【文献】
土井悠生, 他,pinダイヤモンド半導体への電流注入による単一NV中心の電荷制御,ダイヤモンドシンポジウム講演要旨集,2012年,Vol.26th,Page.116-117
【文献】
A. TALLAIRE, et al.,High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates,Diamond and Related Materials,2013年11月12日,Vol.41,Page.34-40,(Available online)
【文献】
MIZUOCHI, Norikazu,Electrically driven single photon source at room temperature by using single NV center in diamond,CLEO:2013,2013年,p.1-2,DOI:10.1364/CLEO_SI.2013.CTH4G.1
【文献】
Hiromitsu Kato, et al.,Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes,Applied Physics Letters,2013年,vol.102,p.151101-1 〜p.151101-4
【文献】
Satoshi Koizumi, et al.,Ultraviolet Emission from a Diamond pn Junction,Science,2001年,vol.292,p.1899-1901
(58)【調査した分野】(Int.Cl.,DB名)
前記第1領域の周期配列は、前記平面を上方から眺めたときに、特定の第1領域の中心位置を中心点とする正六角形の6つの頂点のそれぞれに他の第1領域の中心が位置している六方充填配列である、請求項1〜7の何れか1項に記載のダイヤモンド素子。
【発明を実施するための形態】
【0038】
以下に、図面を参照して、本発明に係るダイヤモンド結晶、および、これを用いたダイヤモンド素子、磁気センサー、磁気計測装置について説明する。
【0039】
なお、本件発明はダイヤモンド結晶を対象とするが、同様の効果は、炭化珪素等の他のワイドバンドギャップ半導体においても期待される。また、以降の説明では、本発明に係るダイヤモンド素子を、NV中心を含む第1領域が平面内で2次元的に周期配列された態様のセンサーアレイとして説明するが、本発明はこれに限定されるものではなく、単一の第1領域を有するものであってもよく、また、その用途がセンサーに限定されるものでもない。
【0040】
[ダイヤモンド結晶](第1の態様)
本発明に係る第1の態様のダイヤモンド結晶は、好ましくは板状のダイヤモンド結晶であって、少なくともその表面乃至表面近傍に、炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含むNV領域を有しており、このNV領域はNV中心の濃度以上のドナー濃度を有している。
【0041】
アン・ドープのダイヤモンド結晶中に電気的に中性のNV
0中心を形成し、これを電子線照射等により欠陥を生じさせた後に熱処理する等の手法によりNV
0中心を負に帯電させてNV
−中心を形成したダイヤモンド結晶の場合、これに光を照射すると、NV
−中心の一部がNV
0中心となり、光照射後のNV
−中心とNV
0中心の比が、概ね、7:3程度となってしまうことが知られている。
【0042】
しかし、本発明者らが検討したところによれば、CVD法で成膜したn型のダイヤモンド結晶に上記NV
−中心を形成したダイヤモンド結晶の場合、これに光を照射してもNV
−中心はその帯電状態を維持すること、すなわち、光照射後においてもNV
−中心は安定に存在していることが明らかとなった。
【0043】
図4は、NV
−中心を形成したn型のダイヤモンド結晶(
図4(A))およびアン・ドープのダイヤモンド結晶(
図4(B))の、波長532nmの光を照射した後の、NV
−中心およびNV
0中心からの波長593nmの光照射中の発光を測定した結果を示す図である。この図において、横軸は波長593nmの光照射中に観測された光子数、縦軸はそれぞれの光子数が観測されたイベント数であり、この測定結果から、光照射後のダイヤモンド結晶中に存在するNV
−中心およびNV
0中心の比率を知ることができる。なお、
図4(A)に示した結果は、NV
−中心の濃度が概ね1×10
11cm
−3であり、燐(P)が概ね1×10
15cm
−3の濃度でドープされているn型のダイヤモンド結晶からのものである。
【0044】
n型のダイヤモンド結晶(
図4(A))からは、NV
−中心からの信号のみが観測され、光照射後においてもNV
−中心はその帯電状態を維持していること、すなわち、光照射後においてもNV
−中心は安定に存在していることが分かる。
【0045】
これに対して、アン・ドープのダイヤモンド結晶(
図4(B))からは、NV
−中心からの信号に加え、NV
0中心からの信号が観測されており、その比(NV
−中心:NV
0中心)は0.74:0.26となっている。つまり、このアン・ドープのダイヤモンド結晶中のNV
−中心は、光照射により26%がNV
0中心となっている。
【0046】
このような現象は、光照射により一旦はNV
−中心の一部から電子が放出されてNV
0中心となっても、ダイヤモンド結晶中にドープされたドナーから放出された電子がこのNV
0中心に捕獲されて再びNV
−中心となるためであると理解される。従って、光照射後においてもNV
−中心を安定に存在させるためには、結晶中のドナー濃度は、NV領域のNV中心の濃度以上であることが効果的である。
【0047】
NV領域のドナー濃度は当該領域のNV中心の濃度以上であればよく、例えば1×10
12cm
−3以上であり、NV
0中心への効率的な電子供給を実現するためには、10×10
15cm
−3〜10×10
19cm
−3の範囲にあることが好ましい。
【0048】
また、上記ドナーは、一般には燐(P)とされるが、炭素を置換してP1センター(電荷0、スピンS=1/2)として結晶中に存在する窒素(N)不純物であってもよく、砒素(As)や硫黄(S)のほか、硼素(B)と水素(H)の複合体などであってもよい。
【0049】
このようなダイヤモンド結晶は、天然のものでも高温高圧法(HPHT法)やマイクロ波プラズマなどを用いたCVD法(化学気相成長法)で人工的に合成されたものでもよく、例えばダイヤモンド基板上にCVD等の手法で育成された薄膜結晶であってもよい。CVD法で合成したダイヤモンドは、成長中にn型となるリンなどのドーパントを導入しやすく、また、NV中心となる窒素も製膜中に導入することができるので、CVD法を用いることが効果的である。また、このダイヤモンド結晶は、好ましくはIb型のダイヤモンド結晶であり、上記NV領域の面方位を揃える、電子スピンの位相コヒーレンス時間が長いという観点から、単結晶であることが好ましいが、多結晶あるいはナノ結晶であっても同様の効果が得られる。その面方位は、{110}面、{100}面、{111}面が好ましく、特に、後述の理由により、{111}面であることが好ましい。
