特許第6601405号(P6601405)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産化学工業株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6601405
(24)【登録日】2019年10月18日
(45)【発行日】2019年11月6日
(54)【発明の名称】電荷輸送性ワニス
(51)【国際特許分類】
   C09D 5/24 20060101AFI20191028BHJP
   H01B 1/12 20060101ALI20191028BHJP
   H01L 51/50 20060101ALI20191028BHJP
   H05B 33/10 20060101ALI20191028BHJP
   C07C 211/55 20060101ALN20191028BHJP
【FI】
   C09D5/24
   H01B1/12 Z
   H05B33/14 A
   H05B33/22 D
   H05B33/10
   !C07C211/55
【請求項の数】9
【全頁数】29
(21)【出願番号】特願2016-551936(P2016-551936)
(86)(22)【出願日】2015年9月18日
(86)【国際出願番号】JP2015076640
(87)【国際公開番号】WO2016052252
(87)【国際公開日】20160407
【審査請求日】2018年4月23日
(31)【優先権主張番号】特願2014-198280(P2014-198280)
(32)【優先日】2014年9月29日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】110002240
【氏名又は名称】特許業務法人英明国際特許事務所
(72)【発明者】
【氏名】森山 彰治
(72)【発明者】
【氏名】太田 博史
【審査官】 山本 吾一
(56)【参考文献】
【文献】 特開平07−126226(JP,A)
【文献】 特開2002−179630(JP,A)
【文献】 国際公開第2013/022419(WO,A1)
【文献】 国際公開第2014/009310(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C09D
H01B
H05B
C07C
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
式(1)で表されるアリールアミン誘導体からなる電荷輸送性物質を含む電荷輸送性材料
【化1】
〔式中、R1〜R8は、互いに独立して、水素原子、ハロゲン原子、またはZ1で置換されていてもよい、炭素数1〜20のアルキル基もしくは炭素数1〜20のアルコキシ基を表し、
Ar1は、Z2で置換されていてもよい炭素数6〜20のアリール基を表し、
nは、1〜3の整数を表し、
Xは、式(2a)または(2b)で表される2価の有機基を表し、
【化2】
(式中、R9およびR10は、互いに独立して、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、Z2で置換されていてもよい炭素数6〜20のアリール基を表すか、R9とR10とが結合して、炭素数3〜21の縮環していてもよい環式炭化水素基を表し、
11およびR12は、互いに独立して、水素原子またはフッ素原子を表し、
13〜R20は、互いに独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、またはZ3を表し、
mは、1〜4の整数を表す。)
1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6〜20のアリール基もしくは炭素数2〜20のヘテロアリール基を表し、
2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基もしくは炭素数2〜20のアルキニル基を表し、
3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表す。〕
【請求項2】
前記Xが、式(3a)〜(3h)で表される2価の有機基から選ばれる1種である請求項1記載の電荷輸送性材料
【化3】
【請求項3】
式(1)で表されるアリールアミン誘導体からなる電荷輸送性物質と、有機溶媒とを含む電荷輸送性ワニス
【化4】
〔式中、R1〜R8は、互いに独立して、水素原子、ハロゲン原子、またはZ1で置換されていてもよい、炭素数1〜20のアルキル基もしくは炭素数1〜20のアルコキシ基を表し、
Ar1は、Z2で置換されていてもよい炭素数6〜20のアリール基を表し、
nは、1〜3の整数を表し、
Xは、式(2a)または(2b)で表される2価の有機基を表し、
【化5】
(式中、R9およびR10は、互いに独立して、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、Z2で置換されていてもよい炭素数6〜20のアリール基を表すか、R9とR10とが結合して、炭素数3〜21の縮環していてもよい環式炭化水素基を表し、
11およびR12は、互いに独立して、水素原子またはフッ素原子を表し、
13〜R20は、互いに独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、またはZ3を表し、
mは、1〜4の整数を表す。)
1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6〜20のアリール基もしくは炭素数2〜20のヘテロアリール基を表し、
2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基もしくは炭素数2〜20のアルキニル基を表し、
3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表す。〕
【請求項4】
前記Xが、式(3a)〜(3h)で表される2価の有機基から選ばれる1種である請求項3記載の電荷輸送性ワニス。
【化3】
【請求項5】
さらにドーパント物質を含む請求項3または4記載の電荷輸送性ワニス。
【請求項6】
前記ドーパント物質が、ヘテロポリ酸を含む請求項5記載の電荷輸送性ワニス。
【請求項7】
請求項〜6のいずれか1項記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
【請求項8】
請求項7記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
【請求項9】
請求項〜6のいずれか1項記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電荷輸送性ワニスに関する。
【背景技術】
【0002】
有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な機能を果たす。
電荷輸送性薄膜の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
しかしながら、有機EL素子の初期特性および寿命特性や、その製造プロセスには解決できていない課題も多い。これら様々な課題の解決のため、有機EL素子用の機能性薄膜形成用材料についても、種々検討がなされている。その一環として、正孔注入性を有する電荷輸送性物質についても、検討がなされてきた。
【0003】
正孔注入性を有する電荷輸送性物質として、アリールベンジジン誘導体が知られている。例えば、アリールベンジジン誘導体として、テトラアリールベンジジンをフルオレン構造やシクロヘキサン構造で架橋したものが、電荷輸送性物質として提案されている(例えば特許文献1〜5参照)。
しかしながら、2つの窒素原子が共に水素原子との結合を有するアリールベンジジン誘導体の架橋体を用いた電荷輸送性物質に関する例は、未だ確認されていない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】欧州特許出願公開第2684932号明細書
【特許文献2】国際公開第2013/022419号
【特許文献3】国際公開第2014/009310号
【特許文献4】特開2002−179630号公報
【特許文献5】欧州特許出願公開第650955号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明はこのような事情に鑑みてなされたもので、正孔注入性に優れる新たな電荷輸送性物質およびそれを含む電荷輸送性ワニス、当該ワニスから得られる電荷輸送性薄膜およびその製造方法、並びに当該薄膜を有する有機EL素子を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ビフェニルアミン構造を含む所定のアリールアミン誘導体が有機溶媒への優れた溶解性を有し、それを有機溶媒へ溶解させて調製したワニスから高電荷輸送性を発揮する薄膜が得られること、および当該薄膜を有機EL素子の正孔注入層に適用した場合に、輝度特性に優れる素子が得られることを見出し、本発明を完成させた。
【0007】
すなわち、本発明は、
1. 式(1)で表されるアリールアミン誘導体からなることを特徴とする電荷輸送性物質、
【化1】
〔式中、R1〜R8は、互いに独立して、水素原子、ハロゲン原子、またはZ1で置換されていてもよい、炭素数1〜20のアルキル基もしくは炭素数1〜20のアルコキシ基を表し、Ar1は、Z2で置換されていてもよい炭素数6〜20のアリール基を表し、nは、1〜3の整数を表し、Xは、式(2a)または(2b)で表される2価の有機基を表し、
