特許第6588170号(P6588170)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友化学株式会社の特許一覧

特許6588170セパレータ、およびセパレータを含む二次電池
<>
  • 特許6588170-セパレータ、およびセパレータを含む二次電池 図000003
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6588170
(24)【登録日】2019年9月20日
(45)【発行日】2019年10月9日
(54)【発明の名称】セパレータ、およびセパレータを含む二次電池
(51)【国際特許分類】
   H01M 2/16 20060101AFI20191001BHJP
【FI】
   H01M2/16 P
【請求項の数】4
【全頁数】16
(21)【出願番号】特願2018-546953(P2018-546953)
(86)(22)【出願日】2016年10月24日
(86)【国際出願番号】JP2016081479
(87)【国際公開番号】WO2018078702
(87)【国際公開日】20180503
【審査請求日】2019年3月4日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000002093
【氏名又は名称】住友化学株式会社
(74)【代理人】
【識別番号】110000408
【氏名又は名称】特許業務法人高橋・林アンドパートナーズ
(72)【発明者】
【氏名】吉丸 央江
(72)【発明者】
【氏名】村上 力
(72)【発明者】
【氏名】鈴木 純次
【審査官】 小森 利永子
(56)【参考文献】
【文献】 特開2015−120835(JP,A)
【文献】 国際公開第2012/090632(WO,A1)
【文献】 特開2013−194153(JP,A)
【文献】 特開平10−195215(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 2/14−2/18
(57)【特許請求の範囲】
【請求項1】
多孔質ポリオレフィンからなる第1の層からなり、
3重量%の水を含むN−メチルピロリドンに前記第1の層を含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで前記第1の層に照射したときから前記第1の層の昇温が1秒以上観測されなくなるまでの、目付当たりの時間が2.9s・m2/g以上5.7s・m2/g以下であり、
前記第1の層のホワイトインデックスが86以上98以下である、リチウムイオン二次電池用セパレータ。
【請求項2】
前記時間が2.9s・m2/g以上5.3s・m2/g以下である、請求項1に記載のリチウムイオン二次電池用セパレータ。
【請求項3】
前記ホワイトインデックスが90以上97以下である、請求項1に記載のリチウムイオン二次電池用セパレータ。
【請求項4】
請求項1に記載の前記リチウムイオン二次電池用セパレータを有するリチウムイオン二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態の一つは、セパレータ、およびセパレータを含む二次電池に関する。例えば本発明の実施形態の一つは、非水電解液二次電池に用いることが可能なセパレータ、およびセパレータを含む非水電解液二次電池に関する。
【背景技術】
【0002】
非水電解液二次電池の代表例として、リチウムイオン二次電池が挙げられる。リチウムイオン二次電池はエネルギー密度が高く、このため、パーソナルコンピュータや携帯電話、携帯情報端末などの電子機器に広く用いられている。リチウムイオン二次電池は、正極、負極、正極と負極の間に満たされる電解液、およびセパレータを有している。セパレータは正極と負極を分離するとともに、電解液やキャリアイオンが透過する膜として機能する。例えば特許文献1から5には、ポリオレフィンを含むセパレータが開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第5164296号公報
【特許文献2】特開2015−120835号公報
【特許文献3】特開2014−56843号公報
【特許文献4】特開2015−60686号公報
【特許文献5】特開2013−73737号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の課題の一つは、非水電解液二次電池などの二次電池に用いることが可能なセパレータ、およびセパレータを含む二次電池を提供することである。あるいは本発明の課題の一つは、二次電池の放充電を繰り返した時のレート特性の低下を抑制可能なセパレータ、およびセパレータを含む二次電池を提供することである。
【課題を解決するための手段】
【0005】
本発明の実施形態の一つは、多孔質ポリオレフィンからなる第1の層を有するセパレータである。3重量%の水を含むN−メチルピロリドンに第1の層を含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで第1の層に照射したときの第1の層の温度上昇収束時間は2.9s・m/g以上5.7s・m/g以下であり、第1の層のホワイトインデックスは86以上98以下である。
【発明の効果】
【0006】
本発明により、充放電を繰り返した後も、優れたレート特性を発現できる二次電池を与えるセパレータ、およびそれを含む非水電解液二次電池などの二次電池を提供することができる。
【図面の簡単な説明】
【0007】
図1】本発明の一実施形態の二次電池、およびセパレータの断面模式図。
【発明を実施するための形態】
【0008】
以下、本発明の各実施形態について、図面などを参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
【0009】
