(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6584787
(24)【登録日】2019年9月13日
(45)【発行日】2019年10月2日
(54)【発明の名称】プラズマイオン源および荷電粒子ビーム装置
(51)【国際特許分類】
H01J 27/16 20060101AFI20190919BHJP
H01J 37/08 20060101ALI20190919BHJP
H01J 37/305 20060101ALI20190919BHJP
H01J 37/317 20060101ALI20190919BHJP
【FI】
H01J27/16
H01J37/08
H01J37/305 A
H01J37/317 D
【請求項の数】7
【全頁数】10
(21)【出願番号】特願2015-26843(P2015-26843)
(22)【出願日】2015年2月13日
(65)【公開番号】特開2016-149324(P2016-149324A)
(43)【公開日】2016年8月18日
【審査請求日】2018年1月22日
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテクノロジーズ
(74)【代理人】
【識別番号】100165179
【弁理士】
【氏名又は名称】田▲崎▼ 聡
(74)【代理人】
【識別番号】100126664
【弁理士】
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(72)【発明者】
【氏名】大庭 弘
(72)【発明者】
【氏名】杉山 安彦
(72)【発明者】
【氏名】岡部 衛
【審査官】
藤原 伸二
(56)【参考文献】
【文献】
特開2011−142081(JP,A)
【文献】
特表2013−542563(JP,A)
【文献】
特開2005−175460(JP,A)
【文献】
特表2006−515708(JP,A)
【文献】
特開2013−175476(JP,A)
【文献】
特開2013−182966(JP,A)
【文献】
米国特許第5149932(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 27/16−27/18
H01J 37/08
H05H 1/00−1/54
H01J 37/305
H01J 37/317
(57)【特許請求の範囲】
【請求項1】
原料ガスが導入されるガス導入室と、
前記ガス導入室に接続され、誘電体材料により形成されたプラズマ生成室と、
前記ガス導入室および前記プラズマ生成室の境界に配置され、前記ガス導入室から前記プラズマ生成室に原料ガスを導入する複数の貫通孔が設けられた末端電極と、
前記ガス導入室の内部に設けられ、前記末端電極に接続された絶縁部材と、
前記プラズマ生成室の外周に沿って巻かれ、高周波電力が印加されるコイルと、
前記ガス導入室、前記プラズマ生成室、および前記コイルを取り囲む外囲器と、
前記ガス導入室および前記プラズマ生成室と前記外囲器との間に充填されることによって前記コイルを浸漬するとともに、前記プラズマ生成室と同程度の誘電正接を有する絶縁性液体と、を備える、
ことを特徴とするプラズマイオン源。
【請求項2】
前記外囲器は、銅またはアルミニウムによって形成されている、ことを特徴とする請求項1に記載のプラズマイオン源。
【請求項3】
前記絶縁性液体は、フッ素系不活性液体である、
ことを特徴とする請求項1または請求項2に記載のプラズマイオン源。
【請求項4】
前記プラズマ生成室は、石英ガラス、アルミナ、および窒化アルミニウムの何れかによって形成されている、
ことを特徴とする請求項1から請求項3の何れか1つに記載のプラズマイオン源。
【請求項5】
前記外囲器に設けられる放熱フィンを備える、
ことを特徴とする請求項1から請求項4の何れか1つに記載のプラズマイオン源。
【請求項6】
請求項1から請求項5の何れか1つに記載のプラズマイオン源と、
前記プラズマイオン源において発生した前記原料ガスのイオンによってイオンビームを形成するイオンビーム形成部と、
試料を固定するステージと、
