(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0020】
以下、本発明の実施形態について詳細に説明する。なお、比重は、温度によって変化するため、本明細書においては20℃で換算した比重と定義する。
【0021】
<鉛蓄電池>
本実施形態に係る鉛蓄電池は、例えば、電極(電極板等)、電解液(硫酸等)及びセパレータを備えている。電極は、正極(正極板等)及び負極(負極板等)を有している。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池、密閉式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。正極は、集電体(正極集電体)と、当該集電体に保持された正極材と、を有している。負極は、集電体(負極集電体)と、当該集電体に保持された負極材と、を有している。本実施形態において正極材及び負極材は、例えば、化成後(例えば満充電状態)の電極材である。電極材が未化成である場合、電極材(未化成の正極材及び未化成の負極材)は、電極活物質(正極活物質及び負極活物質)の原料等を含有している。集電体は、電極材からの電流の導電路を構成する。鉛蓄電池の基本構成としては、従来の鉛蓄電池と同様の構成を用いることができる。
【0022】
本実施形態において、負極材は、(A)負極活物質(以下、場合により「(A)成分」ともいう。)と、(B)比表面積が1000m
2/g以上であるオイルファーネスブラック(以下、場合により「(B)成分」ともいう。)と、を含有する。
【0023】
(正極材)
[正極活物質]
正極材は、正極活物質を含有している。正極活物質は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に化成することで得ることができる。化成後の正極活物質は、β−二酸化鉛(β−PbO
2)を含むことが好ましく、α−二酸化鉛(α−PbO
2)を更に含んでいてもよい。正極活物質の原料としては、特に制限はなく、例えば鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb
3O
4)を用いてもよい。未化成の正極材は、主成分として、三塩基性硫酸鉛を含む未化成正極活物質を含有することが好ましい。
【0024】
正極活物質の平均粒径は、充電受け入れ性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。正極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。正極活物質の前記平均粒径は、化成後の正極材における正極活物質の平均粒径である。正極活物質の平均粒径は、例えば、化成後の正極中央部の正極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての正極活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。
【0025】
正極活物質の含有量は、電池特性(容量、放電特性(低温高率放電特性等)、充電受け入れ性、サイクル特性等)に更に優れる観点から、正極材の全質量を基準として、95質量%以上が好ましく、97質量%以上がより好ましく、99質量%以上が更に好ましい。
【0026】
[正極添加剤]
正極材は、添加剤を更に含有していてもよい。添加剤としては、炭素材料(炭素質導電材)、補強用短繊維等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(例えば、ケッチェンブラック(登録商標)等のオイルファーネスブラック)、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
【0027】
[正極材の物性]
正極材の比表面積は、充電受け入れ性及びサイクル特性に更に優れる観点から、4m
2/g以上が好ましく、5m
2/g以上がより好ましい。正極材の比表面積は、充電受け入れ性及びサイクル特性に更に優れる観点から、11m
2/g以下が好ましく、10m
2/g以下がより好ましく、8m
2/g以下が更に好ましい。正極材の前記比表面積は、化成後(満充電状態)の正極材の比表面積である。正極材の比表面積は、例えば、正極材ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の段階で正極活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。
【0028】
正極材の比表面積は、例えば、BET法で測定することができる。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。
【0029】
(負極材)
[(A)成分:負極活物質]
負極材は、(A)成分として、負極活物質を含有する。負極活物質は、化成後の負極活物質であってよく、未化成の負極活物質であってもよい。化成後の負極活物質は、負極活物質の原料を含む負極材ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に化成することで得ることができる。化成後の負極活物質としては、海綿状鉛(Spongylead)等が挙げられる。前記海綿状鉛は、電解液中の硫酸と反応して、次第に硫酸鉛(PbSO
4)に変わる傾向がある。負極活物質の原料としては、鉛粉等が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。未化成の負極材は、例えば、塩基性硫酸鉛及び金属鉛、並びに、低級酸化物から構成される。
【0030】
負極活物質の平均粒径は、充電受け入れ性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.6μm以上が更に好ましい。負極活物質の平均粒径は、サイクル特性が更に向上する観点から、2μm以下が好ましく、1.8μm以下がより好ましく、1.5μm以下が更に好ましい。負極活物質の前記平均粒径は、化成後の負極材における負極活物質の平均粒径である。負極活物質の平均粒径は、例えば、化成後の負極中央部の負極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての負極活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。
【0031】
負極活物質の含有量は、電池特性(容量、放電特性(低温高率放電特性等)、充電受け入れ性、サイクル特性等)に更に優れる観点から、負極材の全質量を基準として、93質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。
【0032】
[(B)成分:比表面積が1000m
2/g以上のオイルファーネスブラック]
負極材は、(B)成分として、比表面積が1000m
2/g以上のオイルファーネスブラックを含有する。オイルファーネスブラックとしては、ケッチェンブラックEC600JD(商品名、ライオン株式会社製)、カーボンECP600JD(商品名、ライオン株式会社製)、PBX51(商品名、キャボット社製)、Blackpeals2000(商品名、キャボット社製、「Blackpeals」は登録商標)等が挙げられる。このオイルファーネスブラックは、疑似グラファイト構造と呼ばれる結晶子から構成されており、単位質量あたりの一次粒子数が20×10
15個/gよりも多く、比表面積が大きい特徴を有する。
【0033】
