【課題を解決するための手段】
【0012】
この課題は、請求項1に記載の装置と、請求項
15に記載の方法と、請求項
16に記載のコンピュータプログラムによって解決される。その際、有利な実施形は従属請求項の対象である。
【0013】
本発明では、物体、一般的には1枚または複数枚の基板を保持、位置決めおよび/または移動させるための装置が提供される。この装置は少なくとも1個の制御可能な、特に積極的に制御可能な磁気
ベアリング装置と、基礎と、支持体とを具備している。基礎は一般的に定置して設置可能であり、支持体は少なくとも1個の磁気
ベアリング装置によって基礎上に浮上状態で非接触保持可能である。
【0014】
少なくとも1個の磁気
ベアリング装置は電磁石と、この電磁石と磁気的に相互作用する相手方部材を備えている。磁気
ベアリング装置はさらに、距離センサとコントローラを有する制御回路を備えている。この距離センサは電磁石の作用方向において支持体と基礎の間隔を測定する働きをする。運転中、距離センサは間隔信号を提供し、この間隔信号はコントローラに供給可能である。
【0015】
コントローラは一般的に、設定値と実際値の比較を行い、この比較に応じて、電磁石を付勢するための制御信号を発生する。これにより、電磁石は制御回路によって、基礎と支持体の間の設定された間隔を維持するように制御可能である。従って、基礎と支持体の間の設定された間隔を十分に自動的におよび独立して調節することできる積極的な磁気
ベアリング装置が提供される。
【0016】
物体を保持、位置決めおよび/または移動させるための装置は磁気
ベアリング装置のほかに、基礎または支持体に配置された少なくとも1個の運動センサを備えている。この運動センサは制御回路に接続されている。運動センサは制御回路内に動かぬように組み込んで制御回路に統合することが可能である。しかし、運動センサを磁気
ベアリング装置の外で支持体または基礎に配置してもよい。運動センサによって、基礎および/または支持体のいろいろな運動状態、従って基礎および/または支持体の動特性を検出することができる。
【0017】
運動センサによって特に、支持体および/または基礎の振動現象または共振現象と、例えば外部作用に起因するそのほかの機械的擾乱および/または励起作用を検出することができる。これにより、以下において振動現象または共振現象について述べるときに常に、支持体および/または基礎に対する外部から励起される、例えば調和ではない機械的擾乱および/または作用も意味する。
【0018】
従って、運動センサは、同様に制御回路に供給可能な運動信号を発生および提供するように形成されている。運動センサの1つまたは複数の運動信号は特に、基礎および/または支持体の振動現象と共振現象を取り除くためおよび/または少なくとも減衰するために使用可能である。従って、少なくとも1個の運動センサを用いて、振動現象と共振現象と、さらに装置に作用するそのほかの機械的擾乱を検出し、そして磁気
ベアリング装置、特にその電磁石を制御するために量的および質的に使用可能である。
【0019】
運動センサは特に、支持体および/または基礎の運動状態を検出するためのセンサとして形成されている。その際、運動センサは特に、基礎または支持体の運動状態または運動現象を直接検出するように形成されている。運動センサは特に、既存の距離センサとは無関係に別個に形成されている。従って、運動センサはその他の機械的測定量、好ましくは支持体または基礎のすべての運動を直接測定する働きをする。基礎と支持体の瞬間的な相対位置または基礎と支持体の瞬間的な間隔だけを測定する距離センサと異なり、運動センサは支持体および/または基礎の運動状態を絶対測定するためのセンサとして有利に形成されている。
【0020】
従って、運動センサによっておよびその運動信号の評価によって、距離センサから供給された間隔信号が支持体および/または基礎の振動現象と共振現象だけを示しているかどうかおよびどの程度示しているかあるいは基礎と相対的な支持体の運動であるかどうかがわかる。
【0021】
従って、基礎および/または支持体のいろいろな運動状態を識別するために、運動センサによって、距離センサの間隔信号を量的におよび質的に用いることができる。距離センサから供給された間隔信号の認識および割り当ては、対応する振動現象または共振現象に対して適切に反対作用をする。これによって最終的に、装置の位置決め精度と運動精度が向上する。