【0050】
なお、CVDにより窒素ドープのダイヤモンド膜を結晶成長させる場合を考えると、実用上は、{111}面から僅かにオフ角を有する結晶面のものであることが有用である場合が多い。この場合のオフ角は適宜定められるが、一般には、±10°以内であることが好ましい。
【0051】
[ダイヤモンド結晶](第2の態様)
本発明に係る第2の態様のダイヤモンド結晶は、好ましくは板状のダイヤモンド結晶であって、少なくともその表面乃至表面近傍に、炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含むNV領域を有しており、このNV領域の結晶面が{111}面若しくは{111}面と±10°以内のオフ角を有する面であり、NV中心の主軸が前記{111}面に直交する<111>軸である。
【0052】
つまり、NV領域の面方位が(111)面である場合には、NV中心の主軸は、(111)面に直交する[111]軸である。
【0053】
このダイヤモンド結晶においても、NV領域のドナー濃度は当該領域のNV中心の濃度以上であり、NV
0中心への効率的な電子供給を実現するためには、10×10
15cm
−3〜10×10
19cm
−3の範囲にあることが好ましい。また、NV領域は、例えば、CVD法やHPHT法により成長させた窒素ドープのダイヤモンド結晶膜に形成されている。
【0054】
図1に示したように、ダイヤモンド結晶中のNV中心は、<111>軸を主軸とするC
3v対称性をもち、空孔(V)に隣接する4つの炭素(C)の何れが窒素(N)と置換されるかにより4つの等価な配向が存在し、等価な4本の<111>軸に対してランダムにダイポールを形成することとなる。
【0055】
図5は、[111]の方向に磁場が生じている場合に、NV中心の主軸がこれと同じ方向([111]方向)にある場合(
図5(A))と、NV中心の主軸が[111]とは異なる<111>方向にある場合(
図5(B))の、磁場方向とNV中心の主軸との関係を説明する図である。前者の場合にはNV中心の主軸(つまりダイポールの軸方向)と磁場方向とが成す角度θはゼロであり、後者の場合には角度θは概ね109°となる。
【0056】
ダイポールが等価な4本の<111>軸に対してランダムにダイポールを形成し、上記角度θが4つとも異なれば、4本の共鳴線が現れることとなる。仮に、[111]の方向に磁場が生じているとすると、等価な4本の<111>軸のうちの1つの軸はθ=0であり、他の3つの軸が磁場方向と成す角度θは何れも概ね109°となって3本の共鳴周波数は同じとなるから、スペクトル中に現れる共鳴線の数は2となり、当該2本の共鳴線の強度比は1:3となる。
【0057】
このように、ダイポールがランダムに形成されてしまうと、ダイヤモンド結晶からの蛍光強度は、結晶への入射光や外部磁場等の向きによって変化する傾向がある。このため、ダイヤモンド結晶中のNV
−中心を利用した高感度な磁気センサーを実現するためには、これらNV
−中心のスピン状態を一方向に揃えること、換言すれば、NV中心の軸を揃えることが必要となる。
【0058】
この点につき本発明者らが検討した結果、NV領域の面方位を{111}面(若しくは{111}面と±10°以内のオフ角を有する面)とすれば、NV中心の主軸を、この{111}面に直交する<111>軸に揃えることができることが明らかとなった。なお、以下では、{111}面という場合には、当該{111}面と±10°以内のオフ角を有する面をも含む意味で用いる。
【0059】
図6は、CVD法で成膜された主面が(111)面のダイヤモンド薄膜中に形成されたNV
−中心の主軸が[111]軸に揃う結果、光検出磁気共鳴(ODMR:Optically Detected Magnetic Resonance)信号のピーク位置も揃っていることを確認した実験結果を示す図である。
【0060】
上述のように、このようなダイヤモンド結晶は、CVD法で成長させたものである必要はなく、HPHT法のような他の方法で成長させた窒素ドープのダイヤモンド結晶であっても良い。また、ダイヤモンドの結晶成長中に窒素をドーピングすることはもとより、結晶成長させた後にイオン注入法などによりドーピングするようにしても良い。
【0061】
表1は、NV中心軸が揃う割合につき、ダイヤモンドの合成方法(および窒素のドーピング方法)ごとに調べた結果を纏めた表である。
【0062】
試料A,B,Dは何れも、主面が(111)面のダイヤモンド基板上にCVD法で合成したダイヤモンドである。なお、CVD時の条件は、水素に対するメタンの希釈濃度を0.25〜1%とし、ガス圧力、パワー、基板温度は、それぞれ、130Torr〜20kPa、400〜3,700W、850〜1100℃の範囲に設定することが好ましい。
【0063】
これらの試料のうち、試料AとDではダイヤモンドの結晶成長中に窒素をドーピングすることでNV中心を形成した。また、試料Bではダイヤモンドを結晶成長させた後にイオン注入法により窒素(
15N)をドーピングすることでNV中心を形成した。なお、イオン注入は、基板を600℃程度の温度となるようにアニールしながら、
15Nイオンを30keV程度の加速電圧で打ち込むことが好ましい。また、ドーズ量は10
9〜10
16cm
−2とし、さらに、結晶欠陥低減のために、イオン注入後にAr雰囲気中で1000℃程度の温度で2時間程度のアニールを行うことが好ましい。
【0064】
試料CおよびEは、それぞれ、IIa HPHT法およびIb HPHT法で合成したダイヤモンドであり、試料Cは、試料Bと同様に、ダイヤモンドを結晶成長させた後にイオン注入法により窒素(
15N)をドーピングすることでNV中心を形成した。また、試料Eは、ダイヤモンドの結晶成長中に窒素をドーピングし、さらに、ダイヤモンドを結晶成長させた後に電子線照射によりNV中心を形成した。なお、この電子線照射は、加速電圧を0.5MeV、電子線濃度を1.5×10
16cm
−2の条件でおこない、電子線照射後には、結晶欠陥低減のため、Ar雰囲気中で1000℃の温度で2時間のアニールを行っている。
【0065】
表1に示した結果によれば、ダイヤモンドの結晶成長中に窒素をドーピングすることでNV中心を形成した試料AおよびDにおいて、99%を超える高い比率でNV中心軸が[111]方向に揃っている。なお、表中、「NV中心」の項目において「シングル」と記載されているものは観測されたNV中心が単一であったことを意味し、「アンサンブル」と記載されているものは観測されたNV中心が」多数あったことを意味している。