図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状などについて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
【0010】
本明細書および請求項において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
【0011】
本明細書および請求項において、「実質的にAのみを含む」という表現は、A以外の物質を含まない状態、Aと不純物を含む状態、および測定誤差に起因してA以外の物質が含まれていると誤認される状態を含む。この表現がAと不純物を含む状態を指す場合には、不純物の種類と濃度に限定はない。
【0012】
(第1実施形態)
本発明の実施形態の一つである二次電池100の断面模式図を図1(A)に示す。二次電池100は、正極110、負極120、正極110と負極120を分離するセパレータ130を有する。図示していないが、二次電池100は電解液140を有する。電解液140は主に正極110、負極120、セパレータ130の空隙や各部材間の隙間に存在する。正極110は正極集電体112と正極活物質層114を含むことができる。同様に、負極120は負極集電体122と負極活物質層124を含むことができる。図1(A)では図示していないが、二次電池100はさらに筐体を有し、筐体によって正極110、負極120、セパレータ130、および電解液140が保持される。
【0013】
[1.セパレータ]
<1−1.構成>
セパレータ130は、正極110と負極120の間に設けられ、正極110と負極120を分離するとともに、二次電池100内で電解液140の移動を担うフィルムである。図1(B)にセパレータ130の断面模式図を示す。セパレータ130は多孔質ポリオレフィンを含む第1の層132を有し、さらに任意の構成として、多孔質層134を有することができる。セパレータ130は、図1(B)に示すように、2つの多孔質層134が第1の層132を挟持する構造を有することもできるが、第1の層132の一方の面のみに多孔質層134を設けてもよく、あるいは多孔質層134を設けない構成とすることもできる。第1の層132は単層の構造を有していてもよく、複数の層から構成されていてもよい。
【0014】
第1の層132は内部に連結した細孔を有する。この構造に起因し、第1の層132を電解液140が透過することができ、また、電解液140を介してリチウムイオンなどのキャリアイオンの移動が可能となる。同時に正極110と負極120の物理的接触を禁止する。一方、二次電池100が高温になった場合、第1の層132は溶融して無孔化することでキャリアイオンの移動を停止する。この動作はシャットダウンと呼ばれる。この動作により、正極110と負極120間のショートに起因する発熱や発火が防止され、高い安全性を確保することができる。
【0015】
第1の層132は、多孔質ポリオレフィンから構成されていてもよい。すなわち、第1の層132は多孔質ポリオレフィンのみ、あるいは実質的に多孔質ポリオレフィンのみを含むように構成されていてもよい。あるいは、第1の層132は多孔質ポリオレフィンと添加剤を含むことができる。この場合、第1の層132は、多孔質ポリオレフィンと添加剤のみ、あるいは実質的に多孔質ポリオレフィンと添加剤のみで構成されていてもよい。多孔質ポリオレフィンと有機添加剤を含む場合、ポリオレフィンは、95重量%以上、あるいは97重量%以上、あるいは99重量%以上の組成で多孔質ポリオレフィンに含まれることができる。また、ポリオレフィンは、95重量%以上、あるいは97重量%以上、あるいは99重量%以上の組成で第1の層132に含まれることができる。前記多孔質フィルムにおけるポリオレフィンの含有量は100重量%でもよく、100重量%以下でもよい。添加剤としては、有機化合物(有機添加剤)が挙げられ、有機化合物は酸化防止剤(有機酸化防止剤)や滑剤であってもよい。
【0016】
多孔質ポリオレフィンを構成するポリオレフィンとしては、エチレンや、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどのα―オレフィンを重合した単独重合体、またはこれらの共重合体を挙げることができる。第1の層132には、これらの単独重合体や共重合体の混合物が含まれていてもよい。有機添加剤はポリオレフィンの酸化を防止する機能を持つことができ、例えばフェノール類やリン酸エステル類などを有機添加剤として用いることができる。フェノール性水酸基のα位、および/またはβ位にかさ高い置換基を有するフェノール類を用いてもよい。
【0017】
代表的なポリオレフィンとして、ポリエチレン系重合体が挙げられる。ポリエチレン系重合体を用いる場合、低密度ポリエチレン、高密度ポリエチレンのいずれを用いてもよい。あるいはエチレンとα―オレフィンの共重合体を用いてもよい。これらの重合体、あるいは共重合体は、重量平均分子量が10万以上の高分子量体、あるいは100万以上の超高分子量体でもよい。ポリエチレン系重合体を用いることで、より低温でシャットダウン機能を発現することができ、二次電池100に対して高い安全性を付与することができる。また、重量平均分子量が100万以上の超高分子量体を用いることで、セパレータの機械強度を向上させることができる。
【0018】
第1の層132の厚さは、二次電池100中の他の部材の厚さなどを考慮して適宜決定すればよく、4μm以上40μm以下、5μm以上30μm以下、あるいは6μm以上15μm以下とすることができる。
【0019】
第1の層132の目付は、強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよい。例えば二次電池100の重量エネルギー密度や体積エネルギー密度を高くすることができるように、4g/m以上20g/m以下、4g/m以上12g/m以下、あるいは5g/m以上10g/m以下とすることができる。なお目付とは、単位面積当たりの重量である。