【0022】
これによってさらに、支持体および/または基礎の軽量構造が容易に達成可能である。共振現象を回避するために、従来は、当該の構成要素の共振周波数または固有振動数が装置の運転中に励起可能な周波数範囲の外にあるようにするために、支持体および/または基礎を比較的に大きな質量に形成するのが普通であった。
【0023】
運動センサによっておよび少なくとも1個の磁気
ベアリング装置の制御回路と運動センサの接続によって、今後は、保持、位置決めまたは運動装置を軽量構造で実現することができる。この場合、構成要素である支持体または基礎の共振周波数または固有周波数は、磁気
ベアリング装置によって励起可能な周波数範囲内にあってもよい。運動センサによっておよび運動信号の適切な加工によって、このような振動現象または共振現象を適切に抑制することができる。
【0024】
他の実施形では、運動センサが制御回路のコントローラに接続されている。従って、コントローラには、距離センサの間隔信号と、運動センサの運動信号を供給することができる。その際、コントローラは特に、万一の振動現象または共振現象と、装置に作用するその他の機械的擾乱を抑制または少なくとも減衰するように、運動センサから伝送された運動信号を考慮して距離センサの間隔信号を評価するように設計されている。
【0025】
他の実施形では、運動センサが制御回路の振動減衰部に接続されている。その際、振動減衰部は制御回路のコントローラに統合することができる。しかし、振動減衰部を別個の構造単位として制御回路に組み込むことができる。その際特に、振動減衰部をアナログ電子部品またはデジタル電子部品として実現することができる。その代わりに、振動減衰部を純ソフトウェア技術的に実装し、例えば制御回路のコントローラに組み込むことができる。
【0026】
他の実施形では、磁気
ベアリング装置の電磁石が基礎または支持体に配置されている。これに対応して、電磁石と相互作用する付属の相手方部材は、支持体または基礎に配置されている。電磁石が基礎に配置されると、相手方部材は支持体に配置される。電磁石が支持体に配置されている代替的な実施形の場合には、相手方部材は基礎に設けられている。相手方部材は一般的に強磁性または永久磁石である。さらに、電磁石の具体的な形成や設置に応じて、基礎と支持体の間の引きつけまたは反発の機械的相互作用を発生することができる。
【0027】
電磁石と相手方部材は例えば支持体の重力を相殺するために互いに相互作用することができる。もちろん、物体を保持および/または移動させるための装置の実施形に応じて、異なる方向に作用する複数対の電磁石と相手方部材を設けることができる。これにより、支持体は1つの運動自由度に関してだけでなく、異なる複数の運動自由度に関しても、磁気
ベアリング装置によって基礎上に保持可能、位置決め可能および/または基礎に沿って移動可能である。電磁石は異なる電磁アクチュエータの形に形成可能である。引張り磁石のほかに、例えば、引張り力と押圧力を加えるために適した可動コイル磁石、いわゆるローレンツアクチュエータが考えられる。
【0028】
他の実施形では、運動センサが磁気
ベアリング装置の電磁石と共に基礎または支持体に配置されている。従って、磁気
ベアリング装置の電磁石が基礎に配置されている装置の実施形の場合には、運動センサも同様に基礎に配置される。電磁石が支持体に配置された実施形の場合には、運動センサも同様に支持体に配置される。運動センサと電磁石を基礎また支持体に一緒に配置することは、運動センサの技術的な実際の設置に関して有利である。
【0029】
特に、装置が基礎上で支持体を移動または搬送するように形成および設計されているときには、運動センサと電磁石と付属の制御回路の間の配線コストおよび接続コストを最小限に抑えることができる。さらに、信号伝送経路をできるだけ短くすることができ、これは同様に有利であることがわかった。
【0030】
他の実施形では、運動センサが加速度センサとしてまたは速度センサとして形成されている。従って、運動センサは支持体および/または基礎に作用する力を直接測定するように形成されている。
【0031】