前記イオンビーム形成部によって形成された前記イオンビームを前記試料に照射して、前記試料の照射領域の観察、加工、および分析のうちの少なくとも何れかを行う制御部と、
を備える、
ことを特徴とする荷電粒子ビーム装置。
【請求項7】
電子ビームを形成する電子ビーム形成部を備え、
前記制御部は、前記イオンビームおよび前記電子ビームを前記試料の同一領域に照射して、前記試料の照射領域の観察、加工、および分析のうちの少なくとも何れかを行う、ことを特徴とする請求項6に記載の荷電粒子ビーム装置。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、プラズマイオン源および荷電粒子ビーム装置に関する。
【背景技術】
【0002】
従来、絶縁性の冷却流体を、冷却装置によって冷却しながら、ポンプによって、プラズマ生成室の外壁に沿って循環させるプラズマイオン源が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2011−142081号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記従来技術に係るプラズマイオン源においては、高密度なプラズマに接することによって温度が上昇し易いプラズマ生成室の壁部および高周波電力が印加されることによって発熱し易いコイルを冷却するように、冷却流体の流路がプラズマ生成室の周囲に設けられている。これによりプラズマイオン源全体の大きさが、プラズマ生成室の数倍程度に増大してしまうという問題が生じる。
【0005】
本発明は上記事情に鑑みてなされたもので、所望の冷却性を確保するためにプラズマイオン源全体の大きさが増大することを防止することが可能なプラズマイオン源および荷電粒子ビーム装置を提供することを目的としている。
【課題を解決するための手段】
【0006】
上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用した。
(1)本発明の一態様に係るプラズマイオン源は、原料ガスが導入されるガス導入室と、前記ガス導入室に接続され、誘電体材料により形成されたプラズマ生成室と、
前記ガス導入室および前記プラズマ生成室の境界に配置され、前記ガス導入室から前記プラズマ生成室に原料ガスを導入する複数の貫通孔が設けられた末端電極と、前記ガス導入室の内部に設けられ、前記末端電極に接続された絶縁部材と、前記プラズマ生成室の外周に沿って巻かれ、高周波電力が印加されるコイルと、前記ガス導入室、前記プラズマ生成室、および前記コイルを取り囲む外囲器と、前記ガス導入室および前記プラズマ生成室と前記外囲器との間に充填されることによって前記コイルを浸漬するとともに
、前記プラズマ生成室と同程度の誘電正接を有する絶縁性液体と、を備える。
【0007】
上記(1)に記載の態様に係るプラズマイオン源によれば、外囲器の内部に充填される絶縁性液体によってプラズマ生成室およびコイルを冷却することができるので、例えばプラズマ生成室およびコイルの周囲にヒートパイプなどの絶縁性液体の流路を設ける場合に比べて、プラズマイオン源全体の大きさが増大することを防止することができる。
さらに、外囲器の内部においてコイルをプラズマ生成室に出来るだけ近づけて配置することができるので、高周波電力を効率良くプラズマに伝達することができる。
【0008】
(2)上記(1)に記載のプラズマイオン源では、前記外囲器は、銅またはアルミニウムによって形成されている。
上記(2)の場合、外囲器は熱伝導率が高い材料によって形成されているので、絶縁性液体の対流などによってプラズマ生成室およびコイルから外囲器に伝達される熱は、外囲器から効率良く放熱される。
また、外囲器は電気伝導率が高い非磁性金属によって形成されているので、コイルの周辺で誘導電流が発生する場合であっても、無駄な電力損失の増大を防止することができる。
【0009】
(3)上記(1)または(2)に記載のプラズマイオン源では、前記絶縁性液体は、フッ素系不活性液体であってもよい。
【0010】
(4)上記(1)から(3)の何れか1つに記載のプラズマイオン源では、前記プラズマ生成室は、石英ガラス、アルミナ、および窒化アルミニウムの何れかによって形成されてもよい。
