの反応器にヘキサメチレンジイソシアネート(HDI)300gと、1,3−ブタンジオール(1,3−BD)2.8gとを仕込んだ後、該反応容器内を窒素置換して、撹拌しながら反応温度80℃に加温し、同温度で2時間反応させた。この反応液のイソシアネート含量を測定したところ、48.6%であった。次に触媒としてカプリン酸カリウム0.06g、助触媒としてフェノール0.3gを加え、60℃で6時間イソシアネート化反応を行った。この反応液に停止剤としてリン酸を0.042g加え、反応温度で1時間撹拌後、遊離HDIを120℃・1.3kPaの条件下で薄膜蒸留により除去して、イソシヌレート変性ポリイソシアネート(PolyNCO−1)を得た。
淡黄色透明液体、イソシアネート含量21.3%、25℃の粘度2,200mPa・s、遊離HDI含有量0.3%であった。
【0062】
〔ポリオール化合物の製造1〕
攪拌機、温度計、加熱装置、蒸留塔を組んだ反応装置に、1,6−ヘキサンジオール(以下、1,6−HGと略す。)のジエチルカーボネート(以下、DECと略す。)に対する配合割合がモル比で1.08になるように、1,6−HGを830g、DECを771g仕込むとともに、さらに反応触媒としてテトラブチルチタネート(以下、TBTと略す。)を0.05g仕込み窒素気流下にて徐々に190℃まで温度を上昇させた。エタノールの留出が緩慢となり蒸留塔の塔頂温度が50℃以下となった時点で、反応温度は190℃のまま、1.3kPaまで徐々に減圧を行ない、1.3kPaの圧力でさらに7時間反応させた。さらに190℃の反応温度で1.3kPa以下の減圧下、反応物の水酸基価が54〜58(mg−KOH/g)になるまで反応を続行した。得られたポリカーボネートジオールは、水酸基価が55.6(mg−KOH/g)であった。
攪拌機、温度計、加熱装置を組んだ反応装置に、得られたポリカーボネートジオール(1,6HG−PCD−1)を574g、ポリカプロラクトンジオール(PCL−2000)を143g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−1)。得られたポリオール化合物は水酸基価が56.1(mg−KOH/g)であった。
【0063】
〔ポリオール化合物の製造2〕
攪拌機、温度計、加熱装置を組んだ反応装置に、ポリオール化合物の製造1と同様の製造方法において得られたポリカーボネートジオール(1,6HG−PCD−1)を359g、ポリカプロラクトンジオール(PCL−2000)を359g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−2)。得られたポリオール化合物は水酸基価が56.1(mg−KOH/g)であった。
【0064】
〔ポリオール化合物の製造3〕
ポリオール化合物の製造1と同様の製造方法において、配合割合がモル比で1.05になるように、1,6−HGを830g、DECを771g仕込む以外は同様の方法で合成し水酸基価が37.2(mg−KOH/g)のポリカーボネートジオール(1,6HG−PCD−2)を得た。
攪拌機、温度計、加熱装置を組んだ反応装置に、得られたポリカーボネートジオール(1,6HG−PCD−2)を574g、ポリカプロラクトンジオール(PCL−3000)を143g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−3)。得られたポリオール化合物は水酸基価が37.4(mg−KOH/g)であった。
【0065】
〔ポリオール化合物の製造4〕
攪拌機、温度計、加熱装置を組んだ反応装置に、ポリオール化合物の製造3と同様の製造方法において得られたポリカーボネートジオール(1,6HG−PCD−2)を359g、ポリカプロラクトンジオール(PCL−3000)を359g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−4)。得られたポリオール化合物は水酸基価が37.4(mg−KOH/g)であった。
【0066】
〔ポリオール化合物の製造5〕
ポリオール化合物の製造1と同様の製造方法において、配合割合がモル比で1.16になるように、1,6−HGを841g、DECを723g仕込む以外は同様の方法で合成し水酸基価が112.2(mg−KOH/g)のポリカーボネートジオール(1,6HG−PCD−3)を得た。
攪拌機、温度計、加熱装置を組んだ反応装置に、得られたポリカーボネートジオール(1,6HG−PCD−3)を359g、ポリカプロラクトンジオール(PCL−1000)を359g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−5)。得られたポリオール化合物は水酸基価が112.2(mg−KOH/g)であった。