(B)成分の比表面積は1000m
2/g以上である。(B)成分の比表面積が1000m
2/g未満である場合、充分な充電受け入れ性が得られにくい。(B)成分の比表面積は、充電受け入れ性が更に向上する観点から、1200m
2/g以上が好ましく、1300m
2/g以上がより好ましい。(B)成分の比表面積の上限は、特に制限はないが、実用的な観点から、3000m
2/g以下が好ましく、2000m
2/g以下がより好ましく、1600m
2/g以下が更に好ましい。これらの観点から、(B)成分の比表面積は、1000〜3000m
2/gが好ましく、1200〜2000m
2/gがより好ましく、1300〜1600m
2/gが更に好ましい。(B)成分の前記比表面積は、化成後(満充電状態)の負極材における(B)成分の比表面積である。なお、(B)成分の比表面積は、化成の前後においてほとんど変化しない。したがって、未化成の負極材を作製する際に配合する(B)成分の比表面積が上記範囲であれば、化成後の負極材に含有される(B)成分は上記範囲の比表面積を有する。(B)成分の比表面積は、例えば、BET法で測定することが可能なBET比表面積である。
【0034】
(B)成分のDBP吸油量は、300mL/100g以上が好ましく、400mL/100g以上がより好ましく、450mL/100g以上が更に好ましい。(B)成分のDBP吸油量は、600mL/100g以下が好ましく、550mL/100g以下がより好ましく、500mL/100g以下が更に好ましい。(B)成分のDBP吸油量は、300〜600mL/100gが好ましく、400〜600mL/100gがより好ましく、450〜550mL/100gが更に好ましく、450〜500mL/100gが特に好ましい。DBP吸油量がこれらの範囲である場合、導電性に優れる。また、負極材ペーストの作製時に極性媒体を用いたとしても、(B)成分の凝集を抑制しやすく、負極材ペーストの粘度が高くなりにくいため、負極材ペーストの作製が容易となり、且つ、負極材を集電体に均一に形成することができる。DBP吸油量はASTM D2414に従って測定することができる。なお、DBP吸油量は、パラフィンオイル等のオイルを吸収する能力としてオイル吸収量(OAN)で示されることもある。
【0035】
(B)成分の平均粒径(平均一次粒径)の上限は、2μm以下が好ましく、1μm以下がより好ましく、0.5μm以下が更に好ましく、0.1μm以下が特に好ましい。(B)成分の平均粒径(平均一次粒径)の下限は、特に制限はないが、実用的な観点から、10nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましい。
【0036】
(B)成分の平均粒径(平均一次粒径)は、例えば、オイルファーネスブラックの粒子を基板に蒸着させた後、前記基板の中央部の縦100μm×横100μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。なお、平均粒径(平均一次粒径)が小さい場合(平均一次粒径が0.1μm以下と予想できる場合等)は、縦1μm×横1μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さの値を算術平均化した数値として得ることができる。また、平均粒径(平均一次粒径)を自動的に求める方法として、二次元画像の画像解析ソフト(住友金属テクノロジー製、粒子解析Ver3.5)を用いることもできる。
【0037】
(B)成分の含有量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極材の全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.04質量%以上が更に好ましく、0.05質量%以上が特に好ましい。(B)成分の含有量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極材の全質量を基準として、2.0質量%以下が好ましく、1.5質量%以下がより好ましく、1.0質量%以下が更に好ましく、0.5質量%以下が特に好ましい。(B)成分の含有量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極材の全質量を基準として、0.01〜2質量%が好ましく、0.03〜1.5質量%がより好ましく、0.04〜1.0質量%がより好ましく、0.05〜0.5質量%が更に好ましい。(B)成分の含有量は、0.03〜0.5質量%であってもよい。
【0038】
[(C)成分:スルホン基及び/又はスルホン酸塩基を有する樹脂]
負極材は、充電受け入れ性、放電特性及びサイクル特性を更にバランス良く向上させることができる観点から、(C)スルホン基(スルホン酸基、スルホ基)及びスルホン酸塩基からなる群より選ばれる少なくとも一種の官能基を有する樹脂(以下、場合により「(C)成分」ともいう)を更に含有することが好ましい。
【0039】
負極材が(C)成分を含有することにより充電受け入れ性、放電特性及びサイクル特性を更にバランス良く向上させることができる理由は、明らかではないが、負極活物質を形成する金属鉛に(C)成分が強く吸着することで、金属鉛の凝集が抑制され、負極材が高比表面積な状態で維持されるためと本発明者らは推測している。
【0040】
(C)成分としては、ビスフェノール系樹脂、リグニンスルホン酸、リグニンスルホン酸塩等が挙げられる。リグニンスルホン酸塩としては、リグニンスルホン酸のアルカリ金属塩等が挙げられる。アルカリ金属塩としては、ナトリウム塩、カリウム塩等が挙げられる。
【0041】
(C)成分の中でも、充電受け入れ性が更に向上する観点から、ビスフェノール系樹脂が好ましく、(c1)ビスフェノール系化合物と、(c2)アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種の化合物と、(c3)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種の化合物との縮合物であるビスフェノール系樹脂がより好ましい。以下、(c1)成分と、(c2)成分と、(c3)成分との縮合物であるビスフェノール系樹脂について詳細に説明する。
【0042】
((c1)成分:ビスフェノール系化合物)
ビスフェノール系化合物は、2個のヒドロキシフェニル基を有する化合物である。(c1)成分としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)等が挙げられる。(c1)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c1)成分としては、充電受け入れ性に更に優れる観点からはビスフェノールAが好ましく、放電特性に更に優れる観点からはビスフェノールSが好ましい。
【0043】
(c1)成分としては、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、ビスフェノールAとビスフェノールSとを併用することが好ましい。この場合、ビスフェノール系樹脂を得るためのビスフェノールAの配合量は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、70mol%以上が好ましく、75mol%以上がより好ましく、80mol%以上が更に好ましい。ビスフェノールAの配合量は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、99mol%以下が好ましく、98mol%以下がより好ましく、97mol%以下が更に好ましい。