他の加速度センサは例えば弾性的に支承された慣性質量を有することができる。この慣性質量はセンサに作用する加速度の結果として運動を行う。その際、慣性質量の支承部は圧電材料からなる曲げ棒として形成され、加速時に測定可能な電圧を発生する。考慮の対象になる他の加速度センサまたは速度センサはMEMS(Mikro−Elektro−Mechanisches−System)技術で形成可能である。その際、質量と支承部は半導体、例えば珪素から直接作られている。その場合、加速度の結果移動する質量は、電極に対して位置と間隔を変更する。この間隔変更は半導体内に設けられた電子評価装置によって直接容量的に検出され、力信号または加速度信号として直接提供される。
【0032】
加速度センサまたは速度センサにおいて、永久磁石は金属帯片または金属リング内に電圧を誘導し、この電圧は渦電流を生じる。その際、速度変化は渦電流によって発生した磁界を変化させる。それによって、センサのセンサコイル内に、対応する測定可能な電圧が誘導される。従って、このようなセンサの測定信号は支持体または基礎の実際の速度または加速度についての直接的な情報を与える。運動センサは例えばいわゆるフェラリス(Ferraris)センサとして形成されている。
【0033】
従って、運動センサは速度と加速度の少なくとも1つの測定量を直接検出するように形成されている。速度センサはヨーレイトセンサとして形成可能である。
【0034】
速度センサは1個または複数の加速度センサを備えていてもよい。この場合、速度信号は例えば時間で積分することによって提供可能である。振動減衰のためには特に、速度信号の評価および加工が必要であり、かつ有利である。測定された加速度信号の積分によって加速度測定に基づく速度信号を発生することは、間隔信号の微分よりも有利であることが明らかになった。間隔信号の微分の場合、信号のノイズ成分がしばしば分解能の上昇したノイズレベルの観点から不所望な増幅と固有の有効信号を失うが、加速度信号の積分によってノイズレベルは制限または低下させられるので有利である。
【0035】
他の実施形では、装置が互いに離隔配置された多数の磁気
ベアリング装置を備えている。磁気
ベアリング装置の数は特に運動自由度によっておよび基礎に沿ったまたは基礎上での支持体の起こり得る運動によって設定されている。その際特に、装置のすべての電磁石が支持体にまたは基礎に配置されている。例えば、すべての電磁石を基礎に配置し一方、電磁石と磁気的に相互作用するすべての相手方部材を支持体に配置してもよい。
【0036】
この実施形の場合にはさらに、コントローラと距離センサを含む制御回路が同様に基礎に配置されていると有利である。この場合さらに、少なくとも1個の運動センサまたはすべての運動センサを同様に電磁石の側に、本実施形の場合には基礎に配置することができる。すべての電磁石を支持体に配置する場合には、付属の制御回路と運動センサも同様に支持体に配置される。
【0037】
他の実施形では、各磁気
ベアリング装置に少なくとも1個の運動センサが
割当てられている。この場合、各磁気
ベアリング装置は固有の運動センサを備えている。しかし、1個の運動センサを複数の電磁石に付設していてもよい。特に、支持体の運動自由度あたりそれぞれ少なくとも1個の運動センサを用意することができる。この運動センサは例えば当該の自由度に関連して支持体または基礎の運動を測定する。
【0038】
その際、運動センサの位置は実質的に、当該の磁気
ベアリング装置の電磁石の位置と関連させることができる。特に、運動センサを当該の磁気
ベアリング装置の電磁石のすぐ近くに配置することができる。これにより、高度な連係、従って磁気
ベアリング装置と付属のセンサの高度な空間的カバーが達成可能である。これは制御技術的観点から有利であることがわかった。
【0039】
他の実施形では、基礎と支持体の少なくとも一方に、少なくとも2個の運動センサが配置されている。基礎および/または支持体に少なくとも2個の運動センサを設けることにより、支持体または基礎の運動を少なくとも2つの運動自由度に関して検出し、量的および質的に測定することができる。そのためには、センサを測定すべき運動自由度に対応して配向すべきである。この場合、センサを比較的に密に並べて配置することができる。それによって、センサに関連する基礎または支持体の個所の運動が複数の方向で検出可能である。