【0067】
〔ポリオール化合物の製造6〕
攪拌機、温度計、加熱装置、蒸留塔を組んだ反応装置に、1,6−HGのDECに対する配合割合がモル比で1.08になるように、1,6−HGを830g、DECを771g仕込むとともに、さらに反応触媒としてテトラブチルチタネート(以下、TBTと略す。)を0.05g仕込み窒素気流下にて徐々に190℃まで温度を上昇させた。エタノールの留出が緩慢となり蒸留塔の塔頂温度が50℃以下となった時点で、反応温度は190℃のまま、1.3kPaまで徐々に減圧を行ない、1.3kPaの圧力でさらに7時間反応させた。さらに190℃の反応温度で1.3kPa以下の減圧下、反応物の水酸基価が54〜58(mg−KOH/g)になるまで反応を続行し、ポリオール化合物を得た(Polyol−6)。得られたポリカーボネートジオールは、水酸基価は55.6(mg−KOH/g)であった。
【0068】
〔ポリオール化合物の製造7〕
攪拌機、温度計、加熱装置を組んだ反応装置に、ポリオール化合物の製造1と同様の製造方法において得られたポリカーボネートジオール(1,6HG−PCD−1)を215g、ポリカプロラクトンジオール(PCL−2000)を503g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−7)。得られたポリオール化合物は水酸基価が56.1(mg−KOH/g)であった。
【0069】
〔ポリオール化合物の製造8〕
攪拌機、温度計、加熱装置、蒸留塔を組んだ反応装置に、1,6−HGのDECに対する配合割合がモル比で1.05になるように、1,6−HGを826g、DECを787g仕込むとともに、さらに反応触媒としてテトラブチルチタネート(以下、TBTと略す。)を0.05g仕込み窒素気流下にて徐々に190℃まで温度を上昇させた。エタノールの留出が緩慢となり蒸留塔の塔頂温度が50℃以下となった時点で、反応温度は190℃のまま、1.3kPaまで徐々に減圧を行ない、1.3kPaの圧力でさらに7時間反応させた。さらに190℃の反応温度で1.3kPa以下の減圧下、反応物の水酸基価が35〜39(mg−KOH/g)になるまで反応を続行し、ポリオール化合物を得た(Polyol−8)。得られたポリカーボネートジオールは、水酸基価は37.3(mg−KOH/g)であった。
【0070】
〔ポリオール化合物の製造9〕
攪拌機、温度計、加熱装置を組んだ反応装置に、ポリオール化合物の製造3と同様の製造方法において得られたポリカーボネートジオール(1,6HG−PCD−2)を215g、ポリカプロラクトンジオール(PCL−3000)を503g仕込、190℃でエステル交換反応を5時間行い、ポリオール化合物を得た(Polyol−4)。得られたポリオール化合物は水酸基価が37.4(mg−KOH/g)であった。
【0071】
〔ポリウレタン樹脂エマルジョンの製造〕
撹拌機、温度計、窒素シール管、及び冷却器を装着した容量1Lの反応器に、Polyol−1(1,6HG−PCD/PCL−2000=2/8、Mn=2000)を178g、ジメチロールプロピオン酸(DMPA)を8.3g、ジプロピレングリコールジメチルエーテル(DMDPG)を100g、イソホロンジイソシアネート(IPDI)を24g、ALP−1を57.9g仕込み、85℃に加温し、同温度で3時間反応させた。このプレポリマー溶液のイソシアネート含量は2.1%であった。次いで、ALP−4を13.4g、数平均分子量400のメトキシポリエチレングリコールを13.4g仕込み70℃で45分反応させた。次いで、トリエチルアミン(TEA)を6.3g仕込んでカルボキシル基を中和した後、撹拌しながら水を565g仕込み、乳化させた。乳化後、30分以内にアミン水(水28.4g、エチレンジアミン(EDA)5gを配合)を仕込み、アミン鎖延長反応を30℃にて12時間行った。FT−IRによりイソシアネート基の存在が確認されなくなったところで反応終了とし、水性ポリウレタンエマルジョン(サンプル名;PUD−1)を得た。
【0072】
〔その他のポリウレタン樹脂エマルジョンの製造〕
各原材料の仕込み組成(配合量;質量)を表1、表2に記載のとおりにして、段落0071のポリウレタン樹脂エマルジョンの製造と同様にして、表1、表2に掲載された各サンプルのポリウレタン樹脂エマルジョンPUD2〜PUD20を製造した。
【0073】
得られた上記水性ポリウレタンエマルジョンの性状については以下の項目について確認し、表1、表2に結果を記載した。