【0044】
((c2)成分:アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体)
アミノアルキルスルホン酸としては、アミノメタンスルホン酸、2−アミノエタンスルホン酸、3−アミノプロパンスルホン酸、2−メチルアミノエタンスルホン酸等が挙げられる。
【0045】
アミノアルキルスルホン酸誘導体としては、アミノアルキルスルホン酸の水素原子がアルキル基(例えば炭素数1〜5のアルキル基)等で置換された化合物、アミノアルキルスルホン酸のスルホン基(−SO
3H)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換されたアルカリ金属塩(ナトリウム塩、カリウム塩等)などが挙げられる。
【0046】
アミノアリールスルホン酸としては、アミノベンゼンスルホン酸、アミノナフタレンスルホン酸等が挙げられる。
【0047】
アミノベンゼンスルホン酸としては、2−アミノベンゼンスルホン酸(別名「オルタニル酸」)、3−アミノベンゼンスルホン酸(別名「メタニル酸」)、4−アミノベンゼンスルホン酸(別名「スルファニル酸」)等が挙げられる。
【0048】
アミノナフタレンスルホン酸としては、4−アミノ−1−ナフタレンスルホン酸(p−体)、5−アミノ−1−ナフタレンスルホン酸(ana−体)、1−アミノ−6−ナフタレンスルホン酸(ε−体、5−アミノ−2−ナフタレンスルホン酸)、6−アミノ−1−ナフタレンスルホン酸(ε−体)、6−アミノ−2−ナフタレンスルホン酸(amphi−体)、7−アミノ−2−ナフタレンスルホン酸、8−アミノ−1−ナフタレンスルホン酸(peri−体)、1−アミノ−7−ナフタレンスルホン酸(kata−体、8−アミノ−2−ナフタレンスルホン酸)等のアミノナフタレンモノスルホン酸;1−アミノ−3,8−ナフタレンジスルホン酸、3−アミノ−2,7−ナフタレンジスルホン酸、7−アミノ−1,5−ナフタレンジスルホン酸、6−アミノ−1,3−ナフタレンジスルホン酸、7−アミノ−1,3−ナフタレンジスルホン酸等のアミノナフタレンジスルホン酸;7−アミノ−1,3,6−ナフタレントリスルホン酸、8−アミノ−1,3,6−ナフタレントリスルホン酸等のアミノナフタレントリスルホン酸などが挙げられる。
【0049】
アミノアリールスルホン酸誘導体としては、アミノベンゼンスルホン酸誘導体、アミノナフタレンスルホン酸誘導体等が挙げられる。
【0050】
アミノベンゼンスルホン酸誘導体としては、アミノベンゼンスルホン酸の一部の水素原子がアルキル基(例えば炭素数1〜5のアルキル基)等で置換された化合物、アミノベンゼンスルホン酸のスルホン基(−SO
3H)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換されたアルカリ金属塩(ナトリウム塩、カリウム塩等)などが挙げられる。アミノベンゼンスルホン酸の一部の水素原子がアルキル基で置換された化合物としては、4−(メチルアミノ)ベンゼンスルホン酸、3−メチル−4−アミノベンゼンスルホン酸、3−アミノ−4−メチルベンゼンスルホン酸、4−(エチルアミノ)ベンゼンスルホン酸、3−(エチルアミノ)−4−メチルベンゼンスルホン酸等が挙げられる。アミノベンゼンスルホン酸のスルホン基の水素原子がアルカリ金属で置換された化合物としては、2−アミノベンゼンスルホン酸ナトリウム、3−アミノベンゼンスルホン酸ナトリウム、4−アミノベンゼンスルホン酸ナトリウム、2−アミノベンゼンスルホン酸カリウム、3−アミノベンゼンスルホン酸カリウム、4−アミノベンゼンスルホン酸カリウム等が挙げられる。
【0051】
アミノナフタレンスルホン酸誘導体としては、アミノナフタレンスルホン酸の一部の水素原子がアルキル基(例えば炭素数1〜5のアルキル基)等で置換された化合物、アミノナフタレンスルホン酸のスルホン基(−SO
3H)の水素原子がアルカリ金属(例えばナトリウム及びカリウム)で置換されたアルカリ金属塩(ナトリウム塩、カリウム塩等)などが挙げられる。
【0052】
(c2)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c2)成分としては、サイクル特性及び充電受け入れ性が更に向上する観点から、4−アミノベンゼンスルホン酸が好ましい。
【0053】
ビスフェノール系樹脂を得るための(c2)成分の配合量は、放電特性が更に向上する観点から、(c1)成分1molに対して、0.5mol以上が好ましく、0.6mol以上がより好ましく、0.8mol以上が更に好ましく、0.9mol以上が特に好ましい。(c2)成分の配合量は、サイクル特性及び放電特性が更に向上しやすい観点から、(c1)成分1molに対して、1.3mol以下が好ましく、1.2mol以下がより好ましく、1.1mol以下が更に好ましい。
【0054】
((c3)成分:ホルムアルデヒド及びホルムアルデヒド誘導体)
ホルムアルデヒドとしては、例えば、ホルマリン(例えばホルムアルデヒド37質量%の水溶液)中のホルムアルデヒドを用いてもよい。ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。(c3)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。ホルムアルデヒドとホルムアルデヒド誘導体とを併用してもよい。
【0055】
(c3)成分としては、優れたサイクル特性が得られやすくなる観点から、ホルムアルデヒド誘導体が好ましく、パラホルムアルデヒドがより好ましい。パラホルムアルデヒドは、例えば、下記一般式(I)で表される構造を有する。
HO(CH
2O)
n1H …(I)
[式(I)中、n1は2〜100の整数を示す。]
【0056】
ビスフェノール系樹脂を得るための(c3)成分のホルムアルデヒド換算の配合量は、(c2)成分の反応性が向上する観点から、(c1)成分1molに対して、2mol以上が好ましく、2.2mol以上がより好ましく、2.4mol以上が更に好ましい。(c3)成分のホルムアルデヒド換算の配合量は、得られるビスフェノール系樹脂の溶媒への溶解性に優れる観点から、(c1)成分1molに対して、3.5mol以下が好ましく、3.2mol以下がより好ましく、3mol以下が更に好ましい。
【0057】
ビスフェノール系樹脂は、例えば、下記一般式(II)で表される構造単位、及び、下記一般式(III)で表される構造単位の少なくとも一方を有することが好ましい。
【0058】
【化1】
[式(II)中、X
2は、2価の基を示し、A
2は、炭素数1〜4のアルキレン基、又は、アリーレン基を示し、R
21、R
23及びR
24は、それぞれ独立にアルカリ金属又は水素原子を示し、R
22は、メチロール基(−CH
2OH)を示し、n21は、1〜150の整数を示し、n22は、1〜3の整数を示し、n23は、0又は1を示す。また、ベンゼン環を構成する炭素原子に直接結合している水素原子は、炭素数1〜5のアルキル基で置換されていてもよい。]
【0059】
【化2】
[式(III)中、X
3は、2価の基を示し、A
3は、炭素数1〜4のアルキレン基、又は、アリーレン基を示し、R
31、R
33及びR
34は、それぞれ独立にアルカリ金属又は水素原子を示し、R
32は、メチロール基(−CH
2OH)を示し、n31は、1〜150の整数を示し、n32は、1〜3の整数を示し、n33は、0又は1を示す。また、ベンゼン環を構成する炭素原子に直接結合している水素原子は、炭素数1〜5のアルキル基で置換されていてもよい。]
