特許第6617607号(P6617607)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友金属鉱山株式会社の特許一覧
特許6617607成膜方法及びこれを用いた積層体基板の製造方法
<>
  • 特許6617607-成膜方法及びこれを用いた積層体基板の製造方法 図000003
  • 特許6617607-成膜方法及びこれを用いた積層体基板の製造方法 図000004
  • 特許6617607-成膜方法及びこれを用いた積層体基板の製造方法 図000005
  • 特許6617607-成膜方法及びこれを用いた積層体基板の製造方法 図000006
  • 特許6617607-成膜方法及びこれを用いた積層体基板の製造方法 図000007
  • 特許6617607-成膜方法及びこれを用いた積層体基板の製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6617607
(24)【登録日】2019年11月22日
(45)【発行日】2019年12月11日
(54)【発明の名称】成膜方法及びこれを用いた積層体基板の製造方法
(51)【国際特許分類】
   H05K 3/00 20060101AFI20191202BHJP
   H05K 3/06 20060101ALI20191202BHJP
   H05K 1/09 20060101ALI20191202BHJP
   C23C 14/58 20060101ALI20191202BHJP
   C23C 14/56 20060101ALI20191202BHJP
   C23C 14/06 20060101ALI20191202BHJP
   B32B 15/01 20060101ALI20191202BHJP
   B32B 15/08 20060101ALI20191202BHJP
   H01B 13/00 20060101ALI20191202BHJP
【FI】
   H05K3/00 R
   H05K3/06 B
   H05K1/09 C
   C23C14/58 C
   C23C14/56 A
   C23C14/06 N
   B32B15/01 D
   B32B15/08 E
   H01B13/00 503B
   H01B13/00 503D
【請求項の数】9
【全頁数】14
(21)【出願番号】特願2016-36579(P2016-36579)
(22)【出願日】2016年2月29日
(65)【公開番号】特開2017-157580(P2017-157580A)
(43)【公開日】2017年9月7日
【審査請求日】2019年2月4日
(73)【特許権者】
【識別番号】000183303
【氏名又は名称】住友金属鉱山株式会社
(74)【代理人】
【識別番号】100136825
【弁理士】
【氏名又は名称】辻川 典範
(72)【発明者】
【氏名】渡邉 寛人
【審査官】 小林 大介
(56)【参考文献】
【文献】 特開2010−053447(JP,A)
【文献】 特開2014−053410(JP,A)
【文献】 特開2014−222689(JP,A)
【文献】 特開2015−040324(JP,A)
【文献】 特開平04−290292(JP,A)
【文献】 特開平05−283844(JP,A)
【文献】 特開2010−260328(JP,A)
【文献】 特開2015−221938(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05K 1/09
H05K 3/00
H05K 3/06
B32B 15/01
B32B 15/08
C23C 14/06
C23C 14/56
C23C 14/58
H01B 13/00
(57)【特許請求の範囲】
【請求項1】
ロールツーロールで搬送される長尺樹脂フィルムの両面に乾式めっき法で第1被膜及び第2被膜をそれぞれ成膜する成膜方法であって、前記長尺樹脂フィルムの一方の面に前記第1被膜を成膜した後の第1回目の巻き取りと、前記第1被膜が成膜された長尺樹脂フィルムの他方の面に第2被膜を成膜した後の第2回目の巻き取りとの間に前記第1被膜の表面をドライエッチング処理することを特徴とする成膜方法。
【請求項2】
前記ドライエッチング処理がイオンビーム照射であることを特徴とする、請求項1に記載の成膜方法。
【請求項3】
前記ドライエッチング処理を行っている時にその反対側部分を冷却ロールに接触させることを特徴とする、請求項1又は2に記載の成膜方法。
【請求項4】
前記乾式めっき法がスパッタリング法であることを特徴とする、請求項1から3のいずれか1項に記載の成膜方法。
【請求項5】
長尺樹脂フィルムの両面にそれぞれ第1被膜及び第2被膜を成膜する積層体基板の製造方法であって、
前記第1被膜及び第2被膜の各々は少なくとも2層の積層構造を有しており、請求項1から4のいずれか1項に記載の成膜方法によりこれら第1被膜及び第2被膜を成膜することを特徴とする積層体基板の製造方法。
【請求項6】