【0067】
図6(A)は共焦点レーザー蛍光顕微鏡像であり、この図中に丸マークで示されたものは、それぞれが、単一のNV
−中心である。
図6(B)はこれら単一NV
−中心からのODMR信号であって、何れの単一NV
−中心からも、同一の周波数にピークをもつ信号が得られている。なお、このようなODMR測定を50個の単一NV
−中心について行ったが、何れの単一NV
−中心も、
図6(B)に示したものと同様のスペクトルが得られた。この結果は、主面が(111)面のダイヤモンド薄膜中に形成された単一NV
−中心は何れも、その主軸が、(111)面に直交する<111>軸である[111]に揃っていることを意味する。なお、
図6(B)のスペクトルは、共焦点レーザー顕微鏡を用いて、単一NV中心からの発光を観測しながら、高周波(2.55-2.85 GHz)を照射し、磁場を[111]方向に約7mTを照射し、室温で測定した結果である。
【0068】
上述のとおり、ダイヤモンド結晶中のNV中心は<111>軸を主軸とするC
3v対称性をもち、等価な4本の<111>軸に対してランダムにダイポールを形成した場合には、これに印加される磁場の方向によりODMR信号も変化する。例えば、磁場を、[111]、[1−1−1]、[−11−1]、[−1−11]の異なる4つの方向から印加したとすると、各磁場印加条件下で得られるODMR信号は互いに異なるものとなる。なお、上記表示において、「−1」は、「イチ・バー」を意味している。
【0069】
しかし、NV領域の面方位を{111}面とし、NV中心の主軸を、{111}面に直交する<111>軸に揃えると、
図6(B)に示した様に、上記4つの異なる方向から磁場を印加しても、ODMR信号の落ち込み周波数(共鳴周波数)は同じものとなっている。
【0070】
図7(A)は、CVD法で成膜された主面が(111)面のダイヤモンド薄膜中に比較的高い濃度(概ね1×10
14cm
−3)でNV
−中心を形成した試料から得たODMR信号を示す図で、横軸はマイクロ波周波数(MHz)、縦軸はODMR赤色蛍光強度(任意スケール)である。このダイヤモンド薄膜中に形成されたNV
−中心の主軸は、上記{111}面に直交する<111>軸となっている。つまり、NV
−中心の主軸は何れも、{111}面に直交する<111>軸に揃っている。NV
−中心の主軸が、上記{111}面に直交する<111>軸に揃っている場合には、
図7(B)の(a)や(b)に示すように、磁場の印加方向を{111}面に直交する<111>軸方向からずらしても、複数の信号が現れることはない。
【0071】
しかし、
図7(C)に示すように、NV中心が等価な4本の<111>軸に対してランダムにダイポールを形成している場合には、{111}面に直交する<111>軸を有するNV
−中心からの信号と、それ以外の3つの<111>軸を有するNV
−中心からの信号とは異なる。そして、
図7(D)に示すように磁場の印加方向を{111}面に直交する<111>軸方向からずらすと、互いに分裂した4本のODMR信号が現れることになる。
【0072】
なお、
図7(A)〜(D)のスペクトルは、共焦点レーザー顕微鏡を用いて、単一NV中心からの発光を観測しながら、高周波(2.55-2.85 GHz)を照射し、磁場を[111]方向に約16mTを照射し、室温で測定した結果である。
【0073】
上記NV中心の主軸が4つの等価な<111>軸のうちの特定の<111>軸(ここでは[111]軸)に揃うサンプルは、例えば、下記のようにして得られる。高温高圧方法で合成されたIb型で(111)面(オフ角は10度以内)を有するダイヤモンド基板上に、反応室に窒素ガス、メタンガス、水素ガスを導入し、マイクロ波CVD法により、プラズマ中で成膜する。CVD条件は、例えば、トータルガス圧を25Torr、ガスのフローレートを400sccm、マイクロ波のパワーは750W、メタンと水素の混合比を0.05%程度とする。また、基板温度は800℃程度とする。このようなCVD法により得られたダイヤモンド膜は(111)面に主に配向し、この(111)面に直交する<111>軸である[111]を主軸とするNV中心が膜中に生成される。なお、窒素は成膜中に導入するのが望ましい。
【0074】
このようなダイヤモンド結晶は、{111}面を主面とするものであればよく、天然のものでも高温高圧法(HPHT)やマイクロ波プラズマなどを用いたCVDでも人工的に合成されたものでもよく、好ましくはIb型のダイヤモンド結晶であり、例えば、{111}面を主面とするダイヤモンド基板上に、CVD法によりダイヤモンド薄膜をホモエピタキシャル成長させることにより得ることができる。またダイヤモンド薄膜は、単結晶であるほうが望ましいが、多結晶、あるいはナノダイヤモンドであっても同様の効果が得られる。窒素はCVD成膜時に導入するのが望ましいが、成膜後に窒素をイオン注入によっても導入することも可能である。
【0075】
このような第2の態様のダイヤモンド結晶においても、NV領域はNV中心の濃度以上のドナー濃度を有していることが好ましい。また、NV領域のドナー濃度は当該領域のNV中心の濃度以上であればよく、例えば1×10
12cm
−3以上である。
【0076】
さらに、上記ドナーは、一般には燐(P)とされるが、炭素を置換してP1センター(電荷0、スピンS=1/2)として結晶中に存在する窒素(N)不純物であってもよく、砒素(As)や硫黄(S)のほか、硼素(B)と水素(H)の複合体などであってもよい。
【0077】
[センサーアレイ](第1の態様)
本発明に係る第1の態様のセンサーアレイは、ダイヤモンドを用いた素子であって、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含む第1領域に接して、該第1領域よりも高いドナー濃度を有する第2領域が形成されていることを特徴としている。好ましくは、第1領域が平面内で2次元的に周期配列されており、第1領域のそれぞれの側面若しくは周囲に、該第1領域よりも高いドナー濃度を有する第2領域が形成されている。
【0078】
このような態様とすることにより、第1領域のエネルギーバンドは第2領域の存在により湾曲を受け、このバンド湾曲により第2領域からの拡散による電子注入が生じ易くなる。第1領域に注入された電子は、第1領域内において電気的に中性な状態にあるNV中心(NV
0中心)に捕獲され、高空間分解能かつ高感度な磁気検出を可能とする負電荷状態のNV中心(NV
−中心)の密度の低下を抑制する効果を奏する。
【0079】
図8は、本発明に係る第1の態様のセンサーアレイの基本概念を説明するためのバンド図である。
【0080】
なお、ここでは、上述の第1領域が略アン・ドープのp
−型のダイヤモンドであり、これを取り囲む第2領域がn