【0060】
式(II)で表される構造単位、及び、式(III)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(II)で表される構造単位、及び、式(III)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。
【0061】
前記X
2及びX
3としては、例えば、アルキリデン基(メチリデン基、エチリデン基、イソプロピリデン基、sec−ブチリデン基等)、シクロアルキリデン基(シクロヘキシリデン基等)、フェニルアルキリデン基(ジフェニルメチリデン基、フェニルエチリデン基等)などの有機基;スルホニル基が挙げられ、充電受け入れ性に更に優れる観点からはイソプロピリデン基(−C(CH
3)
2−)基が好ましく、放電特性に更に優れる観点からはスルホニル基(−SO
2−)が好ましい。前記X
2及びX
3は、フッ素原子等のハロゲン原子により置換されていてもよい。前記X
2及びX
3がシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。
【0062】
A
2及びA
3としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素数1〜4のアルキレン基;フェニレン基、ナフチレン基等の2価のアリーレン基が挙げられる。前記アリーレン基は、アルキル基等により置換されていてもよい。
【0063】
R
21、R
23、R
24、R
31、R
33及びR
34のアルカリ金属としては、ナトリウム、カリウム等が挙げられる。n21及びn31は、サイクル特性に更に優れる観点及びビスフェノール系樹脂の溶媒への溶解性に優れる観点から、1〜150が好ましく、10〜150がより好ましい。n22及びn32は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、1又は2が好ましく、1がより好ましい。n23及びn33は、製造条件により変化するが、サイクル特性に更に優れる観点及びビスフェノール系樹脂の保存安定性に優れる観点から、0が好ましい。
【0064】
ビスフェノール系樹脂の製造方法は、例えば、(c1)成分、(c2)成分及び(c3)成分を反応させてビスフェノール系樹脂を得る樹脂製造工程を備えている。
【0065】
ビスフェノール系樹脂は、例えば、(c1)成分、(c2)成分及び(c3)成分を反応溶媒中で反応させることにより得ることができる。反応溶媒は、水(例えばイオン交換水)であることが好ましい。反応を促進させるために、有機溶媒、触媒、添加剤等を用いてもよい。
【0066】
樹脂製造工程は、サイクル特性が更に向上する観点から、(c2)成分の配合量が(c1)成分1molに対して0.5〜1.3molであり、且つ、(c3)成分の配合量が(c1)成分1molに対してホルムアルデヒド換算で2〜3.5molである態様が好ましい。(c2)成分及び(c3)成分の好ましい配合量は、(c2)成分及び(c3)成分の配合量のそれぞれについて上述した範囲である。
【0067】
ビスフェノール系樹脂は、充分量のビスフェノール系樹脂が得られやすい観点から、(c1)成分、(c2)成分及び(c3)成分を塩基性条件(アルカリ性条件)で反応させることにより得ることが好ましい。塩基性条件に調整するためには、塩基性化合物を用いてもよい。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等が挙げられる。塩基性化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。塩基性化合物の中でも、反応性に優れる観点から、水酸化ナトリウム及び水酸化カリウムが好ましい。
【0068】
(c1)成分、(c2)成分及び(c3)成分を含有する反応溶液が反応開始時において中性(pH=7)である場合、ビスフェノール系樹脂の生成反応が進行しにくい場合があり、反応溶液が酸性(pH<7)である場合、副反応が進行する場合がある。そのため、反応開始時の反応溶液のpHは、ビスフェノール系樹脂の生成反応を進行させつつ副反応が進行することを抑制する観点から、7より大きい(アルカリ性である)ことが好ましく、7.1以上がより好ましく、7.2以上が更に好ましい。反応溶液のpHは、ビスフェノール系樹脂における(c2)成分に由来する基の加水分解が進行することを抑制する観点から、12以下が好ましく、10以下がより好ましく、9以下が更に好ましい。反応溶液のpHは、例えば株式会社堀場製作所製のツインpHメーター AS−212で測定することができる。pHは25℃におけるpHと定義する。
【0069】
前記のようなpHに調整しやすい観点から、強塩基性化合物の配合量は、(c2)成分に含まれるスルホン基1molに対して、1.01mol以上が好ましく、1.02mol以上がより好ましく、1.03mol以上が更に好ましい。同様の観点から、強塩基性化合物の配合量は、(c2)成分に含まれるスルホン基1molに対して、1.1mol以下が好ましく、1.08mol以下がより好ましく、1.07mol以下が更に好ましい。強塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
【0070】
ビスフェノール系樹脂の合成反応では、(c1)成分、(c2)成分及び(c3)成分が反応してビスフェノール系樹脂が得られればよい。したがって、例えば、(c1)成分、(c2)成分及び(c3)成分を同時に反応させてもよく、(c1)成分、(c2)成分及び(c3)成分のうちの2成分を反応させた後、得られた成分と残りの1成分とを反応させてもよい。
【0071】
ビスフェノール系樹脂の合成反応は、次のように二段階で行うことが好ましい。
【0072】
第一段階の反応では、例えば、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸と、溶媒(水等)と、塩基性化合物とを混合した後に撹拌し、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸におけるスルホン基の水素原子をアルカリ金属等で置換してアルカリ金属塩等を得る。これにより、後述の縮合反応において副反応を抑制しやすくなる。反応系の温度は、アミノアルキルスルホン酸及び/又はアミノアリールスルホン酸の溶媒(水等)への溶解性に優れる観点から、0℃以上が好ましく、25℃以上がより好ましい。反応系の温度は、副反応を抑制する観点から、80℃以下が好ましく、70℃以下がより好ましく、65℃以下が更に好ましい。反応時間は、例えば5〜30分である。
【0073】
第二段階の反応では、例えば、第一段階で得られた反応物に(c1)成分及び(c3)成分を加えて縮合反応させることによりビスフェノール系樹脂を得る。反応系の温度は、(c1)成分、(c2)成分及び(c3)成分の反応性に優れる観点から、75℃以上が好ましく、85℃以上がより好ましく、87℃以上が更に好ましい。反応系の温度は、副反応を抑制する観点から、100℃以下が好ましく、95℃以下がより好ましく、93℃以下が更に好ましい。反応時間は、例えば5〜20時間である。
【0074】
(c1)成分、(c2)成分及び(c3)成分を反応させることにより得られる反応物(例えば反応溶液)中においてビスフェノール系樹脂が得られ、反応物を乾燥して溶媒(水等)及び未反応の(c3)成分などを除去してもよい。本実施形態では、上記ビスフェノール系樹脂の製造方法により得られる反応物をそのまま、後述する電極の製造に用いてもよいし、当該反応物を乾燥して得られるビスフェノール系樹脂を溶媒(水等)に溶解させて、後述する電極の製造に用いてもよい。