前記積層構造は、長尺樹脂フィルムから数えて第1層目がNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金層であり、第2層目が銅層であることを特徴とする、請求項5に記載の積層体基板の製造方法。
【請求項7】
前記第2層目の上に更に第3層目としてNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加された第2Ni系合金層が設けられていることを特徴とする、請求項6に記載の積層体基板の製造方法。
【請求項8】
前記積層構造は、長尺樹脂フィルムから数えて第1層目が、Cu単体、Ni単体、又はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金からなる金属材を用いて酸素を含む反応性ガス雰囲気で反応成膜法によって成膜される金属吸収層であり、第2層目が不活性ガス雰囲気で成膜した銅層であることを特徴とする、請求項5に記載の積層体基板の製造方法。
【請求項9】
前記第2層目の上に更に第3層目としてCu単体、Ni単体、又は、NiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金から成る金属材を用いて酸素を含む反応性ガス雰囲気で反応成膜法によって成膜される第2金属吸収層が設けられていることを特徴とする、請求項8に記載の積層体基板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロールツーロールで搬送される長尺樹脂フィルムの両面に乾式めっき法で被膜を成膜する方法、及びこの成膜方法を用いた積層体基板の製造方法に関する。
【背景技術】
【0002】
携帯電話、携帯電子文書機器、自動販売機、カーナビゲーション等の電子機器が具備するフラットパネルディスプレイ(FPD)の表面に「タッチパネル」を設置する技術が普及し始めている。「タッチパネル」は、抵抗型と静電容量型に大まかに分類することができ、「抵抗型」のタッチパネルは、樹脂フィルムからなる透明基板と、該基板上に設けられたX座標(またはY座標)検知電極シート及びY座標(またはX座標)検知電極シートと、これらシートの間に設けられた絶縁体スペーサーとで主要部が構成されている。
【0003】
これらX座標検知電極シート及びY座標検知電極シートは通常は絶縁体スペーサーによって離間しているが、ペン等で押さえられたときにその部位で両座標検知電極シートが電気的に接触する。これにより、ペンの触った位置(X座標、Y座標)が検知できるようになっており、ペンを移動させればその都度座標を認識して、最終的に文字の入力が行なえる仕組みとなっている。
【0004】
他方、「静電容量型」のタッチパネルは、絶縁シートを介してX座標(またはY座標)検知電極シートとY座標(またはX座標)検知電極シートとが積層されており、更にその上にガラス等の絶縁体が配置された構造を有している。そして、このガラス等の絶縁体に指を近づけた時、その近傍のX座標検知電極とY座標検知電極の電気容量が変化するため、位置検知を行なえる仕組みとなっている。
【0005】
上記した電極シート(電極基板フィルムとも称する)上に形成される所定の回路パターンを有する電極用の導電性材料として、従来、特許文献1に開示されているようなITO(酸化インジウム−酸化錫)等の透明導電膜が広く用いられている。また、タッチパネルの大型化に伴い、特許文献2や特許文献3等に開示されているような金属製細線からなるメッシュ構造の金属膜も使用され始めている。
【0006】
上記の透明導電膜と金属製細線(金属膜)とを較べた場合、透明導電膜は、可視波長領域における透過性に優れるため電極等の回路パターンがほとんど視認されない利点を有するが、金属製細線(金属膜)よりも電気抵抗値が高いためタッチパネルの大型化や応答速度の高速化には不向きな欠点を有する。他方、金属製細線(金属膜)は、電気抵抗値が低いためタッチパネルの大型化や応答速度の高速化に向いているが、可視波長領域における反射率が高いため、微細なメッシュ構造に加工しても高輝度照明下において回路パターンが視認されることがあり、製品価値を低下させてしまう欠点を有する。
【0007】
そこで、特許文献4及び特許文献5には電気抵抗値が低い上記金属製細線(金属膜)の特性を生かすため、樹脂フィルムからなる透明基板と金属製細線の金属膜との間に金属酸化物からなる金属吸収層(黒化膜とも称される)を介在させて透明基板側から観測される金属製細線(金属膜)の反射を低減させる方法が提示されている。
【0008】
この金属酸化物からなる金属吸収層を備えた電極シートの作製では、金属酸化物の成膜効率の高効率化を図る観点から、通常、連続的に搬送される長尺状樹脂フィルムの表面に反応性ガス雰囲気下で金属ターゲット(金属材)を用いて反応性スパッタリングすることにより金属吸収層を連続成膜した後、不活性ガス雰囲気下で銅等の金属ターゲット(金属材)を用いてスパッタリングすることにより上記金属吸収層上に金属層を連続成膜することが行われており、これにより電極基板フィルムの基材となる積層体基板を作製している。そして、これら金属吸収層と金属層とからなる積層膜を塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液でエッチング処理することで、該積層膜(金属吸収層及び金属層)に電極等の回路パターンをパターニング加工することが行われている。