+型のダイヤモンドであると仮定している。しかし、本発明に係る第1の態様のセンサーアレイは、第1領域のエネルギーバンドを第2領域の存在により湾曲させ、このバンド湾曲により第2領域からの拡散による電子注入を生じさせるものであればよい。従って、例えば、第2領域はn型のダイヤモンドからなり、第1領域はi型乃至はp型のダイヤモンドからなるものであってもよい。また、第2領域はn型のダイヤモンドからなり、第1領域は、pn接合により形成される空乏領域であってもよい。要するに、異種導電型の接合部であって、該接合部の領域に、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)が形成された異種導電型の接合部を形成し、この接合部に形成される空乏領域である態様であってよい。
【0081】
図8(A)の(a)および(b)には、n
−型のダイヤモンドおよびn
+型のダイヤモンドのそれぞれのバンド図を示しており、少なくとも第1領域内に形成されているNV
−中心のエネルギー準位(NV
−レベル)は、ダイヤモンド結晶のバンドギャップ中に位置している。
【0082】
図8(A)の(a)に示したバンド図を有する第1領域(n
−型)が、
図8(A)の(b)に示したような第1領域よりも高いドナー濃度を有する第2領域(n
+型)で取り囲まれると、
図8(B)にバンド図を示したように、第1領域内のエネルギーバンドは、第2領域との境界領域において湾曲を受ける。
【0083】
ダイヤモンド結晶中に形成されたNV
−中心は、室温では安定とされているものの、光照射などの外乱を受けた場合には、捕獲されていた電子が放出されてNV
0中心となってしまう傾向があり、一旦、NV
0中心となると、再び電子を捕獲するまではNV
0中心のまま結晶中に存在することとなる。
【0084】
このようなNV
0中心を再びNV
−中心として高空間分解能かつ高感度な磁気検出を可能とするNV中心とするためには、NV
0中心に電子を捕獲させる必要がある。
【0085】
本発明では、第1領域よりも高いドナー濃度を有する第2領域で取り囲むことにより、第1領域内のエネルギーバンドを湾曲させ、このバンド湾曲により第2領域から電子を拡散により注入させることで、上記NV
0中心への電子捕獲を可能としている。
【0086】
なお、
図8に示した概念図では、第2領域との境界領域のみでエネルギーバンドの湾曲が生じているが、第1領域の幅を狭くすることにより、あるいは第1の領域を低濃度のp型、あるいはi層にすることにより、実質的に、第1領域内の全域においてエネルギーバンドの湾曲を生じさせることが可能である。換言すれば、第1領域の幅を狭くすることにより、第1領域の幅全体にわたる「空乏化」を実現することが可能である。
【0087】
図9は、本発明に係る第1の態様のセンサーアレイのバンド図の一例を説明するための図である。この図に示した例では、第1の領域をi型(乃至は低濃度のp型:p
−型)とし、この第1の領域はn
+型の第2領域で取り囲まれており、実質的に、第1領域内の全域においてエネルギーバンドの湾曲が生じている(
図9(A))。このようなエネルギーバンドの湾曲は、例えば、
図9(B)に図示したように、中心部をi型(乃至は低濃度のp
−型)の第1領域とし、その周りがn
+型の第2領域となっている円柱状のピラー(
図9(B)(a))や、中心部をi型(乃至は低濃度のp
−型)の第1領域とし、その周りがn
+型の第2領域となっている角柱状のピラー(
図9(B)(b))を形成すること等により実現することができる。
【0088】
例えば、第2領域のドナー濃度が1×10
18cm
−3程度で第1領域のアクセプター濃度が1×10
16cm
−3程度の場合、第1領域と第2領域の境界から、第1領域側に約0.5μmの空乏層が両方の境界から形成される。従って、第1領域の幅を1.0μm程度とすると第1領域のほぼ全域において上述の効果を奏することができる。また、第1領域のアクセプター濃度が1×10
17cm
−3程度の場合には第1領域の幅を0.4μm程度、第1領域のアクセプター濃度が3×10
16cm
−3程度の場合には第1領域の幅を0.7μm程度とすると、第1領域のほぼ全域において上記効果を奏することができる。
【0089】
このような態様のセンサーアレイにおいても、第1領域の面方位を{111}面とし、NV中心の主軸を{111}面に直交する<111>軸に揃えることが好ましい。
【0090】
また、第1領域は、該第1領域のNV中心の濃度以上のドナー濃度を有していることが好ましく、第2領域はドナーレベルが1×10
18cm
−3以上のn
+型の導電型を有していることが好ましい。
【0091】
その場合、ドナーは一般には燐(P)とされるが、炭素を置換してP1センター(電荷0、スピンS=1/2)として結晶中に存在する窒素(N)不純物であってもよく、砒素(As)や硫黄(S)のほか、硼素(B)と水素(H)の複合体などであってもよい。
【0092】
また、第2領域のNV中心の濃度は、第1領域のNV中心の濃度よりも低いことが好ましい。
【0093】
また、上述のダイヤモンドは、例えば、基板上にCVD法で形成された窒素ドープのダイヤモンド膜であることが好ましい。このようなダイヤモンド膜は、例えば、下記のようにして得られる。高温高圧方法で合成されたIb型で(111)面(オフ角は10度以内)を有するダイヤモンド基板上に、反応室に窒素ガス、メタンガス、水素ガスを導入し、マイクロ波CVD法により、プラズマ中で成膜する。CVD条件は、例えば、トータルガス圧を25Torr、ガスのフローレートを400sccm、マイクロ波のパワーは750W、メタンと水素の混合比を0.05%程度とする。また、基板温度は800℃程度とする。このようなCVD法により得られたダイヤモンド膜は(111)面に主に配向し、この(111)面に直交する<111>軸である[111]を主軸とするNV中心が膜中に生成される。なお、窒素は成膜中に導入するのが望ましい。
【0094】
さらに、第1領域のそれぞれは、一方主面側(裏面側)に、正電位を印加するための電極が絶縁膜を介して設けられている態様としてもよい。斯かる電極を設けて正電位を印加することにより、上述したエネルギーバンドの湾曲効果と同様、NV
0中心が再び電子を捕獲する確率を高めることができる。この点については後述する。
【0095】
上述した第1の態様のセンサーアレイを製造するには、例えば、板状のダイヤモンドの表面に2次元的に周期配列する柱状部を第1領域として形成し、該第1領域のそれぞれに、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を形成し、第1領域のそれぞれの周囲を取り囲む第2領域であって、第1領域よりも高いドナー濃度を有する第2領域を形成して、上述したように第1領域のエネルギーバンドを湾曲させる。
【0096】
[センサーアレイ](第2の態様)
