【実施例1】
【0018】
〈装置の全体構成〉
図1に、本実施の形態に係る自動分析装置の基本構成を示す。ここでは、自動分析装置の一態様として血液凝固分析を行う装置の例について説明する。本図に示すように、自動分析装置100は、主として、サンプルディスク102、試薬ディスク104、サンプル分注機構106、試薬分注機構107、サンプル分注ポート108、分析ポート109、反応容器供給部110、反応容器移載機構113、および制御部114等から構成される。
【0019】
サンプルディスク102は、時計回り、反時計回りに回転自在なディスク状のユニットであって、標準サンプルや被検サンプル等のサンプルを収容するサンプル容器(試料容器)101をその円周上に複数個配置することができる。
【0020】
試薬ディスク104は、サンプルディスク102と同様に、時計回り、反時計回りに回転自在なディスク状のユニットであって、サンプルに含まれる各検査項目の成分と反応する成分を含有する試薬を収容する試薬容器103をその円周上に複数個配置できる。また、本図には示していないが、試薬ディスク104では、保冷機構等を備えることにより、配置された試薬容器103内の試薬を保冷可能に構成することもできる。
【0021】
反応容器移載機構113は、分析に使用する反応容器105を反応容器供給部110からサンプル分注ポート108に移送し、搬入する。また、サンプルが分注された後の反応容器105を、サンプル分注ポート108から搬出し、分析ポート109に移送、搬入する。分析終了後は、分析ポート109内の反応容器105を搬出し、反応容器廃棄部112へ移送する。
【0022】
サンプル分注機構106は、サンプルディスク102に保持されたサンプル容器101内のサンプルを吸引して、サンプル分注ポート108に設置された反応容器105内へのサンプルの分注を行う。サンプル分注機構106は、サンプル分注ノズルと図示しないサンプル用ポンプまたはサンプル用シリンジが流路を介して接続されており、圧力伝達媒体として例えば、水が使用される。サンプルの吸引および吐出は、サンプル用シリンジまたはサンプル用ポンプの動作によって行われ、これらの動作は制御部114の指示に基づいて制御される。サンプル分注機構の回転および上下動作は制御部114の指示に基づいて制御される。
【0023】
試薬分注機構107は、試薬ディスク104に保持された試薬容器103内の試薬を吸引して、分析ポート109に設置された、サンプルが分注された反応容器105内に分注を行う。試薬分注機構107は、試薬分注ノズルと図示しない試薬用ポンプまたは試薬用シリンジが流路を介して接続されており、圧力伝達媒体として例えば、水が使用される。試薬の吸引および吐出は、試薬用シリンジまたは試薬用ポンプの動作によって行われ、これらの動作は制御部114の指示に基づいて制御される。試薬分注機構107の水平移動および上下動作は制御部114の指示に基づいて制御される。
【0024】
洗浄機構111では、サンプル分注機構106、試薬分注機構107の洗浄を行う。
【0025】
分析ポート109には反応容器105を複数設置することができ、複数のサンプルの分析を同時に行うことができる。分析ポート109は、収容される1つの反応容器105に対して、光源115と、受光部(検出器)116とをそれぞれ備えている。反応容器105中の反応液704に対して光源115から光が照射され、反応液中で生じた反応によって産生された析出物により、散乱される。析出物が増加するとこのように散乱される光も増加するため、この散乱光を受光部(検出器)116で検出することによって析出物の量を求めることができる。
【0026】
例えば血液凝固検査項目では、サンプルと試薬とが反応すると、時間の経過とともにフィブリンが析出する。そして、このフィブリンの析出に伴って散乱される光量も増加する。この光量を検出することで、サンプル中のフィブリノーゲン量(Fbg)を求めることができる。また、各々の検査項目に対応する試薬を用いて同様に光量を監視することで、プロトロンビン時間(PT)や活性化部分トロンボプラスチン時間(APTT)等の他の血液凝固検査項目を分析することもできる。