【0075】
(C)成分の重量平均分子量は、鉛蓄電池において電極から(C)成分が電解液に溶出することを抑制することによりサイクル特性が向上しやすくなる観点から、15000以上が好ましく、30000以上がより好ましく、40000以上が更に好ましく、50000以上が特に好ましい。(C)成分の重量平均分子量は、(C)成分の電極活物質に対する吸着性が低下して電極活物質の分散性が低下することを抑制することによりサイクル特性が向上しやすくなる観点から、70000以下が好ましく、65000以下がより好ましく、62000以下が更に好ましい。
【0076】
(C)成分の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。
{GPC条件}
装置:高速液体クロマトグラフ LC−2200 Plus(日本分光株式会社製)
ポンプ:PU−2080
示差屈折率計:RI−2031
検出器:紫外可視吸光光度計UV−2075(λ:254nm)
カラムオーブン:CO−2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×10
6、5.80×10
5、2.55×10
5、1.46×10
5、1.01×10
5、4.49×10
4、2.70×10
4、2.10×10
4;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10
2;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10
2;キシダ化学株式会社製)
【0077】
(C)成分を用いる場合、(C)成分の含有量は、放電特性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。(C)成分の含有量は、充電受け入れ性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。
【0078】
電極の製造に際しては、(C)成分を含む樹脂組成物(例えば25℃において液状の樹脂溶液)を用いてもよい。樹脂組成物は、溶媒を更に含んでいてもよい。樹脂組成物は、樹脂製造工程において得られる反応物であってもよく、樹脂製造工程後に(C)成分と他の成分とを混合して得られる組成物(例えば、(C)成分を溶媒に溶解させて得られる樹脂溶液、並びに、(C)成分を(A)成分及び(B)成分と混合した組成物)であってもよい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。樹脂組成物に含まれる溶媒は、(C)成分(ビスフェノール系樹脂等)を得るために用いた反応溶媒であってもよい。
【0079】
樹脂組成物(例えば25℃において液状の樹脂溶液)のpHは、(C)成分(ビスフェノール系樹脂等)の溶媒(水等)への溶解性に優れる観点から、7より大きい(アルカリ性である)ことが好ましく、7.1以上がより好ましい。樹脂組成物のpHは、負極材ペースト作製時の作業性に優れる観点から、14以下が好ましい。特に、樹脂製造工程において得られる樹脂組成物を用いる場合、樹脂組成物のpHは、前記範囲であることが好ましい。樹脂組成物のpHは、例えば株式会社堀場製作所製のツインpHメーター AS−212で測定することができる。pHは25℃におけるpHと定義する。
【0080】
[負極添加剤]
負極材は、添加剤を更に含有していてもよい。添加剤としては、硫酸バリウム、炭素材料(炭素質導電材)、補強用短繊維等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(前記(B)成分に該当する成分を除く)、チャンネルブラック、アセチレンブラック、サーマルブラック等が挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
【0081】
[負極材の物性]
負極材の比表面積は、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを更に良好に両立する観点から、0.3m
2/g以上が好ましく、0.35m
2/g以上がより好ましく、0.4m
2/g以上が更に好ましい。負極材の比表面積は、優れた充電受け入れ性と、他の優れた電池性能(放電特性、サイクル特性等)とを更に良好に両立する観点から、1.2m
2/g以下が好ましく、1.0m
2/g以下がより好ましく、0.9m
2/g以下が更に好ましい。負極材の前記比表面積は、化成後(満充電状態)の負極材の比表面積である。負極材の比表面積は、例えば、負極材ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の段階で負極活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。負極材の比表面積は、例えば、BET法で測定することができる。
【0082】
負極材の密度は、更に優れた充電受け入れ性を得る観点から、3g/cm
3以上が好ましい。負極材の密度は、サイクル特性、放電特性及び充電受け入れ性がバランス良く向上しやすい観点から、3.5g/cm
3以上が好ましく、4g/cm
3以上がより好ましい。負極材の密度は、更に優れた充電受け入れ性を得る観点から、7g/cm
3以下が好ましく、6.5g/cm
3以下がより好ましく、6g/cm
3以下が更に好ましい。負極材の前記密度は、化成後の負極材の密度である。
【0083】
化成後の負極材の密度は、例えば、以下のようにして測定できる。まず、化成後の負極を水洗して電解液を洗い流した後に乾燥する。乾燥後、負極材の中央部から規定量(2g程度)の負極材を採取し、乾燥質量を測定する。前記乾燥した負極材を、容積を示す目盛りのある容器に詰める。その後、前記負極材が詰まった容器に、水銀圧入法により水銀を圧入する。そして、負極材の容積から、圧入した水銀の体積を除くことにより見かけ体積を算出する。前記乾燥質量を前記見かけ体積で除することで、見かけ密度を算出でき、これを負極材の密度とする。なお、前記水銀圧としては、2×6894.757Pa(2.00psia)を用いることができる。
【0084】
負極材に対する正極材の質量比(正極材/負極材)は、充分な電池容量が得られやすいと共に高い充電受け入れ性が得られやすい観点から、0.9以上が好ましく、1以上がより好ましく、1.05以上が更に好ましい。負極材に対する正極材の質量比は、充分な電池容量が得られやすい観点から、1.3以下が好ましく、1.2以下がより好ましく、1.15以下が更に好ましい。負極材に対する正極材の質量比は、充分な電池容量が得られやすいと共に高い充電受け入れ性が得られやすい観点から、0.9〜1.3が好ましく、1〜1.2がより好ましく、1.05〜1.15が更に好ましい。負極材に対する正極材の前記質量比は、化成後の負極材及び正極材の質量比である。
【0085】
(集電体)
集電体の製造法としては、鋳造方式、エキスパンド方式等が挙げられる。集電体の材料としては、例えば、鉛−カルシウム−錫系合金及び鉛−アンチモン系合金が挙げられる。これらにセレン、銀、ビスマス等を微量添加することができる。正極及び負極の集電体の製造法又は材料は、互いに同一であってもよく、互いに異なっていてもよい。
【0086】
<鉛蓄電池の製造方法>