【0011】
(5)上記(1)から(4)の何れか1つに記載のプラズマイオン源では、前記外囲器に設けられる放熱フィンを備えてもよい。
【0012】
(6)本発明の一態様に係る荷電粒子ビーム装置は、上記(1)から(5)の何れか1つに記載のプラズマイオン源と、前記プラズマイオン源において発生した前記原料ガスのイオンによってイオンビームを形成するイオンビーム形成部と、試料を固定するステージと、前記イオンビーム形成部によって形成された前記イオンビームを前記試料に照射して、前記試料の照射領域の観察、加工、および分析のうちの少なくとも何れかを行う制御部
と、を備える。
上記(6)に記載の態様に係る荷電粒子ビーム装置によれば、装置全体の大きさが増大することを防止することができる。
【0013】
(7)上記(6)に記載の荷電粒子ビーム装置は、電子ビームを形成する電子ビーム形成部を備え、前記制御部は、前記イオンビームおよび前記電子ビームを前記試料の同一領域に照射して、前記試料の照射領域の観察、加工、および分析のうちの少なくとも何れかを行ってもよい。
【発明の効果】
【0014】
本発明のプラズマイオン源によれば、外囲器の内部に充填される絶縁性液体によってプラズマ生成室およびコイルを冷却することができるので、プラズマイオン源全体の大きさが増大することを防止することができる。
さらに、外囲器の内部においてコイルをプラズマ生成室に出来るだけ近づけて配置することができるので、高周波電力を効率良くプラズマに伝達することができる。
【図面の簡単な説明】
【0015】
【
図1】本発明の実施形態に係る荷電粒子ビーム装置の構成を模式的に示す断面図である。
【
図2】本発明の実施形態に係るプラズマイオン源の構成を模式的に示す断面図である。
【
図3】本発明の実施形態に係るプラズマイオン源の絶縁部材をプラズマ生成室側から見た平面図である。
【
図4】
図3に示すIV−IV断面を含む絶縁部材および末端電極の断面図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態に係るプラズマイオン源および荷電粒子ビーム装置について添付図面を参照しながら説明する。
【0017】
実施形態に係る荷電粒子ビーム装置10は、
図1に示すように、内部を真空状態に維持可能な試料室11と、試料室11の内部において試料Sを固定可能なステージ12と、ステージ12を駆動する駆動機構13と、を備えている。荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域(つまり走査範囲)内の照射対象に集束イオンビーム(FIB)を照射する集束イオンビーム鏡筒14を備えている。荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域内の照射対象に電子ビーム(EB)を照射する電子ビーム鏡筒15を備えている。荷電粒子ビーム装置10は、集束イオンビームまたは電子ビームの照射によって照射対象から発生する二次荷電粒子(二次電子および二次イオンなど)Rを検出する検出器16を備えている。また、荷電粒子ビーム装置10は、電子ビーム鏡筒15内部に電子ビームの照射によって照射対象から発生する二次荷電粒子(反射電子)を検出する検出器(図示略)を備えている。荷電粒子ビーム装置10は、照射対象の表面にガスGaを供給するガス供給部17を備えている。荷電粒子ビーム装置10は、検出器16によって検出された二次荷電粒子に基づく画像データなどを表示する表示装置20と、制御部21と、入力デバイス22と、を備えている。
【0018】
荷電粒子ビーム装置10は、照射対象の表面に集束イオンビームを走査しながら照射することによって、スパッタリングによる各種の加工(エッチング加工など)と、デポジション膜の形成とを実行可能である。荷電粒子ビーム装置10は、試料Sに走査型電子顕微鏡などによる断面観察用の断面を形成する加工と、試料Sから透過型電子顕微鏡による透過観察用の試料片(例えば、薄片試料、針状試料など)を形成する加工となどを実行可能である。荷電粒子ビーム装置10は、試料Sなどの照射対象の表面に集束イオンビームまたは電子ビームを走査しながら照射することによって、照射対象の表面の観察を実行可能である。