本発明に係る第2の態様のセンサーアレイは、ダイヤモンドを用いた素子であって、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含む第1領域の一方主面側(裏面側)に、正電位を印加するための電極が絶縁膜を介して設けられていることを特徴としている。好ましくは、第1領域は平面内で2次元的に周期配列されており、第1領域のそれぞれの一方主面側(裏面側)に、正電位を印加するための電極が絶縁膜を介して設けられている。また、好ましくは、第1領域に接して、該第1領域よりも低いNV中心濃度を有する第2領域が形成されている。
【0097】
図10は、本発明に係る第2の態様のセンサーアレイの基本概念を説明するためのバンド図である。ここでも、上述の第1領域が略アン・ドープのn
−型のダイヤモンドであると仮定している。
【0098】
図10(A)に示したバンド図を有する第1領域の裏面側に酸化膜等の絶縁膜を介して電極が設け、この電極に正電位を印加すると、
図10(B)にバンド図を示したように、第1領域内のエネルギーバンドは、絶縁膜との界面近傍において湾曲を受ける。
【0099】
上述のように、ダイヤモンド結晶中に形成されたNV
−中心は、光照射などの外乱を受けた場合に、捕獲されていた電子が放出されてNV
0中心となってしまう傾向がある。
【0100】
本発明に係る第2の態様のセンサーアレイでは、電極に正電位を印加することにより、絶縁膜との界面近傍において第1領域のエネルギーバンドを湾曲させて、NV
0中心が再び電子を捕獲する確率を高めている。
【0101】
このような態様のセンサーアレイにおいても、第1領域の面方位を{111}面とし、NV中心の主軸を{111}面に直交する<111>軸に揃えることが好ましい。
【0102】
また、第1領域は、該第1領域のNV中心の濃度以上のドナー濃度を有していることが好ましい。
【0103】
その場合、ドナーは一般には燐(P)とされるが、炭素を置換してP1センター(電荷0、スピンS=1/2)として結晶中に存在する窒素(N)不純物であってもよく、砒素(As)や硫黄(S)のほか、硼素(B)と水素(H)の複合体などであってもよい。
【0104】
また、第2領域のNV中心の濃度は、第1領域のNV中心の濃度よりも低いことが好ましい。
【0105】
また、上述のダイヤモンドは、例えば、基板上にCVD法で形成されたダイヤモンド薄膜であることが好ましい。
【0106】
上述した第2の態様のセンサーアレイを製造するには、例えば、板状のダイヤモンドの表面に2次元的に周期配列する柱状部を第1領域として形成し、該第1領域のそれぞれに、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を形成し、第1領域のそれぞれの周囲を取り囲む第2領域であって、第1領域よりも低いNV中心濃度を有する第2領域を形成し、第1領域のそれぞれの裏面側に、正電位を印加するための電極を絶縁膜を介して設ける。
【0107】
[センサーアレイの製造プロセス例:その1]
図11は、本発明に係るセンサーアレイを製造するプロセス例を概念的に説明するための図である。
【0108】
先ず、主面が(111)のダイヤモンド基板10を準備し(
図11(A))、上述の第1領域を平面内で2次元的に周期配列させるべく、このダイヤモンド基板10の主面に第1のマスク12を形成する(
図11(B))。そして、この第1のマスク12で被覆された領域の周囲をエッチングにより除去し、2次元的に周期配列した柱状部11を形成する(
図11(C))。なお、この基板10は、例えば、ボロン(B)をドープしたp型の単結晶ダイヤモンド基板であり、p型の場合にはp
−型(例えば、ボロン濃度が10×10
16cm
−3以下のドープ量のもの)であることが好ましく、乃真性半導体に近い抵抗率のもの(i型)であることがより好ましい。
【0109】
続いて、柱状部11の周囲の基板表面を第2のマスク13で保護した状態で、窒素(N)をイオン注入し、第1領域となる柱状部11にNV中心を形成する(
図11(D))。なお、このイオン注入の工程では、柱状部11のそれぞれに単一のNV中心を形成することも可能である。なお、第2のマスク13を形成せず、全体に窒素(N)を導入しても同様の効果が得られる。
【0110】
第2のマスク13を除去した後、柱状部11の表面およびダイヤモンド基板10の表面の一部領域を第3のマスク14a、14bで保護し(
図11(E))、柱状部11の周囲に燐(P)をドープしたn
+型のダイヤモンドをCVD法により結晶成長させ(
図11(F))、その後に第3のマスク14a、14bを除去して、NV中心を含む第1領域が、第2の領域15で取り囲まれた状態で、平面内で2次元的に周期配列されたセンサーアレイを得る(
図11(G))。
【0111】
なお、
図11に示したプロセス例では、第1領域となる柱状部11とこれを取り囲む第2の領域15からなるピラー16相互間の干渉を抑制するために、ピラー16を互いに離間すべく、ダイヤモンド基板10の表面の一部領域を第3のマスク14bで保護することとしている。例えば、第1領域となる柱状部11の幅が0.5μm程度である場合、ピラー16の間隔は1μm程度とする。
【0112】
[センサーアレイの製造プロセス例:その2]
図12は、本発明に係るセンサーアレイを製造する他のプロセス例を概念的に説明するための図である。
【0113】
主面が(111)の単結晶ダイヤモンド基板10aを準備し(
図12(A))、このダイヤモンド基板10aの主面に、CVD法により、例えば、導電型がp型(乃至はi型)の単結晶ダイヤモンド薄膜10bを形成する(
図12(B))。なお、単結晶ダイヤモンド薄膜10bは、p型の場合にはp
−型(例えば、ボロン濃度が10×10
16cm
−3以下のドープ量のもの)乃至は真性半導体に近い抵抗率のものであることが好ましい。このダイヤモンド基板10aとダイヤモンド薄膜10bが、上述のダイヤモンド基板10に相当する。
【0114】
この後の工程は、
図11を用いて説明したものと同様であり、第1領域を平面内で2次元的に周期配列させるべく、ダイヤモンド基板10の主面に第1のマスク12を形成し(
図12(C))、この第1のマスク12で被覆された領域の周囲をエッチングにより除去して2次元的に周期配列した柱状部11を形成する(
図12(D))。
【0115】
続いて、柱状部11の周囲の基板表面を第2のマスク13で保護した状態で、窒素(N)をイオン注入し、第1領域となる柱状部11にNV中心を形成し(
図12(E))、第2のマスク13を除去した後に柱状部11の表面およびダイヤモンド基板10の表面の一部領域を第3のマスク14a、14bで保護し(
図12(F))、柱状部11の周囲に燐(P)をドープしたn
+型のダイヤモンドをCVD法により結晶成長させ(