【0009】
従って、電極基板フィルムの基材となる積層体基板は、金属吸収層と金属層とからなる積層膜が塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によってエッチングされ易い特性と、該エッチングによってパターニング加工された電極等の回路パターンが高輝度照明下において視認され難い特性が要求される。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2003−151358号公報
【特許文献2】特開2011−018194号公報
【特許文献3】特開2013−069261号公報
【特許文献4】特開2014−142462号公報
【特許文献5】特開2013−225276号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
ところで、前述したように長尺状樹脂フィルムの表面に酸素を含む反応性ガス雰囲気でNi系の金属ターゲット(金属材)を用いて反応性スパッタリングすることにより金属酸化物からなる金属吸収層を連続成膜した後、この金属吸収層上に銅等の金属ターゲット(金属材)を用いてスパッタリングすることにより金属層を連続成膜することで積層される積層膜を長尺状樹脂フィルムの両面に作製する場合、以下のような問題が生ずることがあった。
【0012】
すなわち、積層される金属との密着性を向上させるために長尺樹脂フィルムの両面に易接着層を設けることがあり、その場合、先ず長尺樹脂フィルムの一方の面に第1被膜として金属吸収層及び金属層を連続的に成膜してからロール状に巻き取った後、長尺樹脂フィルムのもう一方の面に第2被膜を成膜するために巻き出すと、長尺樹脂フィルムの幅方向における中央部と端部との間を境にして金属層面上に目視で確認できるわずかな色の差が認められることがあった。このような金属層上の色の差は積層体基板の外観不良になり得る上、そのままの状態でエッチングにより電極回路をパターニング加工すると、上記の色の境界部分でエッチング速度に差が生じてエッチング不良となることがあった。
【0013】
本発明はこのような従来の問題点に鑑みてなされたものであり、長尺樹脂フィルムの両面に成膜を行って積層体基板を作製する際、長尺樹脂フィルムの幅方向の色の差をなくしてエッチング不良を生じにくくすることが可能な成膜方法を提供することを目的としている。
【課題を解決するための手段】
【0014】
上記目的を達成するため、本発明が提供する成膜方法は、ロールツーロールで搬送される長尺樹脂フィルムの両面に乾式めっき法で第1被膜及び第2被膜をそれぞれ成膜する成膜方法であって、前記長尺樹脂フィルムの一方の面に前記第1被膜を成膜した後の第1回目の巻き取りと、前記第1被膜が成膜された長尺樹脂フィルムの他方の面に第2被膜を成膜した後の第2回目の巻き取りとの間に前記第1被膜の表面をドライエッチング処理することを特徴としている。
【発明の効果】
【0015】
本発明によれば、長尺樹脂フィルムの両面に成膜を行って積層体基板を作製する際、長尺樹脂フィルムの幅方向の色の差をなくすことができるので、酸化剤等の薬液を用いてエッチング加工を行う際に該幅方向のエッチング加工性の差をなくすことができる。
【図面の簡単な説明】
【0016】
図1】本発明の成膜方法を好適に実施可能な成膜装置(スパッタリングウェブコータ)の模式的な正面図である。
図2】従来の成膜方法で作製した積層体基板に生じる外観上の不具合を模式的に示した斜視図である。
図3】本発明の成膜方法によって作製された第1層目の金属吸収層と第2層目の金属層とを透明基板の両面に有する積層体基板の模式的断面図である。
図4図3の金属層の上に更に湿式成膜法で金属層を成膜することで得られる厚膜化された金属層を有する積層体基板の模式的断面図である。
図5図4の厚膜化された金属層の上に更に乾式めっき法で第3層目の第2金属吸収層を成膜することで得られる第2の積層体基板の模式的断面図である。
図6】金属製の積層細線が透明基板の両面にそれぞれ形成された電極基板フィルムの模式的断明図である。
【発明を実施するための形態】
【0017】
以下、本発明の成膜方法の一具体例としてスパッタリングによる成膜方法を採り挙げ、この成膜方法を好適に実施可能な成膜装置について図1を参照しながら説明する。この図1に示す成膜装置はスパッタリングウェブコータとも称され、巻出ロール11からキャンロール16を経て巻取ロール24まで長尺樹脂フィルムFをロールツーロール方式で搬送する搬送手段と、長尺樹脂フィルムFがキャンロール16の外周面に巻き付いている時にその表面に連続的に効率よくスパッタリング成膜を施す成膜手段と、これら手段を収容する真空チャンバー10とから主に構成されている。
【0018】