【0019】
試料室11は、排気装置(図示略)によって内部を所望の真空状態になるまで排気可能であるとともに、所望の真空状態を維持可能に構成されている。
ステージ12は、試料Sを保持する。
駆動機構13は、ステージ12に接続された状態で試料室11の内部に収容されており、制御部21から出力される制御信号に応じてステージ12を所定軸に対して変位させる。駆動機構13は、水平面に平行かつ互いに直交するX軸およびY軸と、X軸およびY軸に直交する鉛直方向のZ軸とに沿って平行にステージ12を移動させる移動機構13aを備えている。駆動機構13は、ステージ12をX軸またはY軸周りに回転させるチルト機構13bと、ステージ12をZ軸周りに回転させる回転機構13cと、を備えている。
【0020】
集束イオンビーム鏡筒14は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向上方の位置でステージ12に臨ませるとともに、光軸を鉛直方向に平行にして、試料室11に固定されている。これによって、ステージ12に固定された試料Sなどの照射対象に鉛直方向上方から下方に向かい集束イオンビームを照射可能である。
集束イオンビーム鏡筒14は、イオンを発生させるプラズマイオン源14aと、プラズマイオン源14aから引き出されたイオンを集束および偏向させるイオン光学系14bと、を備えている。プラズマイオン源14aおよびイオン光学系14bは、制御部21から出力される制御信号に応じて制御され、集束イオンビームの照射位置および照射条件などが制御部21によって制御される。イオン光学系14bは、例えば、コンデンサレンズなどの第1静電レンズと、静電偏向器と、対物レンズなどの第2静電レンズと、などを備えている。なお、
図1では静電レンズは2組であるが、3組以上備えてもよい。この場合、各レンズ間にアパーチャを設ける。
【0021】
プラズマイオン源14aは、高周波誘導結合プラズマイオン源である。プラズマイオン源14aは、
図2に示すように、トーチ30と、第1接地電位フランジ31および第2接地電位フランジ32と、ガス導入室33と、プラズマ生成室34と、ガス導入室材35と、末端電極36と、プラズマ電極37と、絶縁部材38と、コイル39と、外囲器40と、絶縁性液体41と、を備えている。
トーチ30の形状は、筒状に形成されている。トーチ30は、誘電体材料によって形成されている。誘電体材料は、例えば、石英ガラス、アルミナ、および窒化アルミニウムの何れかなどである。トーチ30の第1端部には、第1接地電位フランジ31が設けられている。トーチ30の第2端部には、第2接地電位フランジ32が設けられている。第1接地電位フランジ31および第2接地電位フランジ32は、接地電位に維持されている。第1接地電位フランジ31および第2接地電位フランジ32は、非磁性金属、例えば、銅やアルミなど、である。
トーチ30は、ガス導入室33およびプラズマ生成室34を形成している。ガス導入室33は、第1接地電位フランジ31に接続されるガス導入室材35と、トーチ30の内部に配置される末端電極36とによって形成されている。プラズマ生成室34は、末端電極36と、トーチ30の第2端部に配置されるプラズマ電極37とによって形成されている。末端電極36およびプラズマ電極37は、非磁性金属、例えば、銅やタングステンやモリブデンなど、である。プラズマが末端電極36およびプラズマ電極37をスパッタしてトーチ30の内壁に付着するため、スパッタに必要なエネルギーが高いタングステンやモリブデンの方が好ましい。ガス導入室33の内部には、絶縁部材38が収容されている。トーチ30の外部には、プラズマ生成室34の外周に沿って巻かれるコイル39が配置されている。コイル39には、RF電源39aから高周波電力が供給される。
外囲器40は、ガス導入室33、プラズマ生成室34、およびコイル39を取り囲むようにして、第1接地電位フランジ31および第2接地電位フランジ32に接続されている。ガス導入室33およびプラズマ生成室34と、外囲器40との間には、コイル39を浸漬する絶縁性液体41が充填されている。
【0022】