図12(G))、その後に第3のマスク14a、14bを除去して、NV中心を含む第1領域が、第2の領域15で取り囲まれた状態で、平面内で2次元的に周期配列されたセンサーアレイを得る(
図12(H))。
【0116】
ここで、上記の柱状部の形状に特別な制限はなく、その横断面は矩形であってもよく円形であってもよいが、等方性という観点からは、横断面が円形、つまり、円柱状のピラー16とすることが好ましい。
【0117】
上述の第1領域の周期配列は、例えば、ダイヤモンド表面を上方から眺めたときに、2次元正方格子の各格子点に第1領域の中心が位置している正方周期配列である。
【0118】
また、上述の第1領域の周期配列は、例えば、ダイヤモンド表面を上方から眺めたときに、特定の第1領域の中心位置を中心点とする正六角形の6つの頂点のそれぞれに他の第1領域の中心が位置している六方充填配列である。
【0119】
[センサーアレイの製造プロセス例:その3]
図13は、本発明に係るセンサーアレイを製造する他のプロセス例を概念的に説明するための図で、このプロセス例では、イオン注入法によらず、CVD法により単結晶ダイヤモンド薄膜10bを成膜する際に窒素をドーピングしてNV中心を生成させる。
【0120】
主面が(111)の単結晶ダイヤモンド基板10aを準備し(
図13(A))、このダイヤモンド基板10aの主面に、CVD法により、窒素(N)をドープした、主面が(111)の単結晶ダイヤモンド薄膜10bを形成する(
図13(B))。この、ダイヤモンド基板10aとダイヤモンド薄膜10bが、上述のダイヤモンド基板10に相当する。単結晶ダイヤモンド薄膜10bの成膜には、プロセスガスとして、水素、メタン、窒素の混合ガスを用いる。CVD反応中に窒素が取り込まれ、成膜後の単結晶ダイヤモンド薄膜10bには既にNV中心が生成されている。なお、単結晶ダイヤモンド薄膜10b中のNV中心の濃度を更に増大させるために、電子線を照射したり、或いはヘリウムをイオン注入するなどの後にアニールを行うようにしてもよい。
【0121】
続いて、第1領域を平面内で2次元的に周期配列させるべく、ダイヤモンド膜10bの主面に第1のマスク12を形成し(
図13(C))、この第1のマスクで被覆された領域の周囲をエッチングにより除去して2次元的に周期配列した柱状部11を形成する(
図13(D))。その後、上記第1のマスク12を除去せず、柱状部11の周囲に燐(P)をドープしたn
+型のダイヤモンドをCVD法により結晶成長させて第2の領域15を形成する(
図13(E))。その後に第1のマスク12を除去すると、NV中心を含む第1領域11が、第2の領域15で取り囲まれた状態で、平面内で2次元的に周期配列されたセンサーアレイが得られる(
図13(F))。
【0122】
[センサーアレイの製造プロセス例:その4]
上述したように、本発明に係るセンサーアレイは、第1領域のエネルギーバンドを第2領域の存在により湾曲させ、このバンド湾曲により第2領域からの拡散による電子注入を生じさせるものであればよい。従って、第2領域はn型のダイヤモンドからなり、第1領域は、pn接合をはじめとする異種導電型の接合部に形成される空乏領域である態様であってもよい。以降の説明では、このような異種導電型の接合部を、いわゆるpn接合として説明するが、「p
−n接合」や「in接合」であってもよい。また、この異種導電型の接合部に電流を注入する手段もしくは電圧を印加する手段を備える態様としてもよい。
【0123】
このようなセンサーアレイは、板状のダイヤモンドの主面上に、ダイヤモンドからなるpn接合部であって、該pn接合部に形成される空乏化領域に、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)が形成されたpn接合部を複数形成することにより製造することができる。
【0124】
図14は、このようなセンサーアレイを製造するプロセス例を概念的に説明するための図で、主面が(100)の単結晶ダイヤモンド基板10を準備し(
図14(A))、このダイヤモンド基板10の主面に、CVD法により、例えば、導電型がp型(乃至はi型)の単結晶ダイヤモンド薄膜17を形成する(
図14(B))。なお、単結晶ダイヤモンド薄膜10bは、p型の場合にはp
−型(例えば、ボロン濃度が10×10
16cm
−3以下のドープ量のもの)乃至は真性半導体に近い抵抗率のものであることが好ましい。単結晶ダイヤモンド薄膜17の成膜には、プロセスガスとして、水素、メタン、窒素の混合ガスを用いる。この場合、NV中心を形成するための窒素(N)は、CVDプロセス中に膜中に導入される。これに限らず、CVD膜形成後の窒素イオン注入によっても膜中にNV中心を形成することができる。
【0125】
続いて、p型ダイヤモンド膜17の主面にマスク18を形成し(
図14(C))、このマスク18で被覆された領域の周囲をエッチングにより除去して2次元的に周期配列した柱状部17aを形成する(
図14(D))。その後、上記マスク18を除去せず、柱状部17aの周囲に燐(P)をドープしたn
+型のダイヤモンド19をCVD法により結晶成長させて第2の領域を形成する(
図14(E))。その後にマスク18を除去すると、板状のダイヤモンドの主面上に、ダイヤモンドからなるpn接合部であって、該pn接合部形成される空乏化領域に、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)が形成されたpn接合部を複数備えたセンサーアレイが得られる(
図14(F))。
【0126】
図15もまた、上記センサーアレイを製造するプロセス例を概念的に説明するための図で、主面が(111)の単結晶ダイヤモンド基板10を準備し(
図15(A))、このダイヤモンド基板10の主面に、CVD法により、例えば、導電型がp型(乃至はi型)の単結晶ダイヤモンド薄膜17を形成する(
図15(B))。なお、単結晶ダイヤモンド薄膜10bは、p型の場合にはp
−型(例えば、ボロン濃度が10×10
16cm
−3以下のドープ量のもの)乃至は真性半導体に近い抵抗率のものであることが好ましい。単結晶ダイヤモンド薄膜17の成膜には、プロセスガスとして、水素、メタン、窒素の混合ガスを用いる。この場合、NV中心を形成するための窒素(N)は、CVDプロセス中に膜中に導入される。これに限らず、CVD膜形成後の窒素イオン注入によっても膜中にNV中心を形成することができる。
【0127】
続いて、p型ダイヤモンド膜17の主面にマスク18を形成し(
図15(C))、このマスク18で被覆された領域の周囲に燐(P)をドープしたn
+型のダイヤモンド19をCVD法により結晶成長させて第2の領域を形成する(
図15(D))。その後にマスク18を除去すると、板状のダイヤモンドの主面上に、ダイヤモンドからなるpn接合部であって、該pn接合部に形成される空乏化領域に、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)が形成されたpn接合部を複数備えたセンサーアレイが得られる(