【0027】
また、全体を通して、制御部114は、サンプルディスク102、試薬ディスク104、サンプル分注機構106、試薬分注機構107の上下および水平動作や、図示しないサンプル用シリンジポンプ、試薬用シリンジポンプの動作、洗浄機構111における図示しない洗浄水の供給動作、分析ポート109aの光源115および受光部116の動作、検出結果に基づく血液凝固時間や目的成分の濃度の演算などのデータ処理動作等、自動分析装置100を構成する種々の構成の動作や条件設定等の制御を実施する。なお、本図において制御部114は各々の構成部に接続され、自動分析装置の全体を制御するものとしたが、構成部ごとに各々独立した制御部を備えるように構成することもできる。
【0028】
〈試薬容器の構造と収容される溶液の液面との関係〉
試薬容器103について
図3を用いて説明する。
図3は、本実施の形態に係る試薬容器の形状を示す。
【0029】
開口部を有する試薬容器103にて、凍結乾燥試薬と溶媒との転倒混和を行う場合には、試薬容器内の液面の高さは開口部よりも下方である必要がある。
【0030】
図3(a)のように試薬容器103が柱体もしくは球体であり、開口部103aが試薬容器103の重心にある場合、試薬容器103の容積Vに対して、液量がV/2未満であると、試薬容器103をどのような姿勢にしても液面の高さは開口部103aよりも下方となる。
【0031】
図3(b)左図は、四角柱の試薬容器103にて、開口部103aが試薬容器103の重心にある状態を示す。そして、右図は、同じく四角柱の試薬容器103にて開口部103aが重心からずれた状態を示す。特に、本図に示すように四角柱の試薬容器103では、開口部がどの位置に形成されていたとしても、開口部103aから最も近い面までの距離をx、y、zとしたとき、液量は4xyz未満であれば、どのような姿勢にしても液面の高さは開口部103aよりも下方となる。
【0032】
図3(c)のように、しぼり、くぼみ、膨らみ、もしくは、試薬容器103の蓋bなどの構造物により、容積が増減した柱体(本図においては、試薬容器の元の体積Vから、ΔV分だけ容積を減少させた構成の場合について示す)の試薬容器103は、液量が容積の変化量ΔVを減じたV/2−ΔV未満であると、試薬容器103をどのような姿勢にしても液面の高さは開口部103aよりも下方に位置することとなる。
【0033】
なお、上述した態様以外であっても、試薬容器103が溶液を内包した状態でどのような姿勢にしても、液面の高さが開口部103aよりも下方となる条件を満たしていれば、試薬容器103の形状および開口部103aの位置は問わない。
【0034】
<凍結乾燥試薬の自動溶解>
次に、本実施の形態に係る凍結乾燥試薬201の自動溶解機能について
図2および
図6のフローチャートを用いて説明する。
図2は、本実施の形態に係る凍結乾燥試薬の転倒混和を説明する図である。また、
図6は、本実施の形態に係る凍結乾燥試薬の転倒混和を説明するフローチャートである。
【0035】
まず、ステップ601では、
図2(a)に示すように、凍結乾燥試薬201が内包されている試薬容器103を試薬ディスク104に設置する<S601>。このとき、試薬容器103の上部には、小さな凍結乾燥試薬片201aが付着している。
【0036】
次に、制御部114は、試薬分注機構107の圧力伝達媒体が水である構成において、凍結乾燥試薬201の溶媒202が水以外である場合には、試薬分注機構107によって溶媒容器から溶媒を吸引するように動作を制御する<S602>。一方、ここで、溶媒202が水である場合には、試薬分注機構107の圧力伝達媒体である水を試薬容器103内に分注することもできため、溶媒の吸引が不要となる。
【0037】
凍結乾燥試薬201が内包されている試薬容器103は、蓋103bによって密閉されている。