【0020】
第1の層132の透気度は、ガーレ値で30s/100mL以上500s/100mL以下、あるいは50s/100mL以上300s/100mL以下の範囲から選択することができる。これにより、充分なイオン透過性を得ることができる。
【0021】
第1の層132の空隙率は、電解液140の保持量を高めるとともに、より確実にシャットダウン機能が発現できるよう、20体積%以上80体積%以下、あるいは30体積%以上75体積%以下の範囲から選択することができる。また、第1の層132の細孔の孔径(平均細孔径)は、充分なイオン透過性と高いシャットダウン機能を得ることができるよう、0.01μm以上0.3μm以下、あるいは0.01μm以上0.14μm以下の範囲から選択することができる。
【0022】
<1−2.特性>
第1の層132は、3重量%の水を含むN−メチルピロリドンに含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで照射したときの昇温が収束するまでの目付当たりの時間(以下、温度上昇収束時間と記す)が、2.9s・m/g以上5.7s・m/g以下、あるいは2.9s・m/g以上5.3s・m/g以下である。また、第1の層132は、ホワイトインデックス(以下、WIと記す)が86以上98以下、あるいは90以上97以下である。
【0023】
ここで、本明細書および請求項において、WIとは、AMERICAN Standards TEST MethodsのE313に規定されるWIである。WIは、積分球分光測色計などの光学測定装置を用いて測定することができる。
【0024】
第1の層132の細孔の構造(細孔内の毛細管力および細孔の壁の面積)、および、第1の層132から電極(正極110、負極120)への電解液140の供給能は、電池の充放電を繰り返したり、大電流で動作させたときのレート特性の低下と関係している。例えば二次電池100の充放電を行うと、電極が膨張する。具体的には、充電時には負極120が膨張し、放電時には正極110が膨張する。そのため、第1の層132の内部に含まれる電解液140は、膨張する電極側から対向する電極側に押し出される。このような機構により、充放電サイクル中、電解液140は第1の層132の細孔内を移動する。
【0025】
第1の層132の細孔内を電解液140が移動するとき、細孔の壁面は電解液140により圧力を受ける。圧力の強さは、細孔の構造に関係している。具体的には、細孔の壁面が受ける圧力は、毛細管力が強いほど増大するとともに、細孔の壁面の面積が大きいほど増大すると考えられる。さらに、圧力の強さは、細孔内を移動する電解液140の量とも関係し、移動する電解液140が多い、すなわち、二次電池100を大電流で作動させた場合に大きくなると考えられる。圧力が増大すると、壁面が圧力によって細孔を閉塞するように変形し、その結果、電池出力特性が低下する。このため、二次電池100の充放電を繰り返したり、大電流で作動させることにより、徐々にレート特性が低下する。
【0026】
一方、第1の層132から透過する電解液140が少ない場合、電極周辺の電解液140が減少し、電解液140が分解することが考えられる。電解液140の分解によって生じる分解生成物は、二次電池100のレート特性の低下の原因となる。
【0027】
ここで、水を含むN−メチルピロリドンにマイクロ波を照射すると、水の振動エネルギーにより発熱する。発生した熱は、N−メチルピロリドンが接触している第1の層132に伝わる。そして、発熱速度と第1の層132への伝熱による放熱速度が平衡に達した時点でN−メチルピロリドンの温度上昇が収束する。そのため、昇温が収束するまでの時間(温度上昇収束時間)は、第1の層132に含まれる溶媒(ここでは水を含むN−メチルピロリドン)と第1の層132の接触の程度と関係する。この接触の程度は、第1の層132の細孔内の毛細管力、および細孔の壁の面積と密接に関係しているため、温度上昇収束時間により第1の層132の細孔の構造を評価することができる。具体的には、温度上昇収束時間が短いほど、細孔内の毛細管力が大きく、細孔の壁の面積が大きいことを示している。
【0028】
また、この接触の程度は、電解液が第1の層132の細孔内を移動しやすいほど大きくなるものと考えられる。そのため、温度上昇収束時間により、第1の層132から正極110や負極120への電解液140の供給能を評価することができる。具体的には、温度上昇収束時間が短いほど、電解液140の供給能が高い。
【0029】
第1の層132の温度上昇収束時間が2.9s・m/g未満である場合、第1の層132の細孔内の毛細管力、および細孔の壁の面積が大きすぎるため、充放電サイクル中や、大電流での作動時に細孔内を移動する電解液140が細孔の壁に与える圧力が増大し、細孔が閉塞する。
【0030】
逆に温度上昇収束時間が5.7s・m/gを超えると、第1の層132の細孔内を溶媒が移動しにくくなるとともに、電極付近において電解液140の移動速度が小さくなるため、電池のレート特性が低下する。その結果、二次電池100内部の抵抗が増大し、充放電を繰り返した後のレート特性が低下し、出力特性が低下する。
【0031】
WIは色味(白味)を表す指標であり、WIが高いほど白色度が高い。WIが低い(つまり、白色度が低い)ほど、第1の層132の表面や内部にカルボキシ基などの官能基の量が多いと考えられる。カルボキシ基などの極性官能基によってキャリアイオンの透過が阻害される(つまり、透過性が低くなる)ため、WIが低いほど、二次電池100のレート特性が低下すると考えられる。
【0032】