具体的に説明すると、真空チャンバー10にはドライポンプ、ターボ分子ポンプ、クライオコイル等の種々の装置(図示せず)が組み込まれており、スパッタリング成膜の際に真空チャンバー10内を到達圧力10−4Pa程度までの減圧した後、スパッタリングガスの導入により0.1〜10Pa程度に圧力調整できるようになっている。スパッタリングガスにはアルゴン等公知のガスが使用され、目的に応じて更に酸素等のガスが添加される。真空チャンバー10の形状や材質はこのような減圧状態に耐え得るものであれば特に限定はなく、種々のものを使用することができる。真空チャンバー内には、スパッタリング成膜を行う空間を搬送用ロール群が設けられている空間から隔離するため、仕切板10aが設けられている。
【0019】
巻出ロール11からキャンロール16までの搬送経路には、長尺樹脂フィルムFを案内するフリーロール12a、12b、長尺樹脂フィルムFを巻き付けて冷却する冷却ロール13、キャンロール16よりも上流側の長尺樹脂フィルムFの張力の測定を行う張力センサロール14、及びキャンロール16に送り込まれる長尺樹脂フィルムFをキャンロール16の外周面に密着させるべくキャンロール16の周速度に対する調整が行われるモータ駆動の前フィードロール15がこの順に配置されている。
【0020】
キャンロール16はその内部に真空チャンバー10の外部で温調された冷媒が循環しており、外周面に巻き付いた長尺樹脂フィルムFに成膜手段によって熱負荷のかかる処理を施す際に冷却できるようになっている。冷却ロール13も内部に冷媒が循環しており、その外周面に対向して配されているドライエッチング手段29で長尺樹脂フィルムFに熱負荷のかかる処理を施す際に該長尺樹脂フィルムFを冷却できるようになっている。尚、ドライエッチング手段29を起動させない場合は、冷却ロール13内の冷媒の循環を停止してもよい。
【0021】
キャンロール16から巻取ロール24までの搬送経路も、上記した冷却ロール13と2つめのフリーロール12bに対応するロールがないこと以外は上記と同様に、キャンロール16の周速度に対する調整を行うモータ駆動の後フィードロール21、キャンロール16よりも下流側の長尺樹脂フィルムFの張力の測定を行う張力センサロール22、及び長尺樹脂フィルムFを案内するフリーロール23がこの順に配置されている。
【0022】
上記巻出ロール11及び巻取ロール24では、パウダークラッチ等によるトルク制御によって長尺樹脂フィルムFの張力バランスが保たれている。また、モータ駆動のキャンロール16の回転とこれに連動して回転するモータ駆動の前フィードロール15及び後フィードロール21により、巻出ロール11から巻き出された長尺樹脂フィルムFは、上記したキャンロール16等のロール群で画定される搬送経路に沿って搬送された後、巻取ロール24で巻き取られるようになっている。
【0023】
キャンロール16の外周面のうち長尺樹脂フィルムFが巻き付けられる領域に対向する位置に、キャンロール16の搬送経路に沿って成膜手段として4つのマグネトロンスパッタリングカソード17、18、19及び20がこの順に設けられており、それぞれ反応性ガスを放出可能な4対のガス放出パイプ25a・25b、26a・26b、27a・27b、及び28a・28bが近傍に設置されている。尚、板状のターゲットを用いて、上記の金属吸収層や金属層のスパッタリング成膜を行うと、該ターゲット上にノジュール(異物の成長)が発生することがある。これが問題になる場合は、ノジュールの発生がなくかつターゲットの使用効率も高い円筒形のロータリーターゲットを使用することが好ましい。
【0024】
上記した4つのマグネトロンスパッタリングカソード17〜20のうち、例えば最初の2つのカソード17〜18のターゲットに金属吸収層形成用のターゲットを設け、残る2つのカソード19〜20のターゲットに金属層用のターゲットを設けることで、長尺樹脂フィルムFの片面に金属酸化物からなる金属吸収層と金属層とを連続的に成膜することができる。この金属吸収層の成膜の際、金属吸収層の形成用ターゲットに金属酸化物ターゲットを用いた場合、成膜速度が遅くなって量産に適さない。そこで、高速成膜が可能なNi系の金属ターゲット(金属材)を用いると共に酸素を含む反応性ガスを制御しながら導入する反応性スパッタリング等の反応成膜法が採られている。
【0025】
上記の反応性ガスを制御する方法としては、(1)一定流量の反応性ガスを放出する方法、(2)真空チャンバー内の圧力を一定圧力に保つように反応性ガスを放出する方法、(3)スパッタリングカソードのインピーダンスが一定になるように反応性ガスを放出する(インピーダンス制御)方法、及び(4)スパッタリングのプラズマ強度が一定になるように反応性ガスを放出する(プラズマエミッション制御)方法の4つの方法が知られている。
【0026】
上記したように反応性スパッタリング等により金属吸収層を成膜する際、スパッタリング雰囲気となる反応性ガスはアルゴン等に酸素を添加した混合ガスとなる。このように酸素を含んだ反応性ガス雰囲気下でNi系の金属ターゲット(金属材)を用いて反応性スパッタリングを行うことで、NiO膜(完全に酸化しているのではない)等を形成することができる。反応性ガス中の好適な酸素濃度は、成膜装置や金属ターゲット(金属材)の種類によって変わりうるが、金属吸収層における反射率等の光学特性やエッチング液によるエッチング性を考慮して適宜設定すればよく、一般的には15体積%以下が望ましい。