本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。
【0087】
電極製造工程では、例えば、電極材ペースト(正極材ペースト及び負極材ペースト)を集電体(例えば、鋳造格子体及びエキスパンド格子体)に充填した後に、熟成及び乾燥を行うことにより未化成の電極を得る。正極材ペーストは、例えば、正極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、負極活物質の原料(鉛粉等)及び(B)成分を含有しており、分散剤として(C)成分(ビスフェノール系樹脂等)を含有していることが好ましく、他の添加剤を更に含有していてもよい。
【0088】
正極材ペーストは、例えば、下記の方法により得ることができる。まず、正極活物質の原料に添加剤(補強用短繊維等)及び水を加える。次に、希硫酸を加えた後、混練して正極材ペーストが得られる。正極材ペーストを作製するに際しては、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb
3O
4)を用いてもよい。この正極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の正極を得ることができる。
【0089】
正極材ペーストにおいて補強用短繊維を用いる場合、補強用短繊維の配合量は、正極活物質の原料(鉛粉等)の全質量を基準として、0.005〜0.3質量%が好ましく、0.05〜0.3質量%がより好ましい。
【0090】
未化成の正極を得るための熟成条件としては、温度35〜85℃、湿度50〜98RH%の雰囲気で15〜60時間が好ましい。乾燥条件は、温度45〜80℃で15〜30時間が好ましい。
【0091】
負極材ペーストは、例えば、下記の方法により得ることができる。まず、負極活物質((A)成分)の原料に(B)成分と添加剤(補強用短繊維、硫酸バリウム等)を添加して乾式混合することにより混合物を得る。次に、この混合物に溶媒(イオン交換水等の水、有機溶媒など)を加えて混練する。この際、(B)成分と共に(C)成分を更に加えてもよい。そして、硫酸(希硫酸等)を加えて混練することにより負極材ペーストが得られる。この負極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の負極を得ることができる。なお、(A)成分、(B)成分及び(C)成分を順次加えて混合してもよいが、(B)成分、(C)成分及び少量の水を混合しオイルファーネスブラックの二次凝集体の状態を溶きほぐしてから、(B)成分及び(C)成分の混合物と(A)成分とを混合してもよい。これにより、オイルファーネスブラックの分散性が向上して(B)成分の硬化(充電受け入れ性の向上効果)を一層顕著に得ることができる。
【0092】
一般的に、市販のオイルファーネスブラックは、一次粒子が凝集した状態(二次粒子)である。オイルファーネスブラックの一次粒子が凝集した状態である場合、サイクル特性、放電特性及び充電受け入れ性を更に向上させる観点から、負極材ペーストを調製する前に、平均粒径(平均一次粒径)が2μm以下になるまでオイルファーネスブラックを粉砕することが好ましい。
【0093】
負極材ペーストにおいて、(C)成分(ビスフェノール系樹脂等)、炭素材料(前記(B)成分に該当する成分を除く)、補強用短繊維又は硫酸バリウムを用いる場合、各成分の配合量は下記の範囲が好ましい。(C)成分の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、0.01〜2.0質量%が好ましく、0.05〜1.0質量%がより好ましく、0.1〜0.5質量%が更に好ましく、0.1〜0.3質量%が特に好ましい。炭素材料の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.1〜3質量%が好ましく、0.2〜1.4質量%がより好ましい。補強用短繊維の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として0.05〜0.3質量%が好ましい。硫酸バリウムの配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.01〜2.0質量%が好ましく、0.3〜2.0質量%がより好ましい。
【0094】
オイルファーネスブラック(ケッチェンブラック等)の配合量は、下記の範囲が好ましい。オイルファーネスブラックの配合量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましい。オイルファーネスブラックの配合量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、2質量%以下が好ましく、1.5質量%以下がより好ましく、0.5質量%以下が更に好ましい。オイルファーネスブラックの配合量は、サイクル特性、放電特性及び充電受け入れ性が更にバランス良く向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.01〜2質量%が好ましく、0.03〜1.5質量%がより好ましく、0.03〜0.5質量%が更に好ましい。
【0095】
未化成の負極を得るための熟成条件としては、温度45〜65℃、湿度70〜98RH%の雰囲気で15〜30時間が好ましい。乾燥条件は、温度45〜60℃で15〜30時間が好ましい。
【0096】
組み立て工程では、例えば、前記のように作製した未化成の負極及び未化成の正極を、セパレータを介して交互に積層し、同極性の電極の集電部をストラップで連結(溶接等)させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。次に、未化成の電池に電解液(希硫酸等)を注入した後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池が得られる。
【0097】
前記電解液は、例えば、硫酸及びアルミニウムイオンを含有しており、硫酸及び硫酸アルミニウム粉末を混合することにより得ることができる。電解液中に溶解させる硫酸アルミニウムは、無水物又は水和物として添加することができる。
【0098】
電解液(例えば、アルミニウムイオンを含む電解液)の化成後の比重は下記の範囲であることが好ましい。電解液の比重は、浸透短絡又は凍結を抑制すると共に放電特性に更に優れる観点から、1.24以上が好ましく、1.25以上がより好ましく、1.26以上が更に好ましい。電解液の比重は、充電受け入れ性及びサイクル特性が更に向上する観点から、1.33以下が好ましく、1.30以下がより好ましく、1.29以下が更に好ましい。電解液の比重の値は、例えば、浮式比重計、又は、京都電子工業株式会社製のデジタル比重計によって測定することができる。
【0099】
電解液のアルミニウムイオン濃度は、充電受け入れ性及びサイクル特性が更に向上する観点から、電解液の全量を基準として、0.01mol/L以上が好ましく、0.02mol/L以上がより好ましく、0.03mol/L以上が更に好ましい。電解液のアルミニウムイオン濃度は、充電受け入れ性及びサイクル特性が更に向上する観点から、電解液の全量を基準として、0.2mol/L以下が好ましく、0.15mol/L以下がより好ましく、0.13mol/L以下が更に好ましい。電解液のアルミニウムイオン濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することができる。
【0100】