第1の層132のWIが86以上98以下である場合、第1の層132の表面および内部が有する官能基の量が、キャリアイオンの透過性を保つ上で好適となるため、第1の層132のキャリアイオン透過性を好適な範囲にすることができる。その結果、WIが上述した範囲を満たす第1の層132を用いることで、二次電池のレート特性の低下を抑制することができ、充放電を繰り返した後も、優れたレート特性を発現することができる。第1の層132のWIは、好ましくは90以上97以下である。
【0033】
逆に、第1の層132のWIが86以上の場合は、第1の層132表面および内部における官能基量が少ないため、第1の層132のキャリアイオン透過性が高い。その結果、レート持性の低下を抑制できる。
【0034】
第1の層132のWIが98を超える場合、第1の層132の表面および内部の表面官能基の量が少なくなりすぎることで、第1の層132の電解液140に対する親和性が低下するため、キャリアイオンの移動が阻害される。
【0035】
したがって、上記パラメータを満足する第1の層132を含むセパレータ130を用いることで、充放電を繰り返した後も、優れたレート特性を発現可能な二次電池100を提供することができる。
【0036】
[2.電極]
上述したように、正極110は正極集電体112と正極活物質層114を含むことができる。同様に、負極120は負極集電体122と負極活物質層124を含むことができる(図1(A)参照)。正極集電体112、負極集電体122はそれぞれ、正極活物質層114、負極活物質層124を保持し、電流を正極活物質層114、負極活物質層124へ供給する機能を有する。
【0037】
正極集電体112や負極集電体122には、例えば、ニッケル、ステンレス、銅、チタン、タンタル、亜鉛、鉄、コバルトなどの金属、あるいはステンレスなど、これらの金属を含む合金を用いることができる。正極集電体112や負極集電体122は、これらの金属を含む複数の膜が積層された構造を有していてもよい。
【0038】
正極活物質層114と負極活物質層124はそれぞれ、正極活物質、負極活物質を含む。正極活物質と負極活物質は、リチウムイオンなどのキャリアイオンの放出、吸収を担う物質である。
【0039】
正極活物質としては、例えば、キャリアイオンをドープ・脱ドープ可能な材料が挙げられる。具体的には、バナジウム、マンガン、鉄、コバルト、ニッケルなどの遷移金属を少なくとも1種類を含むリチウム複合酸化物が挙げられる。このような複合酸化物として、ニッケル酸リチウム、コバルト酸リチウムなどのα−NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネルなどのスピネル型構造を有するリチウム複合酸化物が挙げられる。これらの複合酸化物は、平均放電電位が高い。
【0040】
リチウム複合酸化物は、他の金属元素を含んでいてもよく、例えばチタン、ジリコニウム、セリウム、イットリウム、バナジウム、クロム、マンガン、鉄、コバルト、銅、銀、マグネシウム、アルミニウム、ガリウム、インジウム、スズなどから選択される元素を含むニッケル酸リチウム(複合ニッケル酸リチウム)が挙げられる。これらの金属は、複合ニッケル酸リチウム中の金属元素の0.1mol%以上20mol%以下となるようにすることができる。これにより、高容量での使用におけるサイクル特性に優れた二次電池100を提供することができる。例えば、アルミニウム、あるいはマンガンを含み、ニッケルが85mol%以上、あるいは90mol%以上である複合ニッケル酸リチウムを正極活物質として用いることができる。
【0041】
正極活物質と同様、キャリアイオンをドープ・脱ドープ可能な材料を負極活物質として使用することができる。例えばリチウム金属またはリチウム合金などが挙げられる。あるいは、天然黒鉛や人造黒鉛などの黒鉛、コークス類、カーボンブラック、炭素繊維などの高分子化合物焼成体などの炭素質材料;正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物などのカルコゲン化合物;アルカリ金属と合金化する、あるいは化合するアルミニウム、鉛、スズ、ビスマス、ケイ素などの元素;アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi);リチウム窒素化合物(Li3-xN(M:遷移金属))などを用いることができる。上記負極活物質のうち、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素質材料は電位平坦性が高く、また平均放電電位が低いため、正極110と組み合わせた場合に大きなエネルギー密度を与える。例えば負極活物質として、炭素に対するシリコンの比率が5mol%以上あるいは10mol%以上である黒鉛とシリコンの混合物を使用することができる。
【0042】
正極活物質層114や負極活物質層124はそれぞれ、上記の正極活物質、負極活物質以外に、導電助剤や結着剤などを含んでもよい。
【0043】
導電助剤としては、炭素質材料が挙げられる。具体的には、天然黒鉛や人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維などの有機高分子化合物焼成体などが挙げられる。上記材料を複数混合して導電助剤として用いてもよい。
【0044】
結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体などのフッ化ビニリデンをモノマーの一つとして用いる共重合体、熱可塑性ポリイミドやポリエチレン、ポリプロピレンなどの熱可塑性樹脂、アクリル樹脂、およびスチレン−ブタジエンゴムなどが挙げられる。なお、結着剤は増粘剤としての機能も有している。
【0045】
正極110は、例えば正極活物質、導電助剤、および結着剤の混合物を正極集電体112上に塗布することによって形成することができる。この場合、混合物を作成、あるいは塗布するために溶媒を用いてもよい。あるいは、正極活物質、導電助剤、および結着剤の混合物を加圧、成形し、これを正極110上に設置することで正極110を形成してもよい。負極120も同様の手法で形成することができる。
