【実施例】
【0036】
〔X線回折分析〕
リガク社製X線回折装置RINT Ultima+にて、X線源;Cu、電圧;40kV、電流;40mAで、STEP幅;0.04°、積算時間;0.5SEC/STEP、発散スリット1°、発散縦制限スリット10mm、散乱スリット1°、受光スリット0.3mmの条件で測定した。
〔結晶子径の測定〕
各試料のX線回折データを解析ソフトJADEを用いて、シェラーの式に基づいて結晶子径の算出を行なった。α相は(121)面に垂直方向の結晶子径、β相は(102)面に垂直方向の結晶子径を採用した。
〔X線回折強度比〕
各試料のX線回折データにおいて、2θ=22.3〜22.5°に出現するα相の最強線(121)面のピーク強度I
αと2θ=25.2〜25.4°に出現するβ相の最強線(102)面のピーク強度I
βとの比I
α/I
βにより算出した。
【0037】
[製造例1]クエン酸アルミニウム水溶液の製造
純水750gにクエン酸一水和物(関東化学(株)製、特級、99.5質量%)210.1g(1モル)を溶解し、得られたクエン酸水溶液を撹拌しながら乾燥水酸化アルミニウムゲル(協和化学(株)製、商品名;キョーワード200S、Al
2O
353.3質量%)95.6g(0.5モル)を添加し、85℃で2時間加熱した。加熱中に水分の一部が揮発したので純水51gを添加して1019.6gに調整した。これをガラス濾紙(アドバンテック製、GA−100)及び定量濾紙(アドバンテック製、No.5C)に通液し、淡黄色透明のクエン酸アルミニウム水溶液を得た。得られたクエン酸アルミニウム水溶液の固形分濃度(Al
2O
3換算)は5.00質量%であった。
【0038】
[製造例2]クエン酸リチウム水溶液の製造
純水734.6gに水酸化リチウム一水和物(関東(株)製、特級、98.0質量%)37.76g(0.9モル)を溶解し、クエン酸一水和物(関東化学(株)製、特級、99.5質量%)63.0g(0.3モル)を添加し、室温下で10分撹拌することにより、クエン酸リチウム水溶液を得た。得られたクエン酸リチウム水溶液の固形分濃度(Li
2O換算)は1.60質量%であった。
【0039】
[製造例3]シュウ酸アルミニウム水溶液の製造
純水1469.6gにシュウ酸二水和物(関東化学(株)製、特級、99.5質量%)378.8g(3モル)を溶解し、得られたシュウ酸水溶液を撹拌しながら乾燥水酸化アルミニウムゲル(協和化学(株)製、商品名;キョーワード200S、Al
2O
353.3質量%)191.3g(1モル)を添加し、85℃で2時間加熱した。加熱中に水分の一部が揮発したので純水45gを添加して2039.2gに調整した。これをガラス濾紙(アドバンテック製、GA−100)及び定量濾紙(アドバンテック製、No.5C)に通液し、淡黄色透明のシュウ酸アルミニウム水溶液を得た。得られたシュウ酸アルミニウム水溶液の固形分濃度(Al
2O
3換算)は5.00質量%であった。
【0040】
[製造例4]シュウ酸リチウム水溶液の製造
純水819.1gに水酸化リチウム一水和物(関東(株)製、特級、98.0質量%)42.0g(1モル)を溶解し、シュウ酸二水和物(関東化学(株)製、特級、99.5質量%)63.0g(0.5モル)を添加し、室温化で10分撹拌することにより、シュウ酸リチウム水溶液を得た。得られたシュウ酸リチウム水溶液の固形分濃度(Li
2O換算)は1.62質量%であった。
【0041】
[製造例5]マロン酸アルミニウム水溶液の製造
純水767.7gにマロン酸(関東化学(株)製、特級、99.5質量%)156.1g(1.5モル)を溶解し、得られたマロン酸水溶液を撹拌しながら乾燥水酸化アルミニウムゲル(協和化学(株)製、商品名;キョーワード200S、Al
2O
353.3質量%)95.6g(0.5モル)を添加し、85℃で2時間加熱した。加熱中に水分の一部が揮発したので純水45gを添加して1019.6gに調整した。これをガラス濾紙(アドバンテック製、GA−100)及び定量濾紙(アドバンテック製、No.5C)に通液し、淡黄色透明のマロン酸アルミニウム水溶液を得た。得られたマロン酸アルミニウム水溶液の固形分濃度(Al
2O
3換算)は5.00質量%であった。
【0042】
[製造例6]マロン酸リチウム水溶液の製造
純水370.4gに水酸化リチウム一水和物(関東(株)製、特級、98.0質量%)42.0g(1モル)を溶解し、マロン酸(関東化学(株)製、特級、99.5質量%)52.0g(0.5モル)を添加し、室温下で10分間撹拌することにより、マロン酸リチウム水溶液を得た。得られたマロン酸リチウム水溶液の固形分濃度(Li
2O換算)は3.22質量%であった。