1.分散性
ポリウレタン樹脂エマルジョンの製造における水による乳化分散工程において均一な分散液が得られるものを「○」、凝集物の発生が多いものや分離などが起きるものを「×」とした。
2.固形分
得られた水性ポリウレタン樹脂組成物及びそれに含有されるポリウレタン樹脂、各々の質量を測定し、水性ポリウレタン樹脂組成物の質量に対するポリウレタン樹脂質量の比率を算出し、得られた水性ポリウレタン樹脂組成物の不揮発分(質量%)を求めた。
3.粘度
得られた水性ポリウレタン樹脂組成物を、その液温が25℃になるように調整した後、B型粘度計(東機産業株式会社製、製品名:TVB−22L、使用したローター番号:No.2)を用いて、回転速度60rpmにおいて測定し、得られた水性ポリウレタン樹脂組成物の粘度(mPa・s at 25℃)を求めた。
4.平均粒径
得られた水性ポリウレタン樹脂組成物を光散乱光度計(大塚電子株式会社製、製品名:ELS−800)にかけ、キュムラント法にて解析し、得られた水性ポリウレタン樹脂組成物中のポリウレタン樹脂の平均粒径を求めた。
【0074】
【表1】
【0075】
【表2】
【0076】
<フィルム作製方法>
実施例1〜11および比較例1〜3、5〜7、9で得られた水性ポリウレタン樹脂組成物100部に対してレベリング剤TEGOWetKL−245(EVONIK社製)10%水溶液を1.5部添加し、さらに固形分=20%となるように水で希釈し混合して主剤を得た。その主剤を乾燥膜圧が20μmとなるように塗布し、25℃で1週間乾燥させることにより硬化物を作製した。この硬化物を用いて、物性の評価を行った。
【0077】
得られたフィルムについては以下の項目について評価し、表3、表4に結果を記載した。
1.引張物性(各モジュラス、破断時強度、破断時伸び)
得られたフィルムを4号ダンベルカッターにてサンプルを打ち抜き、これをJIS K7311に準じて測定した。引張速度は200mm/分、測定温度は25℃とした。
2.耐水性
得られたフィルムを4号ダンベルカッターにてサンプルを打ち抜き、これをJIS K7311に準じて引張強度を測定した。引張速度は200mm/分、測定温度は25℃とした。同様にフィルムを85℃/95%RH下で4週間放置し、引張強度の保持率(%)を測定した。保持率が90%以上のものを「◎」、保持率が70%以上のものを「○」、それより下のものを「×」とした。
【0078】
<合成皮革表面処理層としての評価>
まず、実施例1〜11および比較例1〜3、5〜7、9で得られた水性ポリウレタン樹脂組成物を用いて以下の表面処理処方配合の通り(1)〜(6)を各々混合後濾過し主剤を配合し、硬化剤AQ−130(EEPソルベント50%溶液)と主剤/硬化剤=80/20の配合比で混合することで表面処理層処方液を作製した。
次いで、表面処理は市販のポリウレタン系合成皮革(100×100mm)の表面に、スプレー機を用いて、表面処理層処方液を、乾燥塗布量が0.05g/100cm
2となるよう塗布し、80℃に調整した乾燥機内に3分間静置して熱処理する工程を2コートした。その後、25℃で1週間養生後この合成皮革を用いて、表面層の評価を行った。
主剤:固形分=25%
(1)PUD樹脂:60部
(2)ACEMATT OK412(艶消剤 EVONIK社製):4.5部
(3)BYK−SILCLEAN3720(スリップ剤 ビックケミー・ジャパン社製):4.0部
(4)アクアレンSB−630(消泡剤 共栄社化学社製):0.5部
(5)TEGOWet280(レベリング剤 EVONIK社製):1.0部
(6)水:30部
【0079】
得られた上記表面処理を施した合成皮革については以下の項目について評価し、表3、表4に結果を記載した。
1.低温屈曲性
得られた合成皮革をフレキシオメーター(株式会社大栄科学精器製作所製、製品名:FOM−100C)にかけ、−10℃での屈曲試験を行い、屈曲回数10000回でも表皮層に割れが見られないものを「◎」、同様に5000回でも割れが見られないものを「○」、それ以下の屈曲回数で表皮層に割れがみられたものを「×」とした。
2.耐磨耗性
得られた合成皮革を学振型摩擦堅牢度試験機(テスター産業株式会社製、製品名:AB−301)にかけ、1kgf荷重での磨耗回数が10000回以上のものを「○」それ以下のものを「×」とした。
3.耐オレイン酸性
得られた合成皮革にオレイン酸スポット試験(1滴)を行い、常温24時間後に拭き取り、外観を観測した。表皮層に変化無く良好なものを「○」、表皮層が荒れたり、破れたりしているものを「×」とした。
【0080】
【表3】
【0081】
【表4】