【0046】
[3.電解液]
電解液140は溶媒と電解質を含み、電解質のうち少なくとも一部は溶媒に溶解し、電離している。溶媒としては水や有機溶媒を用いることができる。二次電池100を非水電解液二次電池として用いる場合には、有機溶媒が用いられる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカルバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物;および上記有機溶媒にフッ素が導入された含フッ素有機溶媒などが挙げられる。これらの有機溶媒の混合溶媒を用いてもよい。
【0047】
代表的な電解質としては、リチウム塩が挙げられる。例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、炭素数2から6のカルボン酸リチウム塩、LiAlClなどが挙げられる。上記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせてもよい。
【0048】
なお電解質とは、広義には電解質が溶解した溶液を指す場合があるが、本明細書と請求項では狭義を採用する。すなわち、電解質は固体であり、溶媒に溶解することによって電離し、得られる溶液にイオン伝導性を与えるものとして取り扱う。
【0049】
[4.二次電池の組立工程]
図1(A)に示すように、負極120、セパレータ130、正極110を配置し、積層体を形成する。その後図示しない筐体へ積層体を設置し、筐体内を電解液で満たし、減圧しつつ筐体を密閉することにより、または筐体内を減圧しつつ共体内を電解液で満たしたのちに密閉することにより、二次電池100を作製することができる。二次電池100の形状は特に限定されず、薄板(ペーパー)型、円盤型、円筒型、直方体などの角柱型などであってもよい。
【0050】
本実施形態のセパレータ130は多孔質ポリオレフィンを含む第1の層132を有し、第1の層132は、上述した温度上昇収束時間とWIの範囲を満たす。二次電池100には、このような特性を満足する第1の層132を含むセパレータ130が備えられている。そのため、二次電池100は、レート特性の低下が小さい、すなわち、優れたレート特性維持性を示すことができる。
【0051】
(第2実施形態)
本実施形態では、第1実施形態で述べた第1の層132の作成方法について述べる。第1実施形態と同様の構成に関しては説明を割愛することがある。
【0052】
第1の層132の作成方法の一つは、(1)超高分子量ポリエチレンと、重量平均分子量1万以下の低分子量ポリオレフィンと、孔形成剤を混練してポリオレフィン組成物を得る工程、(2)ポリオレフィン組成物を圧延ロールにて圧延してシートを成形する工程(圧延工程)、(3)工程(2)で得られたシートから孔形成剤を除去する工程、(4)工程(3)で得られたシートを延伸してフィルム状に成型する工程を含む。
【0053】
工程(1)で用いる孔形成剤は、有機物を含んでもよく、無機物を含んでもよい。有機物としては、可塑剤が挙げられる。可塑剤として、流動パラフィンなどの低分子量の炭化水素が例示される。
【0054】
無機物としては、中性、酸性、あるいはアルカリ性の溶剤に可溶な無機材料が挙げられ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、などが例示される。これら以外にも、塩化カルシウム、塩化ナトリウム、硫酸マグネシウムなどの無機化合物が挙げられる。
【0055】
この時、BET(Brunauer−Emmett−Teller)比表面積が6m/g以上16m/g以下、8m/g以上15m/g以下、あるいは10m/g以上13m/g以下の孔形成剤を用いることによって、孔形成剤の分散性が向上し、加工時における第1の層132の局所的な酸化を抑えることができる。このため、第1の層132内においてカルボキシ基などの官能基の生成が抑制され、平均細孔径の小さい細孔を均一に分布させることができる。その結果、WIが85以上98以下の第1の層132を得ることができる。
【0056】
孔形成剤の除去が行われる工程(3)では、洗浄液として、水、あるいは有機溶剤に、酸または塩基を添加した溶液などを用いることができる。洗浄液に界面活性剤を添加してもよい。界面活性剤の添加量は0.1重量%以上15重量%以下、あるいは0.1重量%以上10重量%以下の範囲で任意に選択することができる。この範囲から添加量を選択することで、高い洗浄効率が確保できるとともに、界面活性剤の残存を防止することができる。洗浄温度は25℃以上60℃以下、30℃以上55℃以下、あるいは35℃以上50℃以下の温度範囲から選択すればよい。これにより、高い洗浄効率が得られ、かつ、洗浄液の蒸発を抑制することができる。
【0057】
工程(3)では、洗浄液を用いて孔形成剤を除去した後、さらに水洗を行なってもよい。水洗時の温度は、25℃以上60℃以下、30℃以上55℃以下、あるいは35℃以上50℃以下の温度範囲から選択することができる。
【0058】
第1の層132の細孔の構造はさらに、工程(4)における延伸時の歪速度、および、延伸後のフィルムの単位厚み当たりの延伸後の熱固定処理(アニール処理)の温度(延伸後のフィルムの単位厚み当たりの熱固定温度、以下、熱固定温度と記す)にも影響される。そのため、歪速度および熱固定温度を調整することで、第1の層132の細孔の構造を制御し、第1実施形態で述べた温度上昇収束時間の範囲を満たすことができる。
【0059】
具体的には、歪速度に対する熱固定温度のプロットにおいて、(500%/分,1.5℃/μm)、(900%/分,14.0℃/μm)、(2500%/分,11.0℃/μm)の3点を頂点とする三角形、あるいは、(600%/分,5.0℃/μm)、(900%/分,12.5℃/μm)、(2500%/分,11.0℃/μm)の3点を頂点とする三角形の内側の範囲で歪速度と熱固定温度を調整することで、第1の層132を得ることができる。