【0043】
[実施例1]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)515.0g(SiO
20.9モル)に、製造例1で得られたクエン酸アルミニウム水溶液917.6g(Al
2O
30.45モル)及び製造例2で得られたクエン酸リチウム水溶液835.4gを添加し、室温下で10分間撹拌した。得られた混合液の比重は1.075、pHは2.8、電気伝導度は15.0mS/cmであった。得られた混合液をスプレードライヤー(パルビスミニスプレーGB210−A型、ヤマト科学(株)製)を使用して、入口温度185℃、アトマイジングエアー圧力1.4kgf/cm
2、アスピレーター流量0.50m
3/分、混合液の送液速度4g/分の条件にて乾燥を行った。このときの出口温度は80±3℃であった。得られた乾燥粉3.0gをアルミナ坩堝に入れ、電気炉を使用して大気中で800℃の温度で1時間焼成することにより、薄く灰色を帯びた白色粉末0.7gを得た。得られた粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.01未満であった。β相の結晶子径は62nmであった。窒素吸着法による比表面積は1.6m
2/gであった。
【0044】
[実施例2]
大気中で800℃で焼成する前に、電気炉を使用して大気中で500℃の温度で5時間の仮焼成を行った以外は実施例1と同様に行った。得られた白色粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.01未満であった。β相の結晶子径は61nmであった。窒素吸着法による比表面積は1.3m
2/gであった。
【0045】
[実施例3]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)572.2g(SiO
21モル)に、製造例3で得られたシュウ酸アルミニウム水溶液1019・6g(Al
2O
30.5モル)及び製造例4で得られたシュウ酸リチウム水溶液924.1g(Li
2O0.5モル)添加し、室温下で10分間撹拌した。得られた混合液の比重は1.068、pHは2.0、電気伝導度は22.3mS/cmであった。得られた混合液をスプレードライヤー(パルビスミニスプレーGB210−A型、ヤマト科学(株)製)を使用して、入口温度185℃、アトマイジングエアー圧力1.4kgf/cm
2、アスピレーター流量0.50m
3/分、混合液の送液速度4g/分の条件にて乾燥を行った。このときの出口温度は80±3℃であった。得られた乾燥粉3.0gをアルミナ坩堝に入れ、電気炉を使用して大気中で800℃の温度で1時間焼成することにより、白色粉末1.1gを得た。得られた白色粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.02であった。β相の結晶子径は46nmであった。窒素吸着法による比表面積は4.1m
2/gであった。
【0046】
[実施例4]
コロイダルシリカ、クエン酸アルミニウム水溶液及びクエン酸リチウム水溶液の混合液をスプレードライヤーで乾燥した後、大気中で1時間焼成する際の温度を900℃とした以外は実施例1と同様に行い、白色粉末0.9gを得た。得られた白色粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.01未満であった。β相の結晶子径は66nmであった。窒素吸着法による比表面積は1.6m
2/gであった。
【0047】
[実施例5]
コロイダルシリカ、シュウ酸アルミニウム水溶液及びシュウ酸リチウム水溶液の混合液をスプレードライヤーで乾燥した後、大気中での焼成を600℃で20時間とした以外は実施例3と同様に行い、白色粉末1.1gを得た。得られた白色粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.03であった。結晶子径は44nmであった。窒素吸着法による比表面積は7.3m
2/gであった。
【0048】
[実施例6]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)の代わりに、コロイダルシリカ(スノーテックス(登録商標)OL、日産化学工業(株)製、シリカ濃度40.5質量%、透過型電子顕微鏡観察による一次粒子径42nm)を用いた以外は実施例1と同様に行なった。得られた薄く灰色を帯びた白色粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.03であった。β相の結晶子径は24nmであった。窒素吸着法による比表面積は24.7m