【0040】
これに関係なく、少なくとも2個の運動センサを互いに離隔して基礎および/または支持体に配置することができる。これにより、支持体および/または基礎の局所的な運動を、支持体または基礎の複数の個所で別々に検出することができる。これは、起こるかもしれない特徴的な振動状態あるいは外部から支持体または基礎に作用する力または擾乱の推測を可能にする。
【0041】
それによって、基礎または支持体の運動状態を、それぞれの範囲で別々におよび互いに独立して測定することができる。基礎または支持体に配置された複数の運動センサによって、基礎および/または支持体の運動を、1個だけの運動センサよりもはるかに正確に検出することができる。互いに離隔して基礎または支持体に配置された運動センサは、異なる運動方向の基礎および/または支持体の運動を測定し、制御回路に運動情報を提供することができる。
【0042】
他の様相では、基礎と支持体の少なくとも一方に、少なくとも3個、4個、5個またはそれよりも多い運動センサが配置されている。この運動センサは一部が異なるように配向され、空間的に互いに離隔されている。少なくとも運動自由度ほど多くの運動センサを設けることができる。
【0043】
他の実施形では、装置が中央制御装置を具備し、この中央制御装置が少なくとも2個の磁気
ベアリング装置と少なくとも1個の運動センサに接続されている。中央制御装置によって、この中央制御装置に接続された磁気
ベアリング装置を、異なるように、特に振動現象または共振現象を抑制または減衰するために制御することができる。この場合、運動センサはもっぱら中央制御装置に接続され、従って中央制御装置を介してそれぞれの磁気
ベアリング装置の制御回路に間接的に接続されている。
【0044】
それによって、少なくとも1個の運動センサを経て提供された運動信号は、互いに離隔配置された磁気
ベアリング装置の別々の個々の制御のために使用可能である。これにより、万一の振動現象または共振現象およびそのほかの外部からの擾乱現象を効果的に減衰または完全に抑制することができる。
【0045】
他の実施形では、運動センサの数が磁気
ベアリング装置の数よりも少ない。特に、すべての運動センサの信号を中央制御装置に供給することができ、この中央制御装置はさらに、検出された運動信号に依存して複数の磁気
ベアリング装置を個別的にまたは別々に制御するように形成されている。中央制御装置は各磁気
ベアリング装置の個々の制御回路のコントローラに直接介入するかまたは他の方法で各磁気
ベアリング装置の制御回路に組み込まれているかまたは接続されている。
【0046】
例えば、振動現象または共振現象を防止するかまたは反対作用するために、中央制御装置は1個または複数の磁気
ベアリング装置の制御回路の制御メカニズムを状況に依存して減衰することができる。
【0047】
運動センサの数は一般的に、基礎上での支持体の非接触支承の運動自由度の数によって設定される。
【0048】
他の実施形では、少なくとも1個の運動センサが基礎または支持体の固有振動の振幅零の点の領域に配置されている。支持体と基礎はその構造形式に相応して、1つまたは複数の振動の振幅零の点を有する。この振動の振幅零の点は基礎または支持体の振動励起の際にほとんど振動を励起されないかあるいは基礎または支持体の他の領域と比べて振動を励起されない。
【0049】
少なくとも1個の運動センサを固有振動の振幅零の点の領域に配置したことにより、当該の運動センサを、言わば基礎または支持体の振動現象または共振現象に対して、言わば鈍感にまたは感知しないようにすることができる。基礎または支持体が万一振動現象や共振現象を生じても、運動センサを振動の振幅零の点の領域に配置したことに基づいて、基礎または支持体のこの励起を全く検出しないかまたはきわめて少ししか検出しない。
【0050】
その際、運動センサは、基礎または支持体の剛体運動または重心の運動を検出または測定するためにのみ使用可能である。運動センサによって提供された運動信号の信号処理に応じて、磁石内部の制御回路は例えば基礎と相対的な支持体のこのような剛体運動または重心移動に対してのみ応答し一方、基礎上での支持体の積極的な支承についての振動現象またはその他の擾乱現象は十分に取り除くことが可能である。