【0060】
(第3実施形態)
本実施形態では、セパレータ130が第1の層132とともに多孔質層134を有する態様を説明する。
【0061】
[1.構成]
第1実施形態で述べたように、多孔質層134は、第1の層132の片面、または両面に設けることができる(図1(B)参照)。第1の層132の片面に多孔質層134が積層される場合には、多孔質層134は、第1の層132の正極110側に設けてもよく、負極120側に設けてもよい。
【0062】
多孔質層134は電解液140に不溶であり、二次電池100の使用範囲において電気化学的に安定な材料を含むことが好ましい。このような材料としては、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体などのポリオレフィン;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン−ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体などの含フッ素ポリマー;芳香族ポリアミド(アラミド);スチレン−ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、エチレンプロピレンラバー、およびポリ酢酸ビニルなどのゴム類;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリエステルなどの融点やガラス転移温度が180℃以上の高分子;ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸などの水溶性高分子などが挙げられる。
【0063】
芳香族ポリアミドとしては、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体などが挙げられる。
【0064】
多孔質層134はフィラーを含んでもよい。フィラーとしては、有機物または無機物からなるフィラーが挙げられるが、充填材と称される、無機物からなるフィラーが好適であり、シリカ、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、水酸化アルミニウム、ベーマイト等の無機酸化物からなるフィラーがより好ましく、シリカ、酸化マグネシウム、酸化チタン、水酸化アルミニウム、ベーマイトおよびアルミナからなる群から選択される少なくとも1種のフィラーがさらに好ましく、アルミナが特に好ましい。アルミナには、α−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ等の多くの結晶形が存在するが、何れも好適に使用することができる。この中でも、熱的安定性および化学的安定性が特に高いため、α−アルミナが最も好ましい。多孔質層134には1種類のフィラーのみを用いてもよく、2種類以上のフィラーを組み合わせて用いてもよい。
【0065】
フィラーの形状に限定はなく、フィラーは球形、円柱形、楕円形、瓢箪形などの形状をとることができる。あるいは、これらの形状が混在するフィラーを用いてもよい。
【0066】
多孔質層134がフィラーを含む場合、フィラーの含有量は、多孔質層134の1体積%以上99体積%、あるいは5体積%以上95体積%とすることができる。フィラーの含有量を上記範囲とすることにより、フィラー同士の接触によって形成される空隙が多孔質層134の材料によって閉塞されることを抑制することができ、充分なイオン透過性を得ることができるとともに、目付を調整することができる。
【0067】
多孔質層134の厚さは、0.5μm以上15μm以下、あるいは2μm以上10μm以下の範囲で選択することができる。したがって、多孔質層134を第1の層132の両面に形成する場合、多孔質層134の合計膜厚は1.0μm以上30μm以下、あるいは4μm以上20μm以下の範囲から選択することができる。
【0068】
多孔質層134の合計膜厚を1.0μm以上にすることで、二次電池100の破損などによる内部短絡をより効果的に抑制することができる。多孔質層134の合計膜厚を30μm以下とすることで、キャリアイオンの透過抵抗の増大を防ぐことでき、キャリアイオンの透過抵抗の増大に起因する正極110の劣化やレート特性、サイクル特性の低下を抑制することができる。さらに、正極110および負極120間の距離の増大を回避することができ、二次電池100の小型化に寄与することができる。
【0069】
多孔質層134の目付は、1g/m以上20g/m以下、あるいは2g/m以上10g/m以下の範囲から選択することができる。これにより、二次電池100の重量エネルギー密度や体積エネルギー密度を高くすることができる。
【0070】
多孔質層134の空隙率は、20体積%以上90体積%以下、あるいは30体積%以上80体積%以下とすることができる。これにより、多孔質層134は充分なイオン透過性を有することができる。多孔質層134が有する細孔の平均細孔径は、0.01μm以上1μm以下、あるいは0.01μm以上0.5μm以下の範囲から選択することができ、これにより、二次電池100に充分なイオン透過性を付与することができるとともに、シャットダウン機能を向上させることができる。
【0071】
上述した第1の層132と多孔質層134を含むセパレータ130の透気度は、ガーレ値で30s/100mL以上1000s/100mL以下、あるいは50s/100mL以上800s/100mL以下とすることができる。これにより、セパレータ130は十分な強度と高温での形状安定性を確保することができ、同時に充分なイオン透過性を有することができる。
【0072】
[2.形成方法]