【0027】
透明基板としての長尺樹脂フィルムF側から数えて第1層目の金属吸収層の成膜に前述したように2つのスパッタリングカソード17及び18を使用する場合は、2対のガス放出パイプ25a・25b及び26a・26bから反応性ガスを導入することになる。尚、長尺樹脂フィルムFの両面に各々金属吸収層と金属層とを成膜する場合は、図1に示すように巻出ロール11及び巻取ロール24を白矢印で示す反時計回りに回転させて長尺樹脂フィルムFの一方の面に成膜して巻取ロール24に巻き取った後、この巻き取られたロールを巻取ロール24から外して巻出ロール11に取り付け、巻出ロール11を図1の黒矢印で示す時計回りに回転させると共に巻出ロール11からフリーロール12aに向けて点線のように長尺樹脂フィルムFを巻き出すことでもう一方の面に成膜すればよい。
【0028】
ところで、上記したスパッタリング成膜などの乾式めっきに用いられる長尺樹脂フィルムの表面には、めっき層との密着性を高めるため易接着層が形成されることがある。易接着層はシラン化合物やイソシアネート化合物などの化合物を塗布することで形成する化学的形成法や、コロナ放電などにより表面の構成分子を分解したり表面を粗面化などして形成する機械的形成法がある。この易接着層が両面に設けられている長尺樹脂フィルムの一方の面に先ず第1被膜として上記した金属吸収層と金属層とを成膜してから長尺樹脂フィルムを巻き取ると、第1被膜と長尺樹脂フィルムのもう一方の未成膜側の表面とが接触し、当該易接着層が第1被膜に部分的に転写するなどの化学的な影響を第1被膜が受けるおそれがある。この過程について以下に詳細に説明する。
【0029】
乾式めっき法で長尺樹脂フィルムに成膜するとその巻き取りも減圧雰囲気下で行われる。そのため、第1被膜が成膜された長尺樹脂フィルムを巻き取った時、第1被膜と長尺樹脂フィルムの未成膜の表面とは気体分子がほとんど介在することなく接触する。更に、巻き取られた長尺樹脂フィルムは、自身が巻き取られる際の搬送張力で巻き締められる。この場合の搬送張力は長尺樹脂フィルムの幅方向で異なっており、幅方向の両端部の張力が最も弱く、幅方向の中央部が最も強い。つまり、第1被膜のみが成膜された長尺樹脂フィルムを成膜装置内で巻き取ると、第1被膜の金属面と易接着層が接する部分の当接状態が長尺樹脂フィルムの幅方向の位置によって異なるため、図2に示すように幅方向で色の差が認められることがある。尚、第2被膜を成膜した後の巻き取りでは、第2被膜と第1被膜とが接するので、上記した幅方向の色の差の問題は生じない。
【0030】
第1被膜の表面に上記の幅方向の色の差が認められると、第1被膜を酸化剤等の薬液による化学エッチング等の加工を施す際に加工性に差が生じる恐れがある。そこで、図1の成膜装置では、第2被膜を成膜した後の長尺樹脂フィルムFを巻き取る前に、第1被膜の表面をドライエッチング手段29でドライエッチング処理できるようになっている。尚、図1の成膜装置では第1被膜をドライエッチング処理してから第2被膜の成膜を行うようになっているが、第2被膜を成膜してから第1被膜をドライエッチング処理してもよい。
【0031】
上記のように第1被膜をドライエッチング処理することにより当該第1被膜の幅方向の色の差の生じた表面部を除去できる。これにより長尺樹脂フィルムの幅方向のエッチング性に差が生じなくなる。ドライエッチング処理には、第1被膜の表面にアルゴンイオンなどをぶつけて行う逆スパッタリング処理、プラズマ照射処理、イオンビーム照射処理等を挙げることができる。これらの中では、指向性が強いことから効率よくドライエッチング処理が行えるのでイオンビーム照射処理が望ましい。尚、第1被膜の幅方向の色の差が生じた表面部が除去されていれば、第1被膜の表面に更に乾式めっきや湿式めっきで被膜を形成した場合にも、長尺樹脂フィルムの幅方向でエッチング性の差が生じにくくなるが、必要に応じて第1被膜の上に設けた被膜にドライエッチング処理を施してもよい。
【0032】
イオンビーム処理は被処理物である長尺樹脂フィルムに対してイオン源からイオンを照射することで行われる。イオンビームに用いるガス種には、酸素、アルゴン、窒素、二酸化炭素、又は水蒸気を用いることができ、これらの2種以上の混合ガスを用いてもよい。イオンビームはほぼ直線状に照射され、照射される有効幅が処理を受ける長尺樹脂フィルムの幅に相当するようにドライエッチング手段29を設置するのが好ましい。尚、イオンビームの照射時間は長尺樹脂フィルムの搬送速度に依存する。イオンビーム処理を行うイオン源に供給する電力[W]は、成膜装置の構造や第1被膜の化学種等により影響を受けるので、第1被膜の加工性等を考慮して適宜定めればよい。その際、下記式1で定義される照射電力[W/(m・m/min)]に基づいてイオン源への供給電力を定めるのが好ましい。
【0033】