ガス導入室材35には、ガス供給源(図示略)から流量調整器(図示略)を介して供給される原料ガスを、ガス導入室33の内部に導入する開口部35aが設けられている。
ガス導入室33およびプラズマ生成室34の境界に配置される末端電極36には、ガス導入室33からプラズマ生成室34に原料ガスを導入する複数の貫通孔36aが設けられている。複数の貫通孔36aの各々の大きさR(例えば、円形の貫通孔36aの直径など)は、プラズマシース長よりも小さく形成されている。プラズマシース長は、例えば、数10μm〜数100μmである。
プラズマ電極37には、プラズマ生成室34から外部にイオンを引き出す開口部37aが設けられている。
【0023】
ガス導入室33内の絶縁部材38は、ボルトなどの接続部材によって末端電極36に固定されている。絶縁部材38には、
図3に示すように、接続部材(図示略)が装着される装着孔38aが形成されている。末端電極36の表面36Aに対向する絶縁部材38の対向面38Aには、
図4に示すように、凹溝38bが形成されている。凹溝38bの深さDは、プラズマシース長よりも小さく形成されている。凹溝38bの幅Wは、深さDよりも大きく形成されている。絶縁部材38には、凹溝38bに設けられる複数の貫通孔38cが形成されている。複数の貫通孔38cの各々の大きさ(例えば、円形の貫通孔38cの直径など)は、プラズマシース長よりも小さく形成されている。複数の貫通孔38cの各々の大きさは、例えば、プラズマ電極37における複数の貫通孔36aの大きさRと同一に形成されている。複数の貫通孔38cの各々は、例えば、プラズマ電極37における複数の貫通孔36aの各々に臨むように配置されている。
なお、プラズマ電極37には、接続部材(図示略)が装着される装着孔36bが絶縁部材38の装着孔38aに臨むように形成されている。
【0024】
絶縁部材38の形状は、ガス導入室材35と末端電極36との間における荷電粒子の直接的な移動を妨げる形状に形成されている。絶縁部材38の形状は、ガス導入室材35と末端電極36とが相互に直接見えない形状に形成されている。絶縁部材38の形状は、例えば、雄ねじ形状などに形成されている。
【0025】
外囲器40は、例えば、銅またはアルミニウムなどの放熱性(熱伝導率)が高い材料により形成されている。
絶縁性液体41は、外囲器40の絶縁耐圧よりも相対的に大きな絶縁耐圧およびプラズマ生成室34と同程度の誘電正接を有する。絶縁性液体41は、例えば、フッ素系不活性液体である。
【0026】
電子ビーム鏡筒15は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向に所定角度傾斜した傾斜方向でステージ12に臨ませるとともに、光軸を傾斜方向に平行にして、試料室11に固定されている。これによって、ステージ12に固定された試料Sなどの照射対象に傾斜方向の上方から下方に向かい電子ビームを照射可能である。
電子ビーム鏡筒15は、電子を発生させる電子源15aと、電子源15aから射出された電子を集束および偏向させる電子光学系15bと、を備えている。電子源15aおよび電子光学系15bは、制御部21から出力される制御信号に応じて制御され、電子ビームの照射位置および照射条件などが制御部21によって制御される。電子光学系15bは、例えば、電磁レンズと偏向器となどを備えている。
【0027】
なお、電子ビーム鏡筒15と集束イオンビーム鏡筒14の配置を入れ替え、電子ビーム鏡筒15を鉛直方向に、集束イオンビーム鏡筒14を鉛直方向に所定角度傾斜した傾斜方向に配置してもよい。
【0028】
検出器16は、試料Sなどの照射対象に集束イオンビームまたは電子ビームが照射されたときに照射対象から放射される二次荷電粒子(二次電子および二次イオンなど)Rの強度(つまり、二次荷電粒子の量)を検出し、二次荷電粒子Rの検出量の情報を出力する。検出器16は、試料室11の内部において二次荷電粒子Rの量を検出可能な位置、例えば照射領域内の試料Sなどの照射対象に対して斜め上方の位置などに配置され、試料室11に固定されている。
【0029】