図2(b)に示すように、試薬容器の蓋103bは、試薬分注機構107のノズル、または、穿刺用の針等によって穿刺が可能であり、溶媒202を試薬容器103内に分注する際には蓋103bを穿刺することで分注ができる。ここで、試薬分注機構107の試薬分注ノズルが試薬容器103の蓋103bを穿刺し、所定量の溶媒202を試薬容器103内に分注する<S603>。このとき、
図2(c)のように試薬容器103内に溶媒202を分注しただけでは試薬容器103上部に付着した小さな凍結乾燥試薬片201aは溶解せずに残ったままである。
【0038】
続いて、
図2(d)(e)のように溶媒202を分注された試薬容器103は後述する
転倒混和ユニット119に移設され<S605>、転倒混和される<S606>。試薬容器の蓋103bは上述の通り試薬分注機構107のノズルによって穿刺され開口しているため、開口部103aが溶解試薬203の液面より下方に位置し、液中に入ると、開口部103aを介して溶解試薬203が試薬容器103外にこぼれてしまうことになるが、上述した試薬容器103の構造と収容される溶液の液面との関係の条件を満たしていれば、試薬容器103を横転、倒立など、どの角度に配置しても開口部103aが液面よりも常に上方に位置することとなるため、液が試薬容器103外にこぼれることがない。転倒混和後、試薬容器104を正立させ、試薬容器103を試薬ディスク104に移設する<S607>。
【0039】
<転倒混和ユニットの構成>
次に、本実施の形態に係る、転倒混和ユニット119の構成について
図5を用いて説明する。ここで、
図5(a−1)は試薬容器103が正立した状態を示し、
図5(a−2)はその模式図である。また、
図5(b−1)は試薬容器103が横転した状態を示し、
図5(b−2)はその模式図である。本図に示すように、転倒混和ユニット119は、自転軸傾倒用モータ501および、自転用モータ502の2つの駆動部を備えている。
【0040】
自転軸傾倒用モータ501はベルト503および2つのプーリ504を介して、試薬容器保持具505に接続される。試薬容器103は試薬容器保持具505に収容される。自転軸傾倒用モータ501が駆動することにより、試薬容器保持具505が傾倒し、収容されている試薬容器103が傾倒する。自転用モータ502は試薬容器保持具505に接続され、収容されている試薬容器103と共に自転をさせることができる。自転用傾倒用モータ501と自転用モータ502はそれぞれ独立して駆動することができる。
【0041】
続いて、試薬容器103の転倒混和の方法について説明する。転倒混和ユニット119に載置された試薬容器103は、自転をしながらその回転軸を傾けることで内部に収容される凍結乾燥試薬201と溶媒202との転倒混和を行う。このとき自転の回転速度は例えば40回転/分程度が望ましい。
【0042】
また、転倒混和する際の自転軸の角度は、凍結乾燥試薬201を溶解するためには、試薬容器103上部に付着した小さな凍結乾燥試薬片201aを溶解させる目的で、例えば、70°から110°の範囲で角度を変化させ、試薬容器103を揺らしながら自転させるのが望ましい。これにより、溶媒202が試薬容器103の上部まで行きわたるため、試薬容器103上部に付着した小さな凍結乾燥試薬片201aを溶解させることができる。
【0043】
一方で、沈殿を生じやすい試薬など、溶解試薬203に濃度勾配が生じる試薬においては、45°を中心に35°から55°の範囲で自転軸の角度を変化させ、試薬容器103を揺らしながら自転させるのが望ましい。この場合、定期的に、例えば30分毎等の所定の時間の間隔にて本条件で自転を行うことで、沈殿した試薬を混和させることができる。また、この場合には、予め上述した液面の高さがどの姿勢であっても開口部よりも下方となる条件を満たす試薬量が試薬容器に収容されていることが必要となる。
【0044】
また、凍結乾燥試薬片201a溶解後に、再度混和させて濃度を均一化させる場合にも、同様の条件で角度を変化させながら自転することができる。
【0045】