【化2】
(式中、R9およびR10は、互いに独立して、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、Z2で置換されていてもよい炭素数6〜20のアリール基を表すか、R9とR10とが結合して、炭素数3〜21の縮環していてもよい環式炭化水素基を表し、R11およびR12は、互いに独立して、水素原子またはフッ素原子を表し、R13〜R20は、互いに独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、またはZ3を表し、mは、1〜4の整数を表す。)
1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6〜20のアリール基もしくは炭素数2〜20のヘテロアリール基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基もしくは炭素数2〜20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表す。〕
2. 前記Xが、式(3a)〜(3h)で表される2価の有機基から選ばれる1種である1の電荷輸送性物質、
【化3】
3. 1または2の電荷輸送性物質を含む電荷輸送性材料、
4. 1または2の電荷輸送性物質と、有機溶媒とを含む電荷輸送性ワニス、
5. さらにドーパント物質を含む4の電荷輸送性ワニス、
6. 前記ドーパント物質が、ヘテロポリ酸を含む5の電荷輸送性ワニス、
7. 4〜6のいずれかの電荷輸送性ワニスを用いて作製される電荷輸送性薄膜、
8. 7の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子、
9. 4〜6のいずれかの電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法
を提供する。
【発明の効果】
【0008】
本発明の電荷輸送性物質であるアリールアミン誘導体は有機溶媒に溶けやすく、これをドーパントとともに有機溶媒へ溶解させて容易に電荷輸送性ワニスを調製することができる。
本発明の電荷輸送性ワニスから作製した薄膜は高い電荷輸送性を示すため、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができる。特に、この薄膜を有機EL素子の正孔注入層に適用することで、輝度特性に優れた有機EL素子を得ることができる。
また、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
また、本発明の電荷輸送性ワニスから得られる薄膜は、帯電防止膜や有機薄膜太陽電池の陽極バッファ層等としても使用できる。
【発明を実施するための形態】
【0009】
以下、本発明についてさらに詳しく説明する。
本発明に係る電荷輸送性物質は、式(1)で表されるアリールアミン誘導体からなる。
ここで、電荷輸送性とは、導電性と同義であり、正孔輸送性と同義である。電荷輸送性物質は、それ自体に電荷輸送性があるものでもよく、ドーパント物質と共に用いた際に電荷輸送性があるものでもよい。電荷輸送性ワニスは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
【0010】
【化4】
【0011】
式(1)において、R1〜R8は、互いに独立して、水素原子、ハロゲン原子、またはZ1で置換されていてもよい、炭素数1〜20のアルキル基もしくは炭素数1〜20のアルコキシ基を表す。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
炭素数1〜20のアルキル基の具体例としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等の炭素数1〜20の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3〜20の環状アルキル基などが挙げられる。
【0012】
炭素数1〜20のアルコキシ基の具体例としては、その中のアルキル基が直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、c−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、c−ブトキシ基、n−ペンチルオキシ基、1−メチル−n−ブトキシ基、2−メチル−n−ブトキシ基、3−メチル−n−ブトキシ基、1,1−ジメチル−n−プロポキシ基、c−ペンチルオキシ基、2−メチル−c−ブトキシ基、n−ヘキシルオキシ基、1−メチル−n−ペンチルオキシ基、2−メチル−n−ペンチルオキシ基、1,1−ジメチル−n−ブトキシ基、1−エチル−n−ブトキシ基、1,1,2−トリメチル−n−プロポキシ基、c−ヘキシルオキシ基、1−メチル−c−ペンチルオキシ基、1−エチル−c−ブトキシ基、1,2−ジメチル−c−ブトキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基等が挙げられる。
【0013】
Ar1は、Z2で置換されていてもよい炭素数6〜20のアリール基を表す。
炭素数6〜20のアリール基の具体例としては、フェニル基、1−ナフチル基、2−ナフチル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基等が挙げられる。
nは、1〜3の整数を表すが、好ましくは1である。
【0014】
Xは、式(2a)または(2b)で表される2価の有機基を表す。
【0015】
【化5】
【0016】
9およびR10は、互いに独立して、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、Z2で置換されていてもよい炭素数6〜20のアリール基を表すか、R9とR10とが結合して、炭素数3〜21の縮環していてもよい環式炭化水素基を表し、R11およびR12は、互いに独立して、水素原子またはフッ素原子を表し、R13〜R20は、互いに独立して、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のフルオロアルキル基、またはZ3を表す。
炭素数1〜20のアルキル基、炭素数6〜20のアリール基としては、上記と同様のものが挙げられる。
炭素数1〜20のフルオロアルキル基の具体例としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2−トリフルオロエチル基、ヘプタフルオロプロピル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,3,3−テトラフルオロプロピル基、2,2,2−トリフルオロ−1−(トリフルオロメチル)エチル基、ノナフルオロブチル基、4,4,4−トリフルオロブチル基、ウンデカフルオロペンチル基、2,2,3,3,4,4,5,5,5−ノナフルオロペンチル基、2,2,3,3,4,4,5,5−オクタフルオロペンチル基、トリデカフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6−ウンデカフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6−デカフルオロヘキシル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられる。
mは、1〜4の整数を表すが、好ましくは1である。
【0017】
また、R9とR10とが結合して形成する、炭素数3〜21の縮環していてもよい環式炭化水素基としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
【0018】
【化6】
(式中、「・」は、メチレン鎖との結合部位を表す。)
【0019】
1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数6〜20のアリール基もしくは炭素数2〜20のヘテロアリール基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、カルボン酸基、またはZ3で置換されていてもよい、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基もしくは炭素数2〜20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、アルデヒド基、水酸基、チオール基、スルホン酸基、またはカルボン酸基を表す。
これらハロゲン原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基としては、上記と同様のものが挙げられる。
【0020】
炭素数2〜20のヘテロアリール基の具体例としては、2−チエニル基、3−チエニル基、2−フラニル基、3−フラニル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、3−イソオキサゾリル基、4−イソオキサゾリル基、5−イソオキサゾリル基、2−チアゾリル基、4−チアゾリル基、5−チアゾリル基、3−イソチアゾリル基、4−イソチアゾリル基、5−イソチアゾリル基、2−イミダゾリル基、4−イミダゾリル基、2−ピリジル基、3−ピリジル基、4−ピリジル基等が挙げられる。
【0021】