ガス供給部17は、試料室11の内部においてガス噴射部(図示略)をステージ12に臨ませて、試料室11に固定されている。ガス供給部17は、集束イオンビームによる試料Sのエッチングを試料Sの材質に応じて選択的に促進するためのエッチング用ガスと、試料Sの表面に金属または絶縁体などの堆積物によるデポジション膜を形成するためのデポジション用ガスと、などを試料Sに供給可能である。例えば、Si系の試料Sに対するフッ化キセノンと、有機系の試料Sに対する水と、などのエッチング用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、エッチングを選択的に促進させる。また、例えば、フェナントレン、プラチナ、カーボン、またはタングステンなどを含有した化合物ガスのデポジション用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、デポジション用ガスから分解された固体成分を試料Sの表面に堆積させる。
【0030】
制御部21は、試料室11の外部に配置され、表示装置20と、操作者の入力操作に応じた信号を出力するマウスおよびキーボードなどの入力デバイス22とが接続されている。
制御部21は、入力デバイス22から出力される信号または予め設定された自動運転制御処理によって生成される信号などによって、荷電粒子ビーム装置10の動作を統合的に制御する。
【0031】
制御部21は、荷電粒子ビームの照射位置を走査しながら検出器16によって検出される二次荷電粒子の検出量を、照射位置に対応付けた輝度信号に変換して、二次荷電粒子の検出量の2次元位置分布によって照射対象の形状を示す画像データを生成する。制御部21は、生成した各画像データとともに、各画像データの拡大、縮小、移動、および回転などの操作を実行するための画面を、表示装置20に表示させる。制御部21は、加工設定などの各種の設定を行なうための画面を、表示装置20に表示させる。
【0032】
上述したように、本発明の実施形態によるプラズマイオン源14aによれば、外囲器40の内部に充填される絶縁性液体41によってプラズマ生成室34およびコイル39を冷却することができるので、例えばプラズマ生成室34およびコイル39の周囲にヒートパイプなどの絶縁性液体の流路を設ける場合に比べて、プラズマイオン源14a全体の大きさが増大することを防止することができる。
さらに、外囲器40の内部においてコイル39をプラズマ生成室34に出来るだけ近づけて配置することができるので、高周波電力を効率良くプラズマに伝達することができる。
さらに、外囲器40は熱伝導率が高い材料によって形成されているので、絶縁性液体41の対流などによってプラズマ生成室34およびコイル39から外囲器40に伝達される熱は、外囲器40から効率良く放熱される。
また、外囲器40は電気伝導率が高い非磁性金属によって形成されているので、コイル39の周辺で誘導電流が発生する場合であっても、無駄な電力損失の増大を防止することができる。
【0033】
上述したように、本発明の実施形態による荷電粒子ビーム装置10によれば、装置全体の大きさが増大することを防止することができる。
【0034】
なお、上述した実施形態では、外囲器40に設けられる放熱フィンを備えてもよい。
【0035】
なお、上述した実施形態では、外囲器40の内部の絶縁性液体41を吸い出して、冷却した後に再度外囲器40の内部に供給する装置(冷却装置およびポンプなど)を備えてもよい。
【0036】
なお、上述した実施形態では、電子ビーム鏡筒15は省略されてもよい。
【0037】
なお、上述した実施形態では、制御部21は、ソフトウェア機能部、またはLSIなどのハードウェア機能部であってもよい。
【0038】
なお、上記の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0039】
10…荷電粒子ビーム装置、11…試料室、12…ステージ、13…駆動機構、14…集束イオンビーム鏡筒、14a…プラズマイオン源、15…電子ビーム鏡筒、16…検出器、17…ガス供給部、20…表示装置、21…制御部、22…入力デバイス、30…トーチ、31…第1接地電位フランジ、32…第2接地電位フランジ、33…ガス導入室、34…プラズマ生成室、35…ガス導入室材、36…末端電極、37…プラズマ電極、38…絶縁部材、39…コイル、40…外囲器、41…絶縁性液体