[式1]
照射電力=イオン源への供給電力[W]/(有効幅[m]×搬送速度[m/min])
【0034】
長尺樹脂フィルムFに成膜した第1被膜の表面にイオンビーム処理を行う時は、その反対側部分を冷却ロール13の外周面に接触させて冷却することが望ましい。イオンビーム処理は指向性が高く、長尺樹脂フィルムFのイオンビーム照射部が局部的に高温になってシワが発生するおそれがあるからである。尚、イオンビーム処理が過剰になったり冷却ロール13による冷却が不十分であったりする場合もシワが生じやすくなるので、イオンビームの供給電力や冷媒の温度等を適宜調整するのが望ましい。
【0035】
上記成膜装置により、タッチパネル用などの電極基板フィルムの基材に用いる積層構造の積層体基板を作製する際、品質のばらつきを抑えることができる。この積層体基板は、例えば図3に示すような長尺樹脂フィルムからなる透明基板50と、該透明基板50の両面に上記成膜装置により形成された金属吸収層51及び金属層52からなる。
【0036】
上記積層体基板に適用される長尺樹脂フィルムの材質としては特に限定はないが、好適にはポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)、及びノルボルネン等の樹脂材料から選択された樹脂フィルムの単体、あるいは上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面又は両面を覆うアクリル系有機膜との複合体が用いられる。ノルボルネン樹脂材料については代表的なものとして日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。尚、本発明に係る積層体基板を用いて作製される電極基板フィルムは主にタッチパネルに使用されるため、上記樹脂フィルムの中でも可視波長領域での透明性に優れるものが望ましい。
【0037】
上記の金属吸収層51は、Cu単体、Ni単体、又はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金からなる金属材を用いて酸素を含む反応性ガス雰囲気において反応成膜法によって成膜して得た金属酸化物層からなるのが好ましい。Ni系合金の場合は、Ni−Cu合金が好ましい。
【0038】
一方、金属層52は一般的な不活性ガス雰囲気において成膜することができ、その構成材料としては、電気抵抗値が低い金属であれば特に限定されず、例えば、Cu単体、若しくはCuにTi、Al、V、W、Ta、Si、Cr、Agより選ばれる1種以上の元素が添加されたCu系合金、又はAg単体、若しくはAgにTi、Al、V、W、Ta、Si、Cr、Cuより選ばれる1種以上の元素が添加されたAg系合金が挙げられ、これらの中ではCu単体が回路パターンの加工性や抵抗値の観点から望ましい。
【0039】
金属吸収層51の膜厚は15〜30nm程度が好ましい。金属層の膜厚は電気特性に影響を及ぼすので光学的な要件のみから決定されるものではないが、透過光が測定不能なレベルの膜厚に設定するのが好ましい。一般的には金属層の膜厚を50〜5000nmとするのが好ましく、金属層を配線パターンに加工する加工性の観点からは3μm(3000nm)以下がより好ましい。
【0040】
尚、上記の乾式めっき法による金属層52の上に更に電気めっき法などの湿式めっき法により金属層を形成して厚膜化してもよい。すなわち、図4に示すように、長尺樹脂フィルムから成る透明基板50の両面に乾式めっき法により金属吸収層51及び金属層52を形成した後、該金属層52の上に湿式めっき法により金属層53を形成してもよい。
【0041】
上記の金属層53の上に更に第2金属吸収層を形成してもよい。すなわち、図5に示すように、長尺樹脂フィルムから成る透明基板50の両面に乾式めっき法により例えば膜厚15〜30nmの金属吸収層51と例えば膜厚50〜1000nmの金属層52とを形成した後、湿式めっき法により金属層53を形成し、この金属層53の上に乾式めっき法により例えば膜厚15〜30nmの第2金属吸収層54を形成してもよい。この第2金属吸収層は、上記金属吸収層51と同様にCu単体、Ni単体、又はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金から成る金属材を用いて酸素を含む反応性ガス雰囲気において反応成膜法によって成膜することで得られる。
【0042】
このように乾式めっき法と湿式めっき法により厚膜化した金属層の両面に金属吸収層を形成することで、この積層体基板を用いて作製した電極基板フィルムをタッチパネルに組み込んだときに金属製積層細線からなるメッシュ構造の回路パターンを反射により見えにくくすることができる。尚、長尺樹脂フィルムからなる透明基板の片面のみに金属吸収層及び金属層を形成して得た積層体基板を用いて電極基板フィルムを作製した場合でも、該透明基板から回路パターンを見えにくくすることができる。
【0043】