図15(E))。
【0128】
図16もまた、上記センサーアレイを製造するプロセス例を概念的に説明するための図で、主面が(111)の単結晶ダイヤモンド基板10を準備し(
図16(A))、このダイヤモンド基板10の主面に、CVD法により、例えば、導電型がp型(乃至はi型)の単結晶ダイヤモンド薄膜17を形成する(
図16(B))。なお、単結晶ダイヤモンド薄膜10bは、p型の場合にはp
−型(例えば、ボロン濃度が10×10
16cm
−3以下のドープ量のもの)乃至は真性半導体に近い抵抗率のものであることが好ましい。単結晶ダイヤモンド薄膜17の成膜には、プロセスガスとして、水素、メタン、窒素の混合ガスを用いる。この場合、NV中心を形成するための窒素(N)は、CVDプロセス中に膜中に導入される。これに限らず、CVD膜形成後の窒素イオン注入によっても膜中にNV中心を形成することができる。
【0129】
続いて、p型ダイヤモンド膜17の主面にCVD法により、燐(P)をドープしたn
+型の単結晶ダイヤモンド薄膜19を形成し(
図16(C))、さらに、このn型単結晶ダイヤモンド薄膜19の主面にマスク18を形成し(
図16(D))、このマスク18で被覆された領域の周囲をエッチングで除去する(
図16(E))。その後にマスク18を除去すると、板状のダイヤモンドの主面上に、ダイヤモンドからなるpn接合部であって、該pn接合部に形成される空乏化領域に、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)が形成されたpn接合部を複数備えたセンサーアレイが得られる(
図16(F))。
【0130】
図14〜16に例示したプロセス以外のものであっても、上記pn接合部を複数備えたセンサーアレイが得られることは、当業者にとって自明である。
【0131】
[磁気計測装置]
本発明に係る磁気計測装置に用いられる磁気センサーは、上述のセンサーアレイ20と、該センサーアレイの第1領域のそれぞれの表面から射出する光信号であって、前記NV中心の電子スピン共鳴に起因して生じる光信号を検知する光センサー21を備えている。
【0132】
図17は、本発明に係る磁気計測装置の構成例の概略を説明するためのブロック図である。この磁気計測装置は、センサーアレイ20に対向して設けられた、検体23を載置するための試料ステージ22と、センサーアレイ20に青緑色光を照射する光学系24と、センサーアレイ20に周波数可変のマイクロ波を照射するマイクロ波生成部25と、前記光センサー21で検知したNV中心の電子スピン共鳴に起因して生じた光信号を処理する信号処理部26と、を備えている。
【0133】
この図に示した構成例では、光学系24は、光源24a、照射レンズ24b、および、ダイクロックミラー24cを備えており、光源24aからは、マイクロ波源とセンサーインターフェースを兼ねるモジュール27に接続された制御回路28からの信号を受けて638nmの緑色光が射出され、当該緑色光はダイクロックミラー24cにより、下方に位置するセンサーアレイ20に照射される。
【0134】
周波数可変のマイクロ波は、モジュール27に接続された制御回路28からの信号を受けて、マイクロ波生成部25を介して、センサーアレイ20へと照射される。
【0135】
なお、
図17には、磁気計測装置100に、センサーアレイ20に電界を印加するための電界生成部29を設けた態様を示したが、電界生成部29を設けない態様としてもよい。
【0136】
このような電界生成部29は、例えば、第1領域を含むダイヤモンド結晶部の上下面側若しくは側面側に、互いに対向して設けられた少なくとも2つの電極を有する電界生成部である。
【0137】
図18は、センサーアレイ20に電界を印加した場合に、ODMR信号の線幅がシャープになる様子を説明するための図である。この図に示した例では、+200V〜−200Vの範囲でセンサーアレイ20に電界を印加したが、電界の正負の何れにおいても、印加電圧(の絶対値)が大きくなるにつれて、ODMR信号の線幅がシャープになる様子が明瞭に確認できる。
【0138】
この現象は、電界の印加により、センサーアレイ20の第1領域中のNV中心の電子スピンの密度分布が変化し、その結果、電子スピンと核スピンの相互作用の大きさが変化したためであると考えられる。このようなODMR信号の線幅減少は、磁場センサーの感度を顕著に向上させることを可能とする。なお、本発明に係るダイヤモンド素子は、磁気センサーや磁気計測装置としての応用にとどまらず、温度センサー、電界センサー、電流センサー、加速度センサーなどの各種センサーおよびこれを用いた計測装置としての応用も可能である。
【0139】
以上、本発明の実施の態様を、図面を参照して説明したが、本発明に包含される態様を整理すると、例えば、下記のとおりとなる。
【0140】
本発明に係る第1の態様のダイヤモンド結晶は、表面乃至表面近傍に、炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含むNV領域を有し、該NV領域はNV中心の濃度以上のドナー濃度を有している、ことを特徴とする。
【0141】
好ましくは、前記NV領域のドナー濃度が1×10
12cm
−3以上である。
【0142】
例えば、前記ドナーは燐(P)である。
【0143】
好ましくは、前記NV領域の面方位が{111}面若しくは{111}面と±10°以内のオフ角を有する面である。
【0144】
また、好ましくは、前記NV領域は、ダイヤモンド基板上にCVD法で形成されたダイヤモンド膜である。
【0145】
本発明に係る第2の態様のダイヤモンド結晶は、表面乃至表面近傍に、炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含むNV領域を有し、前記NV領域の結晶面が{111}面若しくは{111}面と±10°以内のオフ角を有する面であり、前記NV中心の主軸が前記{111}面に直交する<111>軸である、ことを特徴とする。
【0146】
好ましくは、前記NV領域はNV中心の濃度以上のドナー濃度を有している。
【0147】
また、好ましくは、前記NV領域のドナー濃度が1×10
12cm
−3以上である。
【0148】
例えば、前記ドナーは燐(P)である。
【0149】
好ましくは、前記NV領域は、ダイヤモンド基板上にCVD法で形成されたダイヤモンド膜である。
【0150】
本発明に係る第1の態様のダイヤモンド素子は、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含む第1領域に接して、該第1領域よりも高いドナー濃度を有する第2領域が形成されている、ことを特徴とする。
【0151】