電解液のアルミニウムイオン濃度が前記所定範囲であることにより充電受け入れ性が向上するメカニズムの詳細については明らかではないが、以下のように推測される。すなわち、アルミニウムイオン濃度が前記所定範囲であると、任意の低SOC下において、放電生成物である結晶性硫酸鉛の電解液中への溶解度が上がるため、又は、アルミニウムイオンの高いイオン伝導性により電解液の電極活物質内部への拡散性が向上するためと推測される。
【0101】
電解液のアルミニウムイオン濃度が前記所定範囲であることによりサイクル特性が向上するメカニズムの詳細については明らかではないが、以下のように推測される。まず、アルミニウムイオンを含まない通常の電解液を用いた場合、充電時に電解液に供給される硫酸イオン(例えば硫酸鉛から生成する硫酸イオン)は、電極(極板等)の表面を伝って下方へと移動する。PSOC下では、電池が満充電になることがないため、ガス発生による電解液の撹拌が行われない。その結果、電池下部での電解液の比重が高くなるのに対し電池上部の電解液の比重が低くなるという「成層化」と呼ばれる電解液の濃度の不均一化が起こる。このような現象が起こると、充電しても元に戻り難い結晶性硫酸鉛が生成すると共に、活物質の反応面積が低下する。これにより、充放電が繰り返される寿命試験において性能の劣化が起こる。一方、電解液のアルミニウムイオン濃度が前記所定範囲であると、アルミニウムイオンの静電的引力により硫酸イオンが強く引き付けられるため、成層化が発現しにくくなると推測される。
【0102】
電槽は、内部に電極(極板等)を収納可能なものである。電槽は、電極を収納しやすい観点から、上面が開放された箱体と、この箱体の上面を覆う蓋体とを有するものが好ましい。なお、箱体と蓋体との接着には、接着剤、熱溶着、レーザ溶着、超音波溶着等を適宜用いることができる。電槽の形状としては、特に限定されるものではないが、電極(板状体である極板等)の収納時に無効空間が少なくなるように方形のものが好ましい。
【0103】
電槽の材料は、特に制限されるものではないが、電解液(希硫酸等)に対し耐性を有するものである必要がある。電槽の材料の具体例としては、PP(ポリプロピレン)、PE(ポリエチレン)、ABS樹脂等が挙げられる。電槽の材料がPPであると、耐酸性、加工性(ABS樹脂では電槽と蓋の熱溶着が困難)、コストの面で有利である。
【0104】
電槽が箱体及び蓋体により構成される場合、箱体及び蓋体の材料は、互いに同一の材料であってもよく、互いに異なる材料であってもよいが、無理な応力が発生しない観点から、熱膨張係数の等しい材料が好ましい。
【0105】
セパレータとしては、微多孔性ポリエチレンシート;ガラス繊維と合成樹脂からなる不織布等が挙げられる。
【0106】
化成条件及び硫酸の比重は、電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程における熟成及び乾燥後の多数の電極をまとめて化成槽に浸漬して実施されてもよい(タンク化成)。
【実施例】
【0107】
以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。なお、本実施例において、化成後の負極材におけるオイルファーネスブラックの比表面積は、化成前の負極材におけるオイルファーネスブラックの比表面積と同等である。
【0108】
<ビスフェノール系樹脂の合成>
撹拌装置、還流装置及び温度調節装置を備えた反応容器に下記の各成分を仕込み第1の混合液を得た。
水酸化ナトリウム:1.05mol[42.0質量部]
イオン交換水:44.00mol[792.6質量部]
4−アミノベンゼンスルホン酸:1.00mol[173.2質量部]
【0109】
第1の混合液を25℃にて30分混和・撹拌した。続いて、第1の混合液に下記の各成分を仕込み第2の混合液を得た。第2の混合液のpHは8.6であった。
ビスフェノールA:0.96mol[219.2質量部]
ビスフェノールS:0.04mol[10.4質量部]
パラホルムアルデヒド(三井化学株式会社製):3.00mol[90.9質量部](ホルムアルデヒド換算)
【0110】
第2の混合液を90℃にて10時間反応させることによりビスフェノール系樹脂溶液(以下、場合により「樹脂溶液」ともいう)を得た。
【0111】
樹脂溶液中に含まれるビスフェノール系樹脂を低温乾燥(60℃、6時間)で単離した。ビスフェノール系樹脂の重量平均分子量を下記条件のGPCにより測定した。ビスフェノール系樹脂の重量平均分子量は53900であった。
【0112】
{GPC条件}
装置:高速液体クロマトグラフ LC−2200 Plus(日本分光株式会社製)
ポンプ:PU−2080
示差屈折率計:RI−2031
検出器:紫外可視吸光光度計UV−2075(λ:254nm)
カラムオーブン:CO−2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×10
6、5.80×10
5、2.55×10
5、1.46×10
5、1.01×10
5、4.49×10
4、2.70×10
4、2.10×10
4;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10
2;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10
2;キシダ化学株式会社製)
【0113】
<鉛蓄電池の作製>
(実施例1)
[正極板の作製]
正極活物質の原料として、鉛粉と鉛丹(Pb
3O
4)を用いた(鉛粉:鉛丹=91:9(質量比))。正極活物質の原料と、正極活物質の原料の全質量を基準として0.07質量%の補強用短繊維(アクリル繊維)と、水とを加えて混練した。続いて、希硫酸(比重:1.280(20℃換算、以下同様))を少量ずつ添加しながら混練し、正極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの正極材ペーストを充填した。次いで、正極材ペーストが充填された格子体を温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の正極板を作製した。
【0114】
[負極板の作製]
負極活物質の原料として鉛粉を用いた。上記で得られたビスフェノール系樹脂溶液(配合量:固形分換算で0.2質量%)と、補強用短繊維であるアクリル繊維(配合量:0.1質量%)と、硫酸バリウム(配合量:1.0質量%)と、オイルファーネスブラック(ライオン株式会社製、商品名:ケッチェンブラックEC600JD、平均一次粒径:34μm、BET比表面積:1400m
2/g、DBP吸油量:495mL/g、配合量:0.2質量%)との混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を加えた後に混練した。このとき、ビスフェノール系樹脂、オイルファーネスブラック及び水を事前に固練りしてオイルファーネスブラックの凝集をほぐした。続いて、希硫酸(比重:1.280)を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの負極材ペーストを充填した。次いで、負極材ペーストが充填された格子体を温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の負極板を作製した。
【0115】