炭素数2〜20のアルケニル基の具体例としては、エテニル基、n−1−プロペニル基、n−2−プロペニル基、1−メチルエテニル基、n−1−ブテニル基、n−2−ブテニル基、n−3−ブテニル基、2−メチル−1−プロペニル基、2−メチル−2−プロペニル基、1−エチルエテニル基、1−メチル−1−プロペニル基、1−メチル−2−プロペニル基、n−1−ペンテニル基、n−1−デセニル基、n−1−エイコセニル基等が挙げられる。
【0022】
炭素数2〜20のアルキニル基の具体例としては、エチニル基、n−1−プロピニル基、n−2−プロピニル基、n−1−ブチニル基、n−2−ブチニル基、n−3−ブチニル基、1−メチル−2−プロピニル基、n−1−ペンチニル基、n−2−ペンチニル基、n−3−ペンチニル基、n−4−ペンチニル基、1−メチル−n−ブチニル基、2−メチル−n−ブチニル基、3−メチル−n−ブチニル基、1,1−ジメチル−n−プロピニル基、n−1−ヘキシニル基、n−1−デシニル基、n−1−ペンタデシニル基、n−1−エイコシニル基等が挙げられる。
【0023】
これらの中でもR1〜R8としては、互いに独立して、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基が好ましく、互いに独立して、水素原子、メチル基、エチル基、メトキシ基がより好ましく、すべて水素原子がより一層好ましい。
Ar1としては、Z2で置換されていてもよいフェニル基が好ましく、非置換のフェニル基がより好ましい。
9およびR10としては、炭素数1〜6のアルキル基、炭素数1〜6のフルオロアルキル基、Z2で置換されていてもよい炭素数6〜18のアリール基、R9とR10とが結合した下記式で表される環式炭化水素基が好ましく、メチル基、R9とR10とが結合した下記式で表される環式炭化水素基がより好ましい。
11およびR12としては、ともに水素原子が好ましい。
13〜R20としては、互いに独立して、水素原子、メチル基、エチル基、トリフルオロメチル基、ハロゲン原子が好ましく、すべて水素原子がより好ましい。
【0024】
【化7】
(式中、「・」は、メチレン鎖との結合部位を表す。)
【0025】
したがって、Xとしては、式(3a)〜(3h)で表されるいずれかの2価の有機基が好適である。
【0026】
【化8】
【0027】
その中でも、式(3a’)〜(3h’)で表されるいずれかの2価の有機基である場合が、さらに好ましい。
【0028】
【化9】
【0029】
なお、上記アルキル基、フルオロアルキル基、アルコキシ基、アルケニル基およびアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。
また、アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
【0030】
上記アリールアミン誘導体の分子量は、通常300〜5,000であるが、溶解性を高める観点から、好ましくは4,000以下であり、より好ましくは3,000以下であり、より一層好ましくは2,000以下である。
【0031】
本発明の式(1)で示されるアリールアミン誘導体は、ビフェニル化合物と、ジアミン化合物とを、触媒存在下で反応させて製造できるが、この製造法に限定されるわけではない。
例えば、Xとして式(2a)で示される2価の有機基を有するアリールアミン誘導体(6)は、式(4)で示されるビフェニル化合物と、式(5)で示されるジアミン化合物とを、触媒存在下で反応させて得ることができる。
【0032】
【化10】
(式中、Zは、ハロゲン原子または擬ハロゲン基を表し、R1〜R10、R13〜R20、Ar1およびnは、上記と同じ意味を表す。)
【0033】
また、Xとして式(2b)で示される2価の有機基を有するアリールアミン誘導体(8)は、式(4)で示されるビフェニル化合物と、式(7)で示されるジアミン化合物とを、触媒存在下で反応させて得ることができる。
【0034】
【化11】
(式中、Zは、ハロゲン原子または擬ハロゲン基を表し、R1〜R8、R11〜R20、Ar1、mおよびnは、上記と同じ意味を表す。)
【0035】
ハロゲン原子としては、上記と同様のものが挙げられる。
擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
【0036】
式(5)で表されるジアミン化合物と、式(4)で表されるビフェニル化合物との仕込み比は、ジアミン化合物の全NH基の物質量に対し、ビフェニル化合物を当量以上とすることができるが、1〜1.2当量程度が好適である。
【0037】
上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルホスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルホスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ベンジリデンアセトン)ジパラジウム)、Pd(P−t−Bu32(ビス(トリ(t−ブチル)ホスフィン)パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。
【0038】
触媒の使用量は、使用するジアミン化合物を1molとした場合に、0.001〜0.5mol程度とすることができるが、0.01〜0.1mol程度が好適である。
また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1〜5当量とすることができるが、1〜2当量が好適である。
【0039】
上記反応は溶媒中で行ってもよい。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n−ヘキサン、n−オクタン、n−デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノン等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、ラクタムおよびラクトン類(N−メチルピロリドン、γ−ブチロラクトン等)、尿素類(N,N−ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。
【0040】
反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0〜200℃程度が好ましく、20〜150℃がより好ましい。
反応終了後は、常法にしたがって後処理をし、目的とするアリールアミン誘導体を得ることができる。
【0041】
なお、式(4)で示されるビフェニル化合物は、Ar1NH2(Ar1は、上記と同じ意味を表す)、4,4′−ジハロゲン化またはジ擬ハロゲン化ビフェニル化合物とを、上記と同様の触媒下で反応させて得ることができる。
【0042】
式(1)で表されるアリールアミン誘導体の具体例としては、下記式で表されるものが挙げられるが、これらに限定されるものではない。なお、式中、Y1およびY2は、それぞれ以下に示す1価の有機基を表す。
【0043】
【化12】
【0044】
【化13】
【0045】
【化14】
【0046】
本発明の電荷輸送性ワニスは、式(1)で表されるアリールアミン誘導体からなる電荷輸送性物質と、有機溶媒とを含むものであるが、得られる薄膜の用途に応じ、その電荷輸送能の向上等を目的としてドーパント物質を含んでいてもよい。
ドーパント物質としては、ワニスに使用する少なくとも1種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント物質、有機系のドーパント物質のいずれも使用できる。
【0047】
無機系のドーパント物質としては、塩化水素、硫酸、硝酸、リン酸等の無機酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化アンチモン(V)(SbF5)、五フッ化砒素(V)(AsF5)、五フッ化リン(PF5)、トリス(4−ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等の金属ハロゲン化物;Cl2、Br2、I2、ICl、ICl3、IBr、IF4等のハロゲン;リンモリブデン酸、リンタングステン酸等のヘテロポリ酸などが挙げられる。
【0048】
有機系のドーパント物質としては、ベンゼンスルホン酸、トシル酸、p−スチレンスルホン酸、2−ナフタレンスルホン酸、4−ヒドロキシベンゼンスルホン酸、5−スルホサリチル酸、p−ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5−ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7−ジブチル−2−ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3−ドデシル−2−ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4−ヘキシル−1−ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2−オクチル−1−ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、7−へキシル−1−ナフタレンスルホン酸、6−ヘキシル−2−ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7−ジノニル−4−ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、2,7−ジノニル−4,5−ナフタレンジスルホン酸、国際公開第2005/000832号記載の1,4−ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号記載のアリールスルホン酸化合物、国際公開第2009/096352号記載のアリールスルホン酸化合物、ポリスチレンスルホン酸等のアリールスルホン化合物;10−カンファースルホン酸等の非アリールスルホン化合物;7,7,8,8−テトラシアノキノジメタン(TCNQ)、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ)等の有機酸化剤が挙げられる。