【0051】
他の実施形では、少なくとも1個の運動センサが基礎または支持体の固有振動の振幅零の点の外側に配置されている。これにより、運動センサは特に、基礎または支持体の振動現象と共振現象を検出するために使用可能である。この場合特に、複数の運動センサを設け、そのうちの少なくとも1個を基礎または支持体の固有振動の振幅零の点の領域内に、そのほかの運動センサを固有振動の振幅零の点の外側に配置することができる。これにより、基礎と相対的な支持体の個々の支承個所の重心または位置変化を、支持体または基礎の振動現象または共振現象と区別することができる。
【0052】
上記の装置は特に、基礎に沿って基板を移動させるための搬送装置として設計されている。装置は特に、特にウェハ、ディスプレイおよび太陽電池の用途のために、磁気的なステージとして実装可能である。
【0053】
本発明は他の様相ではさらに、上記の装置を用いて、物体を非接触支承するための方法に関する。第1ステップでは、磁気
ベアリング装置の距離センサから提供された間隔信号に依存して、装置の磁気
ベアリング装置の電磁石が制御される。
【0054】
その際、電磁石の制御は、設定された間隔で支持体を基礎上で非接触支承するために行われる。他のステップでは、少なくとも1個の運動センサを用いて、基礎および/または支持体の運動状態が持続的にまたは規則的な時間間隔をおいて検出される。そのために、一般的に加速度センサまたは速度センサとして形成された運動センサが、基礎または支持体に配置されている。
【0055】
磁気
ベアリング装置の電磁石は、基礎または支持体の設定された運動状態を維持するために、運動センサを介して検出された基礎または支持体の運動状態に依存して制御される。運動センサによって検出可能で、量的にも検出可能な運動状態は、基礎または支持体の振動状態または共振状態を含むことができる。
【0056】
この場合、電磁石は、検出された運動状態に依存して、特に運動センサから提供された運動信号に依存して、例えば振動状態または共振状態を減衰または除去するために制御される。
【0057】
間隔信号と運動信号は一般的に、同時におよび装置の運転中持続的に検出され、少なくとも1個の、一般的には多数の磁気
ベアリング装置を制御するために評価および加工される。
【0058】
この方法は特に上記の装置によって実施可能である。従って、装置に関して述べたすべての特徴、効果および作用は方法にも同じように当てはまり、その逆も当てはまる。
【0059】
他の独立した様相では、上記装置を制御するためのコンピュータプログラムが提供される。このコンピュータプログラムは、設定された間隔で支持体を基礎上で非接触支承するために、距離センサから提供された間隔信号に依存して少なくとも1個の磁気
ベアリング装置の電磁石を制御するためのプログラム手段を有する。コンピュータプログラムはさらに、基礎および/または支持体の運動状態を検出するためのプログラム手段を有する。これらのプログラム手段は、少なくとも1個の運動センサを用いてあるいは運動センサから提供された運動信号を評価することによって、基礎および/または支持体の少なくとも1つの運動状態を検出することができる。
【0060】
コンピュータプログラムは最後に、検出された運動状態に依存して電磁石を制御するためのプログラム手段を有する。その際、当該のプログラム手段は、基礎または支持体の設定された運動状態を維持するように形成されている。このプログラム手段は特に、基礎または支持体の万一の振動状態または共振状を減衰するようにあるいは少なくとも1個または複数の磁気
ベアリング装置を制御して対応する振動現象と共振現象に反対作用するように形成可能である。
【0061】
コンピュープログラムは特に、上記の装置を用いて物体を非接触支承するための方法をコンピュータで実行して実現するために役立つ。コンピュープログラムは特に制御回路のコントローラ、制御回路の振動減衰部および補足的にまたは任意的に装置の中央制御装置で実行可能である。装置と方法に関連して述べたすべての特徴、効果および作用は同様にコンピュープログラムにも当てはまり、その逆も当てはまる。
【0062】
実施の形態の次の記載では、図を参照して本発明の他の目的、特徴および有利な様相を説明する。