尚、反応成膜法で成膜した金属吸収層を構成する金属酸化物の酸化が進み過ぎると金属吸収層が透明になってしまうため、視覚的に黒化膜になる程度の酸化レベルに抑えるのが望ましい。反応成膜法で金属吸収層を成膜すると、各金属元素は酸素原子と不定比の化合物を形成し、このような不定比の酸化物により視覚では黒色に映る。
【0044】
上記反応成膜法としては、図1に示すようなマグネトロンスパッタリングカソード17〜20を用いたスパッタリング法のほか、イオンビームスパッタリング、真空蒸着、イオンプレーティング、CVD等の乾式めっき法がある。金属吸収層の各波長における光学定数(屈折率、消衰係数)は、反応の度合い、すなわち酸化度に大きく影響され、Ni系合金からなる金属材だけで決定されるものではない。また、Ni−Cu合金の場合はNiとCuの配合割合によっては反応成膜法を用いない方法(すなわち反応性ガスを用いない成膜法)であっても黒色膜と視認される金属吸収層が成膜されることがある。
【0045】
上記にて作製した積層体基板の積層膜をパターニング加工して線幅が例えば20μm以下である金属製の積層細線を形成することにより、電極基板フィルムを得ることができる。具体的には、図5に示す積層体フィルムの積層膜を後述するエッチング処理等でパターニング加工することで図6に示すような電極基板フィルムを得ることができる。この図6に示す電極基板フィルムは、樹脂フィルムから成る透明基板50の両面に設けられた例えば線幅20μm以下の金属製の積層細線から成るメッシュ構造の回路パターンを有し、この金属製の積層細線は透明基板50側から数えて第1層目の金属吸収層51aと、第2層目の金属層52a、53aと、第3層目の第2金属吸収層54aとで構成されている。
【0046】
このように電極基板フィルムの電極(配線)パターンをストライプ状若しくは格子状とすることでタッチパネルに用いることができる。このようにして電極(配線)パターンに配線加工された金属製の積層細線は、積層体基板の積層構造を維持していることから、高輝度照明下においても透明基板に設けられた電極等の回路パターンが極めて視認され難い特徴を有している。すなわち、アルゴンに酸素を添加して得た反応性ガス雰囲気で反応性スパッタリング成膜すると、金属吸収層として黒色膜が得られるので照射された時に光の反射率を低く抑えることが可能になり、よって金属吸収層をエッチング加工して得た電極等の回路パターンは高輝度照明下において視認されにくくなる。
【0047】
上記の積層体基板をパターニング加工して電極基板フィルムを形成する方法としては、公知のサブトラクティブ法を挙げることができる。サブトラクティブ法は積層体基板の積層膜表面にフォトレジスト膜を形成し、電極パターンを形成したい箇所にフォトレジスト膜が残るように露光及び現像処理を行い、フォトレジスト膜から露出している積層膜部分を化学エッチングにより除去し、電極パターンを形成する方法である。上記記化学エッチングのエッチング液としては、塩化第二鉄水溶液や塩化第二銅水溶液を用いることができる。
【0048】
以上、本発明の一具体例の電極基板フィルム用の積層体基板の製造方法について説明したが、積層体基板の用途はタッチパネル用の電極基板フィルムに限定されるものではなく、フレキシブル配線基板などにも用いることができる。積層体基板をフレキシブル配線基板に用いる場合には、積層体基板は、第1被膜及び第2被膜が各々少なくとも2層の積層構造であって、例えば第1層目はNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加されたNi系合金層であり、第2層目は銅層からなる金属層で構成されるのが好ましい。
【0049】
この第2層目の金属層の上には更に第3層目が設けられていてもよく、この第3層目は例えばNiにTi、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、及びZnからなる群より選ばれる1種以上の元素が添加された第2Ni系合金層からなるのが好ましい。これら第1及び第2のNi合金層はNi−Cr系合金が望ましく、その膜厚は好適には3〜50nmである。また、銅層の膜厚は50nm以上が好ましく、15μm以下がより好ましい。長尺樹脂フィルムには、電気基板フィルム用の積層体フィルムで用いた透明基板を構成する樹脂フィルムのほか、透明性が要求されない場合は着色したフィルムを用いることができる。例えば、ポリイミドフィルム等の樹脂フィルムを用いることができる。
【実施例】
【0050】
図1に示すような成膜装置(スパッタリングウェブコータ)を用い、酸素ガスを含んだ反応性ガス雰囲気で反応スパッタリングを行うことで長尺樹脂フィルムFの両面にそれぞれ第1被膜及び第2被膜を成膜した。具体的に説明すると、キャンロール16には、外径600mm、幅750mmのステンレス製の円筒部材を用い、その表面にハードクロムめっきを施した。前フィードロール15と後フィードロール21は各々外径150mm、幅750mmのステンレス製の円筒部材を用い、その表面にハードクロムめっきを施した。マグネトロンスパッタリングカソード17、18には金属吸収層用のNi−Cuターゲットを取り付け、マグネトロンスパッタリングカソード19、20には金属層用のCuターゲットを取り付けた。