前記オイルファーネスブラックは、乾式混合前に粉砕して平均粒径(平均一次粒径)を30nmに調整した。なお、オイルファーネスブラックの平均粒径は、オイルファーネスブラックの粒子を基板に蒸着させた後、前記基板の中央部の縦100μm×横100μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得た。
【0116】
[電池の組み立て]
袋状に加工したポリエチレン製のセパレータに未化成の負極板を挿入した。次に、未化成の正極板4枚と、前記袋状セパレータに挿入された未化成の負極板5枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の極板の耳部同士を溶接して極板群を作製した。前記極板群を電槽に挿入して2V単セル電池(JIS5301規定のB19サイズの単セルに相当)を組み立てた。アルミニウムイオン濃度が0.04mol/Lになるように硫酸アルミニウム無水物を溶解させた希硫酸(比重:1.230)をこの電池に注液した。その後、60℃の水槽中、通電電流10Aで16時間の条件で化成して鉛蓄電池を得た。化成後の電解液には、活物質中に含まれる硫酸イオンが含まれることになる。そのため、電解液の比重は化成により増加する。電解液の比重は、化成後において最終的に1.280となるように調整した。
【0117】
[オイルファーネスブラックの含有量]
以下の方法により、化成後の負極材におけるオイルファーネスブラックの含有量を求めた。まず、化成後の鉛蓄電池を分解して化成後の負極板を取り出した。次いで、この負極板を水洗した後、窒素雰囲気下、60℃で24時間乾燥した。続いて、負極板の中央部から負極材を50g採取して、130℃で30分乾燥した。乾燥後の負極材50gを熱硝酸100mL中に投入して約2時間加熱した。次いで、175メッシュのNi金網を4枚重ねて作製した濾過網で濾過して補強用短繊維(アクリル繊維)を分離した。次いで、濾液に、過剰の酢酸アンモニウムを加えて数分間攪拌した後、ガラスフィルターで濾過した。残渣を水洗及び乾燥させ、質量を測定した(残渣物A)。次いで、ルツボ内に残渣物Aを入れて500℃で約1時間加熱し、加熱後の質量を測定した(残渣物B)。化成後の負極材におけるオイルファーネスブラックの含有量は、下記式から算出することができる。オイルファーネスブラックの含有量は、負極材の全質量基準で0.2質量%であった。
オイルファーネスブラックの含有量(単位:質量%)=[(残渣物Aの質量(単位:g)−残渣物Bの質量(単位:g))/乾燥後の負極材の質量(50g)]×100
【0118】
[正極材及び負極材の比表面積]
化成後の正極材及び負極材の比表面積は、以下の方法で測定した。まず、化成後の鉛蓄電池を分解して化成後の正極板及び負極板を取り出した。次いで、これらを水洗した後、窒素雰囲気下、60℃で24時間乾燥した。続いて、正極板及び負極板の中央部から正極材及び負極材を2gずつ採取して、130℃で30分乾燥することにより、測定試料を得た。次に、得られた試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って比表面積を算出した。測定条件を下記の通りであった。このようにして測定した結果、正極材の比表面積は4.6m
2/gであった。また、負極材の比表面積は0.4m
2/gであった。
【0119】
{比表面積測定条件}
装置:Macsorb1201(株式会社マウンテック製)
脱気時間:130℃で10分
冷却:液体窒素で5分間
吸着ガス流量:25mL/分
【0120】
(実施例2)
化成時の水槽温度を40℃としたこと以外は、実施例1と同様にして鉛蓄電池を得た。また、実施例1と同様の方法により、化成後の負極材におけるオイルファーネスブラックの含有量を求めた。化成後の負極材におけるオイルファーネスブラックの含有量は、負極材の全質量基準で0.2質量%であった。また、実施例1と同様の方法により、化成後の正極材及び負極材の比表面積を測定した。正極材の比表面積は、6.3m
2/gであった。負極材の比表面積は、0.6m
2/gであった。
【0121】
(実施例3)
化成時の水槽温度を20℃としたこと以外は、実施例1と同様にして鉛蓄電池を得た。また、実施例1と同様の方法により、化成後の負極材におけるオイルファーネスブラックの含有量を求めた。化成後の負極材におけるオイルファーネスブラックの含有量は、負極材の全質量基準で0.2質量%であった。また、実施例1と同様の方法により、化成後の正極材及び負極材の比表面積を測定した。正極材の比表面積は、12m
2/gであった。負極材の比表面積は、0.9m
2/gであった。
【0122】
(比較例1)
オイルファーネスブラックとして、ケッチェンブラックEC600JDに代えてケッチェンブラックEC300(ライオン株式会社製、平均粒径:40μm、BET比表面積:800m
2/g、DBP吸油量:365mL/g)を用いたこと以外は、実施例1と同様にして鉛蓄電池を得た。また、実施例1と同様の方法により、化成後の負極材におけるオイルファーネスブラックの含有量を求めた。化成後の負極材におけるオイルファーネスブラックの含有量は、負極材の全質量基準で0.2質量%であった。また、実施例1と同様の方法により、化成後の正極材及び負極材の比表面積を測定した。正極材の比表面積は、4.9m
2/gであった。負極材の比表面積は、0.3m
2/gであった。
【0123】
(比較例2)
オイルファーネスブラックに代えてアセチレンブラック(電気化学工業株式会社製、商品名:デンカブラック、平均粒径:43μm、BET比表面積:61m
2/g、DBP吸油量:115mL/g)を用いたこと以外は、実施例1と同様にして鉛蓄電池を得た。また、実施例1と同様の方法により、化成後の負極材におけるアセチレンブラックの含有量を求めた。化成後の負極材におけるアセチレンブラックの含有量は、負極材の全質量基準で0.2質量%であった。また、実施例1と同様の方法により、化成後の正極材及び負極材の比表面積を測定した。正極材の比表面積は、4.8m
2/gであった。負極材の比表面積は、0.2m
2/gであった。
【0124】
<電池特性の評価>
実施例1〜3及び比較例1〜2の2V単セル電池について、充電受け入れ性、放電特性及びサイクル特性を下記のとおり測定した。比較例1の充電受け入れ性、放電特性及びサイクル特性の測定結果をそれぞれ100とし、実施例1〜3及び比較例2の各特性を相対評価した。結果を表1に示す。
【0125】
[充電受け入れ性]
充電受け入れ性として、電池の充電状態(State of charge)が90%になった状態(つまり、満充電状態から電池容量の10%を放電した状態)において、25℃下、2.33Vで定電圧充電し、充電開始から5秒経過した時点での電流値を測定した。この電流値が大きいほど初期の充電電気量が大きいということであり、受け入れ性が良い電池であると評価される。
【0126】
[放電特性]
放電特性として、−15℃の雰囲気下で16時間以上おいた満充電状態の電池を、室温(25℃)下、5Cで定電流放電し、電池電圧が1.0Vに達するまでの放電持続時間を測定した。放電持続時間が長いほど放電特性に優れる電池であると評価される。なお、前記Cとは、満充電状態から定格容量を定電流放電するときの電流の大きさを相対的に表したものである。前記Cは、“放電電流値(A)/電池容量(Ah)”を意味する。例えば、定格容量を1時間で放電させることができる電流を「1C」、2時間で放電させることができる電流を「0.5C」と表現する。
【0127】
[サイクル特性]
サイクル特性は、日本工業規格の軽負荷寿命試験(JIS D 5301)に準じた方法で評価した。サイクル数が大きいほど耐久性が高い電池であると評価される。
【0128】
【表1】