いずれの溶解方法においても、この際液面が波打たない程度の速度で自転軸の角度を変化させることで、試薬が泡立つことを防ぐことができる。
【0046】
また、試薬容器103が横転、倒立した状態から、正立に戻す際には、自転軸の角度をゆっくりと戻すことによって、溶解試薬203が表面張力によって試薬容器103の壁面や上部に付着せずに試薬容器103の底に溶解試薬203を保持することが可能となる。
【0047】
これにより、試薬容器103内の液を試薬容器103外にこぼすことなく、転倒混和を行うことができるので、試薬容器103の壁面や蓋周りに付着している小さな凍結乾燥試薬片201aも溶解でき、試薬濃度の容器間の変動を小さくすることができる。また、ユーザの手を煩わすことなく、試薬の溶解を可能とする。
【実施例2】
【0048】
第1の実施の形態では、試薬分注機構107が、凍結乾燥試薬201を内包した試薬容器103内に所定量の溶媒202を分注する方法について説明した。
【0049】
本実施の形態では、溶媒202の分注を2回以上に分けて実施する方法について説明する。所定の条件下のもと、分注の回数を複数回に分けることで、後述するように試薬容器内に保持する試薬の量を多くすることができる。
【0050】
図7は第2の実施の形態に係る凍結乾燥試薬の転倒混和を説明するフローチャートである。S707までは
図6(第1の実施の形態)と同様であるため説明を省略する。ここで、1回目の溶媒202の分注量は、凍結乾燥試薬201が飽和せずに溶解できる量以上であり、かつ、どの角度に回転させても液面が試薬容器103の開口部よりも下方に位置する量以下である、という条件を満たす必要がある。
【0051】
ここで、
図8は第2の実施の形態に係る分注の回数と保持する試薬量との関係を示す図である。分注の回数を複数回に分けることで、試薬容器内に保持する試薬の量を多くすることができる前提条件としては、液面が試薬容器の開口部の下方に位置するために必要な溶解試薬203の容積が、試薬容器が正立状態である場合と倒立状態である場合とで差があることが必要である。例えば、試薬容器の開口部が蓋部の近くに位置する場合や、試薬容器の形状により両者に差が生じる場合等がある。このような前提において、上述した1回目の溶媒202の分注量の条件を満たそうとすると、溶媒202の分注量は、最も溶解試薬203の容積が小さくなる倒立状態において、その液面が開口部よりも下方に位置する必要がある。よって、
図8の左に示すように、分注量の容積は「小」となる。
【0052】
1回目の分注にて分注された溶媒202を転倒混和後、試薬容器103を試薬ディスク104に設置する。その後、2回目の分注では、溶解試薬203が所定量となるよう残りの溶媒202を分注する。<S708>。ここで、2回目の溶媒202の分注量の条件としては、最も溶解試薬203の容積が大きくなる正立状態において、その液面が開口部よりも下方に位置する必要がある。よって、
図8の右に示すように、分注量の容積は「大」となる。
【0053】
2回目の分注後、再度試薬容器103を転倒混和ユニット119に設置し、混和を行う<S709>。このとき、1回目の転倒混和によって試薬容器103の壁面や蓋周りに付着している小さな凍結乾燥試薬片201aは溶解できているため、試薬容器103の自転軸の角度は、45°程度傾けながら混和を行うのみで良い<S710>。混和後、試薬容器103を正立させ、試薬容器103を試薬ディスク104に移設する。<S711>
1回のみの分注動作にて溶媒202を分注した場合、上述した前提条件のもとでは、最も容積が小さくなる試薬容器の配置状態に合わせた分注量を設定しなければならないが、本実施の形態によれば、凍結乾燥試薬の自動溶解機能を実装しつつ、第1の実施の形態よりも、試薬容器103内に保持できる溶解試薬203の量が多くなるため、試薬容器103の容積を効率的に使用することが可能となる。
【0054】
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態構成の一部について、他の構成の追加・削除・置換をすることが可能である。