好ましくは、前記第1領域が平面内で2次元的に周期配列されており、前記第1領域のそれぞれの側面若しくは周囲に、該第1領域よりも高いドナー濃度を有する第2領域が形成されている。
【0152】
また、好ましくは、前記第2領域はn型のダイヤモンドからなり、前記第1領域はi型乃至はp型のダイヤモンドからなる。
【0153】
また、好ましくは、前記第2領域はドナーレベルが1×10
18cm
−3以上のn
+型の導電型を有している。
【0154】
例えば、前記ドナーは燐(P)である。
【0155】
好ましくは、前記第1領域の面方位が{111}面若しくは{111}面と±10°以内のオフ角を有する面であり、前記NV中心の主軸が前記{111}面に直交する<111>軸である。
【0156】
また、好ましくは、前記第1領域は、該第1領域のNV中心の濃度以上のドナー濃度を有している。
【0157】
また、好ましくは、前記第1領域のそれぞれは、前記NV中心の濃度が該第1領域よりも低い第2領域で取り囲まれている。
【0158】
また、好ましくは、前記ダイヤモンドは、基板上にCVD法で形成されたダイヤモンド膜である。
【0159】
さらに、好ましくは、前記第1領域のそれぞれは、一方主面側(裏面側)に、正電位を印加するための電極が絶縁膜を介して設けられている。
【0160】
本発明に係る第2の態様のダイヤモンド素子は、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を含む第1領域の一方主面側(裏面側)に、正電位を印加するための電極が絶縁膜を介して設けられている、ことを特徴とする。
【0161】
好ましくは、前記第1領域が平面内で2次元的に周期配列されており、前記第1領域のそれぞれの一方主面側(裏面側)には、正電位を印加するための電極が絶縁膜を介して設けられている。
【0162】
また、好ましくは、前記第1領域の面方位が{111}面若しくは{111}面と±10°以内のオフ角を有する面であり、前記NV中心の主軸が前記{111}面に直交する<111>軸である。
【0163】
また、好ましくは、前記第1領域は、該第1領域のNV中心の濃度以上のドナー濃度を有している。
【0164】
例えば、前記ドナーは燐(P)である。
【0165】
好ましくは、前記第1領域のそれぞれは、前記NV中心の濃度が該第1領域よりも低い第2領域で取り囲まれている。
【0166】
また、好ましくは、前記ダイヤモンドは、基板上にCVD法で形成されたダイヤモンド膜である。
【0167】
本発明において、好ましくは、前記第1領域を含むダイヤモンド結晶部の上下面側若しくは側面側に、互いに対向して設けられた少なくとも2つの電極を有する電界生成部を更に備えている。
【0168】
また、本発明において、前記第1領域の周期配列は、例えば、前記平面を上方から眺めたときに、2次元正方格子の各格子点に前記第1領域の中心が位置している正方周期配列である。
【0169】
さらに、本発明において、前記第1領域の周期配列は、例えば、前記平面を上方から眺めたときに、特定の第1領域の中心位置を中心点とする正六角形の6つの頂点のそれぞれに他の第1領域の中心が位置している六方充填配列である。
【0170】
本発明に係る磁気センサーは、上述のダイヤモンド素子と、該ダイヤモンド素子の前記第1領域のそれぞれの表面から射出する光信号であって、前記NV中心の電子スピン共鳴に起因して生じる光信号を検知する光センサーを備えている。
【0171】
また、本発明に係る磁気計測装置は、上記磁気センサーを備えた磁気計測装置であって、前記センサーアレイに対向して設けられた試料ステージと、前記ダイヤモンド素子に青緑色光を照射する光学系と、前記前記ダイヤモンド素子に周波数可変のマイクロ波を照射するマイクロ波生成部と、前記光センサーで検知した前記NV中心の電子スピン共鳴に起因して生じた光信号を処理する信号処理部と、を備えている。
【0172】
本発明に係る磁気計測装置は、好ましくは、前記第1領域を含むダイヤモンド結晶部の上下面側若しくは側面側に、互いに対向して設けられた少なくとも2つの電極を有する電界生成部を更に備えている。
【0173】
本発明に係る第1の態様のセンサーアレイの製造方法は、板状のダイヤモンドの表面に2次元的に周期配列する柱状部を第1領域として形成し、該第1領域のそれぞれに、前記ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を形成し、前記第1領域のそれぞれの周囲を取り囲む第2領域であって、前記第1領域よりも高いドナー濃度を有する第2領域を形成する、ことを特徴とする。
【0174】
本発明に係る第2の態様のセンサーアレイの製造方法は、板状のダイヤモンドの表面に2次元的に周期配列する柱状部を第1領域として形成し、該第1領域のそれぞれに、前記ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)を形成し、前記第1領域のそれぞれの周囲を取り囲む第2領域であって、前記第1領域よりも高いドナー濃度を有する第2領域を形成し、前記第1領域の一方主面側(裏面側)に、正電位を印加するための電極を絶縁膜を介して設ける、ことを特徴とする。
【0175】
好ましくは、前記第2領域を、前記第1領域よりも低いNV中心濃度を有するように形成する。
【0176】
例えば、前記第1領域の周期配列を、前記平面を上方から眺めたときに、2次元正方格子の各格子点に前記第1領域の中心が位置している正方周期配列とする。
【0177】
また、例えば、前記第1領域の周期配列を、前記平面を上方から眺めたときに、特定の第1領域の中心位置を中心点とする正六角形の6つの頂点のそれぞれに他の第1領域の中心が位置している六方充填配列とする。
【0178】
好ましくは、前記第1領域の結晶面を、{111}面若しくは{111}面と±10°以内のオフ角を有する面とする。
【0179】
また、好ましくは、前記第2領域をn型のダイヤモンドとし、前記第1領域をi型乃至はp型のダイヤモンドとする。
【0180】
また、好ましくは、前記第2領域を、ドナーレベルが1×10
18cm
−3以上のn
+型のダイヤモンドとする。
【0181】
また、好ましくは、前記第1領域のドナー濃度を、該第1領域のNV中心の濃度以上となるように制御する。
【0182】
さらに、好ましくは、前記ダイヤモンドを、基板上にCVD法で形成されたダイヤモンド膜として形成する。
【0183】
本発明に係る他の態様のセンサーアレイの製造方法は、板状のダイヤモンドの主面上に、ダイヤモンドからなる異種導電型の接合部であって、該接合部の領域に、ダイヤモンドの炭素原子を置換した窒素(N)と該窒素に隣接する空孔(V)の複合体(NV中心)が形成された異種導電型の接合部を複数形成する、ことを特徴とする。なお、この異種導電型の接合部に電流を注入する手段もしくは電圧を印加する手段を備える態様としてもよい。