これら無機系および有機系のドーパント物質は、1種類単独で用いてもよく、2種類以上組み合わせて用いてもよい。
【0049】
これらのドーパント物質の中でもヘテロポリ酸が好適であり、ドーパント物質としてヘテロポリ酸を用いることで、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極からの高正孔受容能のみならず、アルミニウムに代表される金属陽極からの高正孔受容能を示す電荷輸送性に優れた薄膜を得ることができる。
ヘテロポリ酸とは、代表的に式(B1)で示されるKeggin型あるいは式(B2)で示されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
【0050】
【化15】
【0051】
ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
特に、ドーパント物質が1種類のヘテロポリ酸単独からなる場合、その1種類のヘテロポリ酸は、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、ドーパント物質が2種類以上のヘテロポリ酸からなる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。
なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。
すなわち、例えば、一般的には、リンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ示されるが、定量分析において、この式中のP(リン)、O(酸素)またはW(タングステン)もしくはMo(モリブデン)の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態および公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
【0052】
また、ドーパント物質としてアリールスルホン酸化合物も好適に使用できる。とりわけ、式(7)または(8)で表されるアリールスルホン酸化合物が好ましい。
【0053】
【化16】
【0054】
1は、OまたはSを表すが、Oが好ましい。
2は、ナフタレン環またはアントラセン環を表すが、ナフタレン環が好ましい。
3は、2〜4価のパーフルオロビフェニル基を表し、pは、A1とA3との結合数を示し、2≦p≦4を満たす整数であるが、A3が2価のパーフルオロビフェニル基であり、かつ、pが2であることが好ましい。
qは、A2に結合するスルホン酸基数を表し、1≦q≦4を満たす整数であるが、2が最適である。
【0055】
4〜A8は、互いに独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜20のアルキル基、炭素数1〜20のハロゲン化アルキル基、または炭素数2〜20のハロゲン化アルケニル基を表すが、A4〜A8のうち少なくとも3つは、ハロゲン原子である。
【0056】
炭素数1〜20のハロゲン化アルキル基としては、トリフルオロメチル基、2,2,2−トリフルオロエチル基、1,1,2,2,2−ペンタフルオロエチル基、3,3,3−トリフルオロプロピル基、2,2,3,3,3−ペンタフルオロプロピル基、1,1,2,2,3,3,3−ヘプタフルオロプロピル基、4,4,4−トリフルオロブチル基、3,3,4,4,4−ペンタフルオロブチル基、2,2,3,3,4,4,4−ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4−ノナフルオロブチル基等が挙げられる。
【0057】
炭素数2〜20のハロゲン化アルケニル基としては、パーフルオロビニル基、パーフルオロプロペニル基(アリル基)、パーフルオロブテニル基等が挙げられる。
その他、ハロゲン原子、炭素数1〜20のアルキル基の例としては上記と同様のものが挙げられるが、ハロゲン原子としては、フッ素原子が好ましい。
【0058】
これらの中でも、A4〜A8は、水素原子、ハロゲン原子、シアノ基、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、または炭素数2〜10のハロゲン化アルケニル基であり、かつ、A4〜A8のうち少なくとも3つは、フッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1〜5のアルキル基、炭素数1〜5のフッ化アルキル基、または炭素数2〜5のフッ化アルケニル基であり、かつ、A4〜A8のうち少なくとも3つはフッ素原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1〜5のパーフルオロアルキル基、または炭素数1〜5のパーフルオロアルケニル基であり、かつ、A4、A5およびA8がフッ素原子であることがより一層好ましい。
なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。
【0059】
rは、ナフタレン環に結合するスルホン酸基数を表し、1≦r≦4を満たす整数であるが、2〜4が好ましく、2が最適である。
【0060】
ドーパント物質として用いるアリールスルホン酸化合物の分子量は、特に限定されるものではないが、電荷輸送性物質とともに用いた場合の有機溶媒への溶解性を考慮すると、好ましくは2000以下、より好ましくは1500以下である。
【0061】
以下、本発明において、ドーパント物質として好適なアリールスルホン酸化合物の具体例を挙げるが、これらに限定されるわけではない。
【0062】
【化17】
【0063】
本発明の電荷輸送性ワニスにドーパント物質を含める場合、ドーパント物質の使用量は、ドーパント物質の種類、所望の電荷輸送性の程度等を考慮して適宜決定されるため、一概には規定できないが、一般的に、質量比で、電荷輸送性物質1に対して、0.01〜50の範囲内となるが、得られる薄膜の電荷輸送性を向上させる観点から、好ましくは0.1〜20、より好ましくは0.2〜10の範囲内となる。
【0064】
電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、電荷輸送性物質および必要に応じて用いられるドーパント物質を良好に溶解し得る高溶解性溶媒を用いることができる。
このような高溶解性溶媒としては、例えば、シクロヘキサノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジエチレングリコールモノメチルエーテル等の有機溶媒が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5〜100質量%とすることができる。
なお、電荷輸送性物質およびドーパント物質は、いずれも上記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、完全に溶解していることがより好ましい。
【0065】
また、本発明においては、ワニスに、25℃で10〜200mPa・s、特に35〜150mPa・sの粘度を有し、常圧(大気圧)で沸点50〜300℃、特に150〜250℃の高粘度有機溶媒を少なくとも1種類含有させることで、ワニスの粘度の調整が容易になり、その結果、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じたワニス調製が可能となる。
高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3−オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3−ブタンジオール、2,3−ブタンジオール、1,4−ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されるものではない。これらの溶媒は単独で用いてもよく、2種以上混合して用いてもよい。
本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5〜90質量%が好ましい。
【0066】
さらに、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、ワニスに使用する溶媒全体に対して1〜90質量%、好ましくは1〜50質量%の割合で混合することもできる。
このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ−ブチロラクトン、エチルラクテート、n−ヘキシルアセテート等が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができる。
【0067】
本発明のワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるものではあるが、通常、25℃で1〜50mPa・sである。
また、本発明における電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1〜10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5〜5.0質量%程度、より好ましくは1.0〜3.0質量%程度である。