フィラーを含む多孔質層134を形成する場合、上述した高分子や樹脂を溶媒中に溶解、あるいは分散させたのち、この混合液にフィラーを分散させて分散液(以下、塗工液と記す)を作成する。溶媒としては、水;メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、t−ブチルアルコールなどのアルコール;アセトン、トルエン、キシレン、ヘキサン、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどが挙げられる。1種類の溶媒のみを用いてもよく、2種類以上の溶媒を用いてもよい。
【0073】
混合液にフィラーを分散させて塗工液を作成する際、例えば、機械攪拌法、超音波分散法、高圧分散法、メディア分散法などを適用してもよい。また、混合液にフィラーを分散させたのち、湿式粉砕装置を用いてフィラーの湿式粉砕を行ってもよい。
【0074】
塗工液に対し、分散剤や可塑剤、界面活性剤、pH調整剤などの添加剤を加えてもよい。
【0075】
塗工液の調整後、第1の層132上に塗工液を塗布する。例えば、ディップコーティング法、スピンコーティング法、印刷法、スプレー法などを用いて塗工液を第1の層132に直接塗布した後、溶媒を留去することで多孔質層134を第1の層132上に形成することができる。塗工液を直接第1の層132上に形成せず、別の支持体上に形成した後に第1の層132上に転載してもよい。支持体としては、樹脂製のフィルム、金属製のベルトやドラムなどを用いることができる。
【0076】
溶媒の留去には、自然乾燥、送風乾燥、加熱乾燥、減圧乾燥のいずれの方法を用いてもよい。溶媒を他の溶媒(例えば低沸点溶媒)に置換してから乾燥を行ってもよい。加熱する場合には、10℃以上120℃以下、あるいは20℃以上80℃以下で行うことができる。これにより、第1の層132の細孔が収縮して透気度が低下することを回避することができる。
【0077】
多孔質層134の厚さは、塗工後の湿潤状態の塗工膜の厚さ、フィラーの含有量や高分子や樹脂の濃度などによって制御することができる。
【実施例】
【0078】
[1.セパレータの作成]
セパレータ130の作成例を以下に述べる。
【0079】
<1−1.実施例1>
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を70重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)30重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、さらに全体積に対して36体積%となるように平均孔径0.1μm、BET比表面積11.6m/gの炭酸カルシウム(丸尾カルシウム社製)を孔形成剤として加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物を得た。このポリオレフィン樹脂組成物を表面温度が150℃一対のロールを用いて圧延し、シートを作成した。このシートを非イオン系界面活性剤0.5重量%を含む塩酸(4mol/L)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度1250%/分の速度で6.2倍に延伸し、膜厚15.5μmのフィルムを得た。さらに120℃で熱固定処理を行い、第1の層132を得た。この第1の層132をセパレータ130として用いた。
【0080】
<1−2.実施例2>
超高分子量ポリエチレン粉末を71重量%用いた点、ポリエチレンワックスを29重量%用いた点、炭酸カルシウムとして平均孔径0.1μm、BET比表面積11.8m/gの炭酸カルシウム(丸尾カルシウム社製)を37体積%で用いた点、歪速度2100%/分の速度でポリオレフィン樹脂組成物を7.0倍に延伸した点、熱固定処理を123℃で行った点を除き、実施例1と同様の手法によりセパレータ130を得た。セパレータ130の膜厚は11.7μmであった。
【0081】
<1−3.実施例3>
炭酸カルシウムとして平均孔径0.1μm、BET比表面積11.6m/gの炭酸カルシウム(丸尾カルシウム社製)を用いた点、歪速度750%/分の速度でポリオレフィン樹脂組成物を延伸した点、熱固定処理を115℃で行った点を除き、実施例1と同様の手法によりセパレータ130を得た。セパレータ130の膜厚は16.3μmであった。
【0082】
比較例として用いたセパレータの作成例を以下に述べる。
【0083】
<1−4.比較例1>
超高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を71重量%、重量平均分子量1000のポリエチレンワックス(FNP−0115、日本精鑞社製)29重量%、この超高分子量ポリエチレンとポリエチレンワックスの合計を100重量部として、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.4重量%、(P168、チバ・スペシャリティ・ケミカルズ社製)0.1重量%、ステアリン酸ナトリウム1.3重量%を加え、さらに全体積に対して36体積%となるように平均孔径0.1μm、BET比表面積11.6m/gの炭酸カルシウム(丸尾カルシウム社製)を孔形成剤として加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物を得た。このポリオレフィン樹脂組成物を表面温度が150℃一対のロールにて圧延し、シートを作成した。このシートを非イオン系界面活性剤0.5重量%を含む塩酸(4mol/L)に浸漬させることで炭酸カルシウムを除去し、続いて100〜105℃、歪速度750%/分の速度で7.1倍に延伸し、膜厚11.5μmのフィルムを得た。さらに128℃で熱固定を行ってセパレータを得た。
【0084】
<1−5.比較例2>
比較例のセパレータとして、市販品のポリオレフィン多孔質フィルム(セルガード社製、#2400)を用いた。
【0085】
[2.二次電池の作製]
実施例1から3、および比較例1、2のセパレータを含む二次電池の作製方法を以下に記す。