【0051】
透明基板を構成する長尺樹脂フィルムFには、幅600mm、長さ1200mのPETフィルムを用いた。これを巻出ロール11にセットし、その先端部を各種ロール群を経て巻取ロール24に巻き付けた。キャンロール16に循環させる冷媒は0℃で温度制御した。この状態で、真空チャンバー10内を複数台のドライポンプにより5Paまで排気した後、複数台のターボ分子ポンプとクライオコイルを用いて1×10−4Paまで排気した。そして、長尺樹脂フィルムFを搬送速度2m/分で搬送してスパッタリング成膜を行った。
【0052】
スパッタリング成膜の際、金属吸収層の成膜を行うマグネトロンスパッタリングカソード17、18では、その近傍にそれぞれ配されているガス放出パイプ25a・25b、26a・26bからアルゴンガスを300sccm、酸素ガスを15sccmの流量で導入し、膜厚30nmのNi−Cu酸化層が得られるように電力制御を行った。一方、金属層(銅層)の成膜を行うマグネトロンスパッタリングカソード19、20では、その近傍にそれぞれ配されているガス放出パイプ27a・27b、28a・28bからアルゴンガスを300sccmの流量で導入し、膜厚80nmのCu層が得られるように電力制御を行った。
【0053】
長尺樹脂フィルムFの片面に第1被膜の成膜が完了した後、真空チャンバー10に大気を導入し、巻き取られた長尺樹脂フィルムを巻取ロール24から外して巻出ロール11にセットした。そして、第1被膜の成膜の場合と同様の方法で真空排気を行った後、搬送速度2m/分で長尺樹脂フィルムFを搬送し、下記のイオンビーム処理を行ったことを除いて上記第1被膜の成膜の場合と同様にして第2被膜の成膜を行った。
【0054】
すなわち、この第2被膜の成膜では上記第1被膜の成膜の場合と異なり、長尺樹脂フィルムFに対して0℃に温度制御された冷媒が循環する冷却ロール13で冷却しながらドライエッチング手段29としてのイオン源を起動させて、イオンビーム用ガスの供給量100sccmで第1被膜の成膜面側にイオンビーム処理を施した。尚、ドライエッチング処理条件を変えた時の効果を調べるため、一定の時間ごとにイオン源への供給電力及びイオンビーム用供給ガスの種類を変えてイオンビーム処理を行った。また、比較のため、イオン源を停止すると共にイオンビーム用供給ガスを供給しない条件で第2被膜の成膜を行った。
【0055】
第2被膜の成膜が完了した後、巻き取られた積層体基板を大気中で巻き出して、第1被膜の幅方向の両端の色の差を目視で確認した。次に、第1被膜と第2被膜の両方に電気めっきで銅厚みが1μmになるよう成膜し、再度成膜装置にて、上記と同様の方法で第1被膜及び第2被膜の上に膜厚30nmの第2金属吸収層を成膜した。尚、この第2金属吸収層の成膜時はイオンビーム処理は行わなかった。このようにして、透明基板の両面に該透明基板から数えて第1層目の金属吸収層としてのNi−Cu酸化膜と第2層目の金属層としてのCu膜と第3層目の第2金属吸収層としてのNi−Cu酸化膜とからなる積層膜が積層された試料1〜7の積層体基板を製造した。
【0056】
得られた試料1〜7の積層体基板の各々に対して、成膜を開始してから100m、500m及び900mの位置をサンプリングし、エッチング液として塩化第二鉄水溶液を用いてエッチングすることでエッチング性の評価を行った。評価基準としては、幅方向の中央部と端部から50mmの部分とのエッチング速度差が3秒未満の場合は「合格」と判断し、この速度差が3秒以上の場合は「不合格」と判断した。また、目視によりシワ発生の有無を確認した。これら評価結果を、上記の目視による色の差の評価及びイオン源への供給電力とその値から式1を用いて算出した照射電力と共に下記表1に示す。
【0057】
【表1】
【0058】
上記表1から、第1被膜の成膜面側にイオンビーム処理を施した試料1〜6ではいずれも色の差を有しておらず、また、エッチング性も良好であることが分かる。これに対してイオンビーム処理を施さなかった試料7ではシワの発生は試料1〜6と同様に認められなかったが、第1被膜の両端部に色の差が認められた。また、エッチング性の評価では試料7はサンプル全てにおいて不合格となった。
【符号の説明】
【0059】
F 長尺樹脂フィルム
10 真空チャンバー
11 巻出ロール
12a、12b、23 フリーロール
13 冷却ロール
14、22 張力センサロール
15 前フィードロール
16 キャンロール
17,18,19,20 マグネトロンスパッタリングカソード
21 後フィードロール
24 巻取ロール
25a・25b、26a・26b、27a・27b、28a・28b ガス放出パイプ
29 ドライエッチング手段
50 樹脂フィルム(透明基板)
51 金属吸収層
52 乾式成膜法による金属層(銅層)
53 湿式成膜法による金属層(銅層)
54 第2金属吸収層
51a パターニング加工された金属吸収層
52a パターニング加工された乾式成膜法で形成された金属層(銅層)
53a 湿式成膜法で形成された金属層(銅層)
54a パターニング加工された第2金属吸収層
図1
図2
図3
図4
図5
図6