【0068】
以上で説明した電荷輸送性ワニスを基材上に塗布して焼成することで、基材上に電荷輸送性薄膜を形成させることができる。
ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
焼成雰囲気としては、特に限定されるものではないが、大気雰囲気が好ましい。
【0069】
焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100〜260℃程度の範囲内で適宜設定されるものではあるが、得られる薄膜を有機EL素子の正孔注入層として用いる場合、140〜250℃程度が好ましく、145〜240℃程度がより好ましい。
なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
【0070】
電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で正孔注入層として用いる場合、5〜200nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりするなどの方法がある。
【0071】
本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素−プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
【0072】
本発明の電荷輸送性ワニスから得られる薄膜からなる正孔注入層を有する有機EL素子の作製方法の例は、以下のとおりである。
上記の方法により、陽極基板上に本発明の電荷輸送性ワニスを塗布して焼成し、電極上に正孔注入層を作製する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子注入層/ホールブロック層、陰極金属を順次蒸着して有機EL素子とする。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。
陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されるわけではない。
【0073】
正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−ベンジジン(α−NPD)、N,N’−ビス(ナフタレン−2−イル)−N,N’−ビス(フェニル)−ベンジジン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−ベンジジン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−9,9−スピロビフルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−9,9−スピロビフルオレン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−9,9−ジメチル−フルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−9,9−ジメチル−フルオレン、N,N’−ビス(3−メチルフェニル)−N,N’−ビス(フェニル)−9,9−ジフェニル−フルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−9,9−ジフェニル−フルオレン、N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)−2,2’−ジメチルベンジジン、2,2’,7,7’−テトラキス(N,N−ジフェニルアミノ)−9,9−スピロビフルオレン、9,9−ビス[4−(N,N−ビス−ビフェニル−4−イル−アミノ)フェニル]−9H−フルオレン、9,9−ビス[4−(N,N−ビス−ナフタレン−2−イル−アミノ)フェニル]−9H−フルオレン、9,9−ビス[4−(N−ナフタレン−1−イル−N−フェニルアミノ)−フェニル]−9H−フルオレン、2,2’,7,7’−テトラキス[N−ナフタレニル(フェニル)−アミノ]−9,9−スピロビフルオレン、N,N’−ビス(フェナントレン−9−イル)−N,N’−ビス(フェニル)−ベンジジン、2,2’−ビス[N,N−ビス(ビフェニル−4−イル)アミノ]−9,9−スピロビフルオレン、2,2’−ビス(N,N−ジフェニルアミノ)−9,9−スピロビフルオレン、ジ−[4−(N,N−ジ(p−トリル)アミノ)−フェニル]シクロヘキサン、2,2’,7,7’−テトラ(N,N−ジ(p−トリル))アミノ−9,9−スピロビフルオレン、N,N,N’,N’−テトラ−ナフタレン−2−イル−ベンジジン、N,N,N’,N’−テトラ−(3−メチルフェニル)−3,3’−ジメチルベンジジン、N,N’−ジ(ナフタレニル)−N,N’−ジ(ナフタレン−2−イル)−ベンジジン、N,N,N’,N’−テトラ(ナフタレニル)−ベンジジン、N,N’−ジ(ナフタレン−2−イル)−N,N’−ジフェニルベンジジン−1,4−ジアミン、N1,N4−ジフェニル−N1,N4−ジ(m−トリル)ベンゼン−1,4−ジアミン、N2,N2,N6,N6−テトラフェニルナフタレン−2,6−ジアミン、トリス(4−(キノリン−8−イル)フェニル)アミン、2,2’−ビス(3−(N,N−ジ(p−トリル)アミノ)フェニル)ビフェニル、4,4’,4”−トリス[3−メチルフェニル(フェニル)アミノ]トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス[1−ナフチル(フェニル)アミノ]トリフェニルアミン(1−TNATA)等のトリアリールアミン類、5,5”−ビス−{4−[ビス(4−メチルフェニル)アミノ]フェニル}−2,2’:5’,2”−ターチオフェン(BMA−3T)等のオリゴチオフェン類などが挙げられる。
【0074】
発光層を形成する材料としては、トリス(8−キノリノラート)アルミニウム(III)(Alq3)、ビス(8−キノリノラート)亜鉛(II)(Znq2)、ビス(2−メチル−8−キノリノラート)−4−(p−フェニルフェノラート)アルミニウム(III)(BAlq)、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル、9,10−ジ(ナフタレン−2−イル)アントラセン、2−t−ブチル−9,10−ジ(ナフタレン−2−イル)アントラセン、2,7−ビス[9,9−ジ(4−メチルフェニル)−フルオレン−2−イル]−9,9−ジ(4−メチルフェニル)フルオレン、2−メチル−9,10−ビス(ナフタレン−2−イル)アントラセン、2−(9,9−スピロビフルオレン−2−イル)−9,9−スピロビフルオレン、2,7−ビス(9,9−スピロビフルオレン−2−イル)−9,9−スピロビフルオレン、2−[9,9−ジ(4−メチルフェニル)−フルオレン−2−イル]−9,9−ジ(4−メチルフェニル)フルオレン、2,2’−ジピレニル−9,9−スピロビフルオレン、1,3,5−トリス(ピレン−1−イル)ベンゼン、9,9−ビス[4−(ピレニル)フェニル]−9H−フルオレン、2,2’−ビ(9,10−ジフェニルアントラセン)、2,7−ジピレニル−9,9−スピロビフルオレン、1,4−ジ(ピレン−1−イル)ベンゼン、1,3−ジ(ピレン−1−イル)ベンゼン、6,13−ジ(ビフェニル−4−イル)ペンタセン、3,9−ジ(ナフタレン−2−イル)ペリレン、3,10−ジ(ナフタレン−2−イル)ペリレン、トリス[4−(ピレニル)−フェニル]アミン、10,10’−ジ(ビフェニル−4−イル)−9,9’−ビアントラセン、N,N’−ジ(ナフタレン−1−イル)−N,N’−ジフェニル−[1,1’:4’,1’’:4’’,1’’’−クウォーターフェニル]−4,4’’’−ジアミン、4,4’−ジ[10−(ナフタレン−1−イル)アントラセン−9−イル]ビフェニル、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン、1−(7−(9,9’−ビアントラセン−10−イル)−9,9−ジメチル−9H−フルオレン−2−イル)ピレン、1−(7−(9,9’−ビアントラセン−10−イル)−9,9−ジヘキシル−9H−フルオレン−2−イル)ピレン、1,3−ビス(カルバゾール−9−イル)ベンゼン、1,3,5−トリス(カルバゾール−9−イル)ベンゼン、4,4’,4”−トリス(カルバゾール−9−イル)トリフェニルアミン、4,4’−ビス(カルバゾール−9−イル)ビフェニル、4,4’−ビス(カルバゾール−9−イル)−2,2’−ジメチルビフェニル、2,7−ビス(カルバゾール−9−イル)−9,9−ジメチルフルオレン、2,2’,7,7’−テトラキス(カルバゾール−9−イル)−9,9−スピロビフルオレン、2,7−ビス(カルバゾール−9−イル)−9,9−ジ(p−トリル)フルオレン、9,9−ビス[4−(カルバゾール−9−イル)−フェニル]フルオレン、2,7−ビス(カルバゾール−9−イル)−9,9−スピロビフルオレン、1,4−ビス(トリフェニルシリル)ベンゼン、1,3−ビス(トリフェニルシリル)ベンゼン、ビス(4−N,N−ジエチルアミノ−2−メチルフェニル)−4−メチルフェニルメタン、2,7−ビス(カルバゾール−9−イル)−9,9−ジオクチルフルオレン、4,4”−ジ(トリフェニルシリル)−p−ターフェニル、4,4’−ジ(トリフェニルシリル)ビフェニル、9−(4−t−ブチルフェニル)−3,6−ビス(トリフェニルシリル)−9H−カルバゾール、9−(4−t−ブチルフェニル)−3,6−ジトリチル−9H−カルバゾール、9−(4−t−ブチルフェニル)−3,6−ビス(9−(4−メトキシフェニル)−9H−フルオレン−9−イル)−9H−カルバゾール、2,6−ビス(3−(9H−カルバゾール−9−イル)フェニル)ピリジン、トリフェニル(4−(9−フェニル−9H−フルオレン−9−イル)フェニル)シラン、9,9−ジメチル−N,N−ジフェニル−7−(4−(1−フェニル−1H−ベンゾ[d]イミダゾール−2−イル)フェニル)−9H−フルオレン−2−アミン、3,5−ビス(3−(9H−カルバゾール−9−イル)フェニル)ピリジン、9,9−スピロビフルオレン−2−イル−ジフェニル−フォスフィン