2/gであった。
【0049】
[実施例7]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)572.2g(SiO
21モル)に、製造例5で得られたマロン酸アルミニウム水溶液1019.6g(Al
2O
30.5モル)及び製造例6で得られたマロン酸リチウム水溶液464.4g(Li
2O0.5モル)添加し、室温下で10分間撹拌した。得られた混合液の比重は1.090、pHは3.83、電気伝導度は15.6mS/cmであった。得られた混合液をスプレードライヤー(パルビスミニスプレーGB210−A型、ヤマト科学(株)製)を使用して、入口温度185℃、アトマイジングエアー圧力1.4kgf/cm
2、アスピレーター流量0.50m
3/分、混合液の送液速度4g/分の条件にて乾燥を行った。このときの出口温度は80±3℃であった。得られた乾燥粉3.0gをアルミナ坩堝に入れ、電気炉を使用して大気中で500℃の温度で5時間の仮焼成を行い、次いで大気中で800℃の温度で1時間焼成することにより、白色粉末0.8gを得た。得られた白色粉末をX線回折分析により同定したところ、生成相はβ−ユークリプタイトのほぼ単相からなり、X線回折ピークの強度比I
α/I
βは0.04であった。β相の結晶子径は41nmであった。窒素吸着法による比表面積は2.7m
2/gであった。
【0050】
[比較例1]
電気炉を用いた大気中での焼成を500℃で5時間の焼成のみとした以外は実施例1と同様に行った。得られた黒色粉末をX線回折分析により同定したところ、ハローパターンが観測され、β−ユークリプタイトの結晶相は確認できなかった。
【0051】
[比較例2]
混合液の乾燥方法をスプレードライヤーの代わりに、混合液をナスフラスコに入れてロータリーエバポレーターを用いて30Torrで減圧乾燥した以外は実施例1と同様に行なった。得られた薄く灰色を帯びた白色粉末をX線回折分析により同定したところ、生成相はα相とβ相との混相であり、X線回折ピークの強度比I
α/I
βは0.13であった。β相の結晶子径は34nmであった。窒素吸着法による比表面積は10.1m
2/gであった。
【0052】
[比較例3]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)の代わりに、コロイダルシリカ(スノーテックス(登録商標)OZL、日産化学工業(株)製、シリカ濃度35.5質量%、透過型電子顕微鏡観察による一次粒子径80nm)を用いた以外は実施例1と同様に行なった。得られた薄く灰色を帯びた白色粉末をX線回折分析により同定したところ、生成相はα相とβ相との混相であり、X線回折ピークの強度比I
α/I
βは0.08であり、さらにアモルファス相によるハローパターンが観察された。β相の結晶子径は34nmであった。窒素吸着法による比表面積は10.1m
2/gであった。
【0053】
[比較例4]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)57.2gに、水酸化リチウム一水和物4.20gを純水50gに溶解させた水溶液を添加し、次いで乾燥水酸化アルミニウムゲル(協和化学(株)製、商品名;キョーワード200S、Al
2O
353.3質量%)9.57gを投入して10分間混合した。得られた混合スラリーをナスフラスコに入れてロータリーエバポレーターを用いて30Torrで減圧乾燥した。得られた白色粉末をアルミナ坩堝に入れ、電気炉を使用して大気中で800℃の温度で1時間焼成した。得られた白色粉末をX線回折分析により同定したところ、生成相はα相とβ相との混相であり、X線回折ピークの強度比I
α/I
βは0.17であった。β相の結晶子径は24nmであった。窒素吸着法による比表面積は24.8m
2/gであった。
【0054】
[比較例5]
コロイダルシリカ(スノーテックス(登録商標)OXS、日産化学工業(株)製、シリカ濃度10.5質量%、透過型電子顕微鏡観察による一次粒子径5nm)57.2gに、水酸化リチウム一水和物4.20gを純水50gに溶解させた水溶液を添加し、次いで乾燥水酸化アルミニウムゲル(協和化学(株)製、商品名;キョーワード200S、Al
2O
353.3質量%)9.57gを投入して10分間混合した。得られた混合スラリーをスプレードライヤー(パルビスミニスプレーGB210−A型、ヤマト科学(株)製)を使用して、入口温度185℃、アトマイジングエアー圧力1.4kgf/cm
2、アスピレーター流量0.50m
3/分、混合液の送液速度4g/分の条件にて乾燥を行おうとしたところ、直ちにノズルが詰まり噴霧できなかった。