【0086】
<2−1.正極>
LiNi0.5Mn0.3Co0.2/導電材/PVDF(重量比92/5/3)の積層をアルミニウム箔に塗布することにより製造された市販の正極を加工した。ここで、LiNi0.5Mn0.3Co0.2は活物質層である。具体的には、正極活物質層の大きさが45mm×30mmであり、かつその外周に幅13mmで正極活物質層が形成されていない部分が残るように、アルミニウム箔を切り取り、以下に述べる組立工程において正極として用いた。正極活物質層の厚さは58μm、密度は2.50g/cm、正極容量は174mAh/gであった。
【0087】
<2−2.負極>
黒鉛/スチレン−1,3−ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1)を銅箔に塗布することにより製造された市販の負極を加工した。ここで、黒鉛が負極活物質層として機能する。具体的には、負極活物質層の大きさが50mm×35mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、銅箔を切り取り、以下に述べる組立工程において負極として用いた。負極活物質層の厚さは49μm、の密度は1.40g/cm、負極容量は372mAh/gであった。
【0088】
<2−3.組立>
ラミネートパウチ内で、正極、セパレータ、および負極をこの順で積層し、積層体を得た。この時、正極活物質層の上面の全てが負極活物質層の主面と重なるように、正極および負極を配置した。
【0089】
続いて、アルミニウム層とヒートシール層が積層で形成された袋状の筐体内に積層体を配置し、さらにこの筐体に電解液を0.25mL加えた。電解液として、濃度1.0mоl/LのLiPFをエチルメチルカーボネート、ジエチルカーボネートおよびエチレンカーボネートの体積比が50:20:30の混合溶媒に溶解させた混合溶液を用いた。そして、筐体内を減圧しつつ、筐体をヒートシールすることにより、二次電池を作製した。二次電池の設計容量は20.5mAhとした。
【0090】
[3.評価]
実施例1から3、および比較例1、2のセパレータの各種物性、およびこれらのセパレータを含む二次電池の特性の評価結果を以下に述べる。
【0091】
<3−1.膜厚>
膜厚は、株式会社ミツトヨ製の高精度デジタル測長機を用いて測定した。
【0092】
<3−2.温度上昇収束時間>
8cm×8cmの大きさのセパレータを3wt%の水を添加したN−メチルピロリドンに含浸させた後、テフロン(登録商標)シート(サイズ:12cm×10cm)の上に広げ、ポリテトラフルオロエチレンで被覆された光ファイバー式温度計(アステック株式会社製、Neoptix Reflex 温度計)を挟むように半分に折り曲げた。
【0093】
次に、ターンテーブルを備えたマイクロ波照射装置(ミクロ電子社製、9kWマイクロ波オーブン、周波数2455MHz)内に温度計を挟んだ状態のセパレータを固定した後、1800Wで2分間マイクロ波を照射した。
【0094】
マイクロ波の照射開始後のセパレータの温度変化を、上記光ファイバー式温度計で、0.2秒ごとに測定した。この温度測定において、1秒以上温度上昇が観測されなかったときの温度を昇温収束温度とし、マイクロ波の照射を開始してから昇温収束温度に到達するまでの時間を収束時間とした。得られた収束時間をセパレータの目付で除算することにより、温度上昇収束時間を算出した。
【0095】
<3−3.充放電サイクル後のレート特性>
上述した方法で作製された二次電池100を、25℃で電圧範囲4.1Vから2.7V、電流値0.2Cを1サイクルとして、4サイクルの初期充放電を行った。
【0096】
初期充放電を行った二次電池100に対して、55℃で充電電流値1C、放電電流値が0.2Cと20Cの定電流で充放電を各3サイクル行った。その後、二次電池100を、55℃で電圧範囲4.2Vから2.7V、充電電流値1C、放電電流値10Cの定電流を1サイクルとして、100サイクルの充放電を行った。こののち、55℃で充電電流値1C、放電電流値が0.2Cと20Cの定電流で充放電を各3サイクル行った。放電電流値が0.2Cと20Cにおける、それぞれ3サイクル目の放電容量の比(20C放電容量/0.2C放電容量)を100サイクルの充放電後のレート特性(100サイクル後レート特性)として算出した。
【0097】
<3−4.WI>
セパレータのWIは、黒紙(北越紀州製紙株式会社、色上質紙、黒、最厚口、四六版T目)上にセパレータを設置し、分光測色計(CM−2002、MINOLTA社製)を用いてSCI(Specular Component Include(正反射光を含む))法で測定した。3か所以上で測定した平均値を結果とした。
【0098】
実施例1から3と比較例1、2のセパレータ、およびこれらのセパレータを用いて作製された二次電池の特性を表1にまとめる。表1に示されるように、温度上昇収束時間が2.9s・m/g以上5.7s・m/gであり、かつ、WIが85以上98以下であるセパレータ130を含む二次電池は、充放電を繰り返した後も、優れたレート特性を発現できることが分かった。これに対し、上記の特性を満たさない比較例1、2のセパレータ130を用いた二次電池は、充放電を繰り返すことにより、レート特性が大幅に低下することが分かった。
【0099】
【表1】
【0100】
本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
【0101】
また、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと理解される。
【符号の説明】
【0102】
100:二次電池、110:正極、112:正極集電体、114:正極活物質層、120:負極、122:負極集電体、124:負極活物質層、130:セパレータ、132:第1の層、134:多孔質層、140:電解液
図1