オキサイド、9,9’−(5−(トリフェニルシリル)−1,3−フェニレン)ビス(9H−カルバゾール)、3−(2,7−ビス(ジフェニルフォスフォリル)−9−フェニル−9H−フルオレン−9−イル)−9−フェニル−9H−カルバゾール、4,4,8,8,12,12−ヘキサ(p−トリル)−4H−8H−12H−12C−アザジベンゾ[cd,mn]ピレン、4,7−ジ(9H−カルバゾール−9−イル)−1,10−フェナントロリン、2,2’−ビス(4−(カルバゾール−9−イル)フェニル)ビフェニル、2,8−ビス(ジフェニルフォスフォリル)ジベンゾ[b,d]チオフェン、ビス(2−メチルフェニル)ジフェニルシラン、ビス[3,5−ジ(9H−カルバゾール−9−イル)フェニル]ジフェニルシラン、3,6−ビス(カルバゾール−9−イル)−9−(2−エチル−ヘキシル)−9H−カルバゾール、3−(ジフェニルフォスフォリル)−9−(4−(ジフェニルフォスフォリル)フェニル)−9H−カルバゾール、3,6−ビス[(3,5−ジフェニル)フェニル]−9−フェニルカルバゾール等が挙げられ、発光性ドーパントと共蒸着することによって、発光層を形成してもよい。
【0075】
発光性ドーパントとしては、3−(2−ベンゾチアゾリル)−7−(ジエチルアミノ)クマリン、2,3,6,7−テトラヒドロ−1,1,7,7−テトラメチル−1H,5H,11H−10−(2−ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N’−ジメチル−キナクリドン、トリス(2−フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2−フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2−(p−トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10−ビス[N,N−ジ(p−トリル)アミノ]アントラセン、9,10−ビス[フェニル(m−トリル)アミノ]アントラセン、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10’,N10’−テトラ(p−トリル)−9,9’−ビアントラセン−10,10’−ジアミン、N10,N10,N10’,N10’−テトラフェニル−9,9’−ビアントラセン−10,10’−ジアミン、N10,N10’−ジフェニル−N10,N10’−ジナフタレニル−9,9’−ビアントラセン−10,10’−ジアミン、4,4’−ビス(9−エチル−3−カルバゾビニレン)−1,1’−ビフェニル、ペリレン、2,5,8,11−テトラ−t−ブチルペリレン、1,4−ビス[2−(3−N−エチルカルバゾリル)ビニル]ベンゼン、4,4’−ビス[4−(ジ−p−トリルアミノ)スチリル]ビフェニル、4−(ジ−p−トリルアミノ)−4’−[(ジ−p−トリルアミノ)スチリル]スチルベン、ビス[3,5−ジフルオロ−2−(2−ピリジル)フェニル−(2−カルボキシピリジル)]イリジウム(III)、4,4’−ビス[4−(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4−ジフルオロフェニルピリジナト)テトラキス(1−ピラゾリル)ボレートイリジウム(III)、N,N’−ビス(ナフタレン−2−イル)−N,N’−ビス(フェニル)−トリス(9,9−ジメチルフルオレニレン)、2,7−ビス{2−[フェニル(m−トリル)アミノ]−9,9−ジメチル−フルオレン−7−イル}−9,9−ジメチル−フルオレン、N−(4−((E)−2−(6((E)−4−(ジフェニルアミノ)スチリル)ナフタレン−2−イル)ビニル)フェニル)−N−フェニルベンゼンアミン、fac−イリジウム(III)トリス(1−フェニル−3−メチルベンズイミダゾリン−2−イリデン−C,C2’)、mer−イリジウム(III)トリス(1−フェニル−3−メチルベンズイミダゾリン−2−イリデン−C,C2’)、2,7−ビス[4−(ジフェニルアミノ)スチリル]−9,9−スピロビフルオレン、6−メチル−2−(4−(9−(4−(6−メチルベンゾ[d]チアゾール−2−イル)フェニル)アントラセン−10−イル)フェニル)ベンゾ[d]チアゾール、1,4−ジ[4−(N,N−ジフェニル)アミノ]スチリルベンゼン、1,4−ビス(4−(9H−カルバゾール−9−イル)スチリル)ベンゼン、(E)−6−(4−(ジフェニルアミノ)スチリル)−N,N−ジフェニルナフタレン−2−アミン、ビス(2,4−ジフルオロフェニルピリジナト)(5−(ピリジン−2−イル)−1H−テトラゾレート)イリジウム(III)、ビス(3−トリフルオロメチル−5−(2−ピリジル)ピラゾール)((2,4−ジフルオロベンジル)ジフェニルフォスフィネート)イリジウム(III)、ビス(3−トリフルオロメチル−5−(2−ピリジル)ピラゾレート)(ベンジルジフェニルフォスフィネート)イリジウム(III)、ビス(1−(2,4−ジフルオロベンジル)−3−メチルベンズイミダゾリウム)(3−(トリフルオロメチル)−5−(2−ピリジル)−1,2,4−トリアゾレート)イリジウム(III)、ビス(3−トリフルオロメチル−5−(2−ピリジル)ピラゾレート)(4’,6’−ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4’,6’−ジフルオロフェニルピリジナト)(3,5−ビス(トリフルオロメチル)−2−(2’−ピリジル)ピロレート)イリジウム(III)、ビス(4’,6’−ジフルオロフェニルピリジナト)(3−(トリフルオロメチル)−5−(2−ピリジル)−1,2,4−トリアゾレート)イリジウム(III)、(Z)−6−メシチル−N−(6−メシチルキノリン−2(1H)−イリデン)キノリン−2−アミン−BF2、(E)−2−(2−(4−(ジメチルアミノ)スチリル)−6−メチル−4H−ピラン−4−イリデン)マロノニトリル、4−(ジシアノメチレン)−2−メチル−6−ジュロリジル−9−エニル−4H−ピラン、4−(ジシアノメチレン)−2−メチル−6−(1,1,7,7−テトラメチルジュロリジル−9−エニル)−4H−ピラン、4−(ジシアノメチレン)−2−t−ブチル−6−(1,1,7,7−テトラメチルジュロリジン−4−イル−ビニル)−4H−ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12−テトラフェニルナフタセン、ビス(2−ベンゾ[b]チオフェン−2−イル−ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1−フェニルイソキノリン)イリジウム(III)、ビス(1−フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1−(9,9−ジメチル−9H−フルオレン−2−イル)−イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2−(9,9−ジメチル−9H−フルオレン−2−イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4’−ジ−t−ブチル−(2,2’)−ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロフォスフェート)、トリス(2−フェニルキノリン)イリジウム(III)、ビス(2−フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8−ジ−t−ブチル−5,11−ビス(4−t−ブチルフェニル)−6,12−ジフェニルテトラセン、ビス(2−フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20−テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3−トリフルオロメチル−5−(2−ピリジン)−ピラゾレート)ジメチルフェニルフォスフィン、オスミウム(II)ビス(3−(トリフルオロメチル)−5−(4−t−ブチルピリジル)−1,2,4−トリアゾレート)ジフェニルメチルフォスフィン、オスミウム(II)ビス(3−(トリフルオロメチル)−5−(2−ピリジル)−1,2,4−トリアゾール)ジメチルフェニルフォスフィン、オスミウム(II)ビス(3−(トリフルオロメチル)−5−(4−t−ブチルピリジル)−1,2,4−トリアゾレート)ジメチルフェニルフォスフィン、ビス[2−(4−n−ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2−(4−n−ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2−フェニル−4−メチルキノリン]イリジウム(III)、ビス(2−フェニルキノリン)(2−(3−メチルフェニル)ピリジネート)イリジウム(III)、ビス(2−(9,9−ジエチル−フルオレン−2−イル)−1−フェニル−1H−ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2−フェニルピリジン)(3−(ピリジン−2−イル)−2H−クロメン−2−オネート)イリジウム(III)、ビス(2−フェニルキノリン)(2,2,6,6−テトラメチルヘプタン−3,5−ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6−テトラメチルヘプタン−3,5−ジオネート)イリジウム(III)、イリジウム(III)ビス(4−フェニルチエノ[3,2−c]ピリジナト−N,C2’)アセチルアセトネート、(E)−2−(2−t−ブチル−6−(2−(2,6,6−トリメチル−2,4,5,6−テトラヒドロ−1H−ピローロ[3,2,1−ij]キノリン−8−イル)ビニル)−4H−ピラン−4−イリデン)マロノニトリル、ビス(3−トリフルオロメチル−5−(1−イソキノリル)ピラゾレート)(メチルジフェニルフォスフィン)ルテニウム、ビス[(4−n−ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2−メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4−n−ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。
【0076】
電子輸送層/ホールブロック層を形成する材料としては、8−ヒドロキシキノリノレート−リチウム、2,2’,2”−(1,3,5−ベンジントリル)−トリス(1−フェニル−1−H−ベンズイミダゾール)、2−(4−ビフェニル)5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、4,7−ジフェニル−1,10−フェナントロリン、ビス(2−メチル−8−キノリノレート)−4−(フェニルフェノラト)アルミニウム、1,3−ビス[2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾ−5−イル]ベンゼン、6,6’−ビス[5−(ビフェニル−4−イル)−1,3,4−オキサジアゾ−2−イル]−2,2’−ビピリジン、3−(4−ビフェニル)−4−フェニル−5−t−ブチルフェニル−1,2,4−トリアゾール、4−(ナフタレン−1−イル)−3,5−ジフェニル−4H−1,2,4−トリアゾール、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン、2,7−ビス[2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾ−5−イル]−9,9−ジメチルフルオレン、1,3−ビス[2−(4−t−ブチルフェニル)−1,3,4−オキサジアゾ−5−イル]ベンゼン、トリス(2,4,6−トリメチル−3−(ピリジン−3−イル)フェニル)ボラン、1−メチル−2−(4−(ナフタレン−2−イル)フェニル)−1H−イミダゾ[4,5f][1,10]フェナントロリン、2−(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン、フェニル−ジピレニルフォスフィンオキサイド、3,3’,5,5’−テトラ[(m−ピリジル)−フェン−3−イル]ビフェニル、1,3,5−トリス[(3−ピリジル)−フェン−3−イル]ベンゼン、4,4’−ビス(4,6−ジフェニル−1,3,5−トリアジン−2−イル)ビフェニル、1,3−ビス[3,5−ジ(ピリジン−3−イル)フェニル]ベンゼン、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4−(ピリジン−3−イル)フェニル)シラン、3,5−ジ(ピレン−1−イル)ピリジン等が挙げられる。
【0077】
電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、リチウムアセチルアセトナート(Li(acac))、酢酸リチウム、安息香酸リチウム等が挙げられる。
陰極材料としては、アルミニウム、マグネシウム−銀合金、アルミニウム−リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
【0078】
本発明の電荷輸送性ワニスを用いたPLED素子の作製方法は、特に限定されないが、以下の方法が挙げられる。
上記有機EL素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、正孔輸送性高分子層、発光性高分子層を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有するPLED素子を作製することができる。
具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して上記の方法により正孔注入層を作製し、その上に正孔輸送性高分子層、発光性高分子層を順次形成し、さらに陰極を蒸着してPLED素子とする。
【0079】
使用する陰極および陽極材料としては、上記有機EL素子作製時と同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
正孔輸送性高分子層および発光性高分子層の形成法としては、正孔輸送性高分子材料もしくは発光性高分子材料、またはこれらにドーパント物質を加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層または正孔輸送性高分子層の上に塗布した後、それぞれ焼成することで成膜する方法が挙げられる。
【0080】
正孔輸送性高分子材料としては、ポリ[(9,9−ジヘキシルフルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,4−ジアミノフェニレン)]、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,1’−ビフェニレン−4,4−ジアミン)]、ポリ[(9,9−ビス{1’−ペンテン−5’−イル}フルオレニル−2,7−ジイル)−co−(N,N’−ビス{p−ブチルフェニル}−1,4−ジアミノフェニレン)]、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)−ベンジジン]−エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9−ジジオクチルフルオレニル−2,7−ジイル)−co−(4,4’−(N−(p−ブチルフェニル))ジフェニルアミン)]等が挙げられる。
【0081】
発光性高分子材料としては、ポリ(9,9−ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2−メトキシ−5−(2’−エチルヘキソキシ)−1,4−フェニレンビニレン)(MEH−PPV)等のポリフェニレンビニレン誘導体、ポリ(3−アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
【0082】
溶媒としては、トルエン、キシレン、クロロホルム等が挙げられ、溶解または均一分散法としては撹拌、加熱撹拌、超音波分散等の方法が挙げられる。
塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
焼成する方法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
【実施例】
【0083】
以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
(1)1H−NMR:日本電子(株)製、ECX−300
(2)LC/MS:ウォーターズ社製、ZQ2000
(3)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(4)ワニスの塗布:ミカサ(株)製 スピンコーターMS−A100
(5)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET−4000
(6)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC−E2L1G1−N
(7)EL素子の輝度等の測定:(有)テック・ワールド製 I−V−L測定システム
【0084】
[1]アリールアミン誘導体の合成
[合成例1]化合物1の合成
【化18】
【0085】
4−ブロモ−4′−ヨードビフェニル(8.98g、25mmol、東京化成工業(株)製)、アニリン(2.56g、27.5mmol)のトルエン懸濁液(90mL)に、Pd(PPh34(1.44g、1.25mmol)、t−BuONa(2.88g、30mmol)を加え、窒素置換後、10時間加熱還流した。反応終了後、室温まで放冷し、セライトろ過した。ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:トルエン)で精製し、化合物1を含む留分を濃縮した。得られた粗生成物にエタノール/トルエン(3:1(w/w))の混合溶媒を加え、加熱還流下、溶解させた。室温まで冷却した後、析出した固体をろ過し、淡茶色固体の化合物1(6.96g、収率86%)を得た。1H−NMRおよびLC/MSの測定結果を以下に示す。
1H−NMR(300MHz,CDCl3):δ5.79(brs,1H),6.97(t,J=7.5Hz,1H),7.10−7.13(m,4H),7.25−7.32(m,2H),7.41−7.55(m,6H).
LC/MS(ESI+)m/z;324[M+1]+
【0086】
[合成例2]アリールアミン誘導体H1の合成
【化19】
【0087】
9,9−ビス(4−アミノフェニル)フルオレン(1g、2.87mmol、東京化成工業(株)製)、合成例1で得られた化合物1(1.95g、6.0mmol)のキシレン懸濁液(10mL)に、Pd(PPh34(166mg、0.14mmol)、t−BuONa(0.66g、6.89mmol)を加え、窒素置換後、4時間加熱還流した。その後、合成例1で得られた化合物1(0.37g、1.1mmol)、t−BuONa(0.11g、1.21mmol)を加え、さらに6時間加熱還流した。反応終了後、室温まで放冷し、クロロホルム(40mL)、水(40mL)を加え、30分間室温で撹拌した。不溶な固体をろ過により収集し、THFに溶解させた後、セライトろ過した。ろ液を濃縮して得られた粗生成物を、シリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル(1/1(v/v)))で精製し、アリールアミン誘導体H1を含む留分を濃縮した。得られた粗生成物をエタノールで洗浄し、淡灰色固体のアリールアミン誘導体H1(1.15g、収率48%)を得た。1H−NMRおよびLC/MSの測定結果を以下に示す。
1H−NMR(300MHz,THF−d8):δ6.77(t,J=7.5Hz,2H),6.94(d,J=9.0Hz,4H),7.04−7.33(m,28H),7.39−7.45(m,10H),7.78(d,J=6.9Hz,2H).
LC/MS (ESI+)m/z;835[M+1]+
【0088】
[合成例3]アリールアミン誘導体H2の合成
【化20】
【0089】
1,1−ビス(4−アミノフェニル)シクロヘキサン(0.8g、3mmol、東京化成工業(株)製)、合成例1で得られた化合物1(2.14g、6.6mmol)、Pd(PPh34(173mg、0.15mmol)、t−BuONa(0.72g、7.5mmol)、キシレン(8mL)を用い、合成例2と同様の手順で、淡灰色固体のアリールアミン誘導体H2(1.26g、収率56%)を得た。1H−NMRおよびLC/MSの測定結果を以下に示す。
1H−NMR(300MHz,THF−d8):δ1.46−1.64(m,6H),2.21−2.23(m,4H),6.77(t,J=7.5Hz,2H),7.02−7.32(m,28H),7.40−7.44(m,8H).
LC/MS(ESI+)m/z;753[M+1]+
【0090】
[合成例4]アリールアミン誘導体H3の合成
【化21】
【0091】
4,4′−ジアミノジフェニルメタン(0.6g、3mmol、東京化成工業(株)製)、合成例1で得られた化合物1(2.14g、6.6mmol)、Pd(PPh34(173mg、0.15mmol)、t−BuONa(0.72g、7.5mmol)、キシレン(6mL)を用い、合成例2と同様の手順で淡灰色固体のアリールアミン誘導体H3(1.45g、収率71%)を得た。1H−NMRおよびLC/MSの測定結果を以下に示す。
1H−NMR(300MHz,THF−d8):δ3.82(s,2H),6.77(t,J=7.5Hz,2H),7.00−7.20(m,24H),7.26(brs,2H),7.32(brs,2H),7.40−7.44(m,8H).
LC/MS(ESI+)m/z;685[M+1]+
【0092】
[2]電荷輸送性ワニスの調製
[実施例1−1]
アリールアミン誘導体H1 0.113g(0.135mmol)および下記式で示されるドーパント物質D1 0.091g(0.101mmol)の混合物に対し、窒素雰囲気下で良溶媒である1,3−ジメチル−2−イミダゾリジノン7.2gを加えて溶解した。この溶液に、シクロヘキサノール1.4gおよびプロピレングリコール1.4gを加え、十分に撹拌して黄色透明溶液を得た。得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、黄色透明の電荷輸送性ワニスを得た(固形分濃度2.0質量%)。
なお、ドーパント物質D1は、国際公開第2006/025342号の記載に基づき合成した。
【0093】
【化22】
【0094】
[実施例1−2]
アリールアミン誘導体H1 0.098g(0.117mmol)およびドーパント物質D1 0.106g(0.117mmol)の混合物を用いた以外は、実施例1−1と同様にして黄色透明の電荷輸送性ワニスを得た(固形分濃度2.0質量%)。
【0095】
[実施例1−3]
アリールアミン誘導体H1 0.062g(0.074mmol)およびリンタングステン酸(関東化学(株)製)0.247gの混合物を用いた以外は、実施例1−1と同様にして黄色透明の電荷輸送性ワニスを得た(固形分濃度3.0質量%)。
【0096】
[実施例1−4]
アリールアミン誘導体H2 0.062g(0.082mmol)およびリンタングステン酸0.247gの混合物を用いた以外は、実施例1−1と同様にして黄色透明の電荷輸送性ワニスを得た(固形分濃度3.0質量%)。
【0097】
[実施例1−5]
アリールアミン誘導体H3 0.062g(0.090mmol)およびリンタングステン酸0.247gの混合物を用いた以外は、実施例1−1と同様にして黄色透明の電荷輸送性ワニスを得た(固形分濃度3.0質量%)。
【0098】
[3]有機EL素子の作製および初期特性
電気特性を評価する際の基板には、インジウム錫酸化物が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板(以下ITO基板と略す)を用いた。ITO基板は、O2プラズマ洗浄装置(150W、30秒間)を用いて表面上の不純物を除去してから使用した。
[実施例2−1]
実施例1−1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、80℃で1分間乾燥し、さらに230℃で15分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。
薄膜を形成したITO基板に対し、蒸着装置を用いてα−NPD、Alq3、フッ化リチウム、およびアルミニウムの薄膜を順次積層し、有機EL素子を得た。膜厚はそれぞれ30nm、40nm、0.5nmおよび100nmとし、真空度1.0×10-5Pa、蒸着レートはフッ化リチウムでは0.02nm/秒、それ以外の材料では0.2nm/秒の条件で蒸着を行った。
なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は以下の手順で行った。
酸素濃度5ppm以下、露点−80℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤により貼り合わせた。この際、捕水剤としてダイニック(株)製HD−071010W−40を有機EL素子と共に封止基板内に収めた。接着剤としては、(株)MORESCO製モレスコモイスチャーカットWB90US(P)を使用した。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
【0099】
[実施例2−2〜2−5]
実施例1−2〜1−5で得られたワニスを用いた以外は、実施例2−1と同様の方法で有機EL素子を作製した。
【0100】
実施例2−1〜2−5で得られた有機EL素子の電気特性を、電流−電圧−輝度測定システムを用いて測定した。駆動電圧5Vにおける電流密度および輝度を表1に示す。なお、各素子の発光面サイズの面積は、2mm×2mmである。
【0101】
【表1】
【0102】
表1に示されるように、実施例2−1〜2−5で作製した有機EL素子は、実用的な電圧の範囲内で充分に発光することがわかる。
以上のことから、本発明の電荷輸送性物質を用いた薄膜を正孔注入層として用いることで、輝度特性に優れる有機EL素子が得られることがわかった。