(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、上記事情に鑑みなされたもので、酸素阻害による表面部分の未硬化を克服した硬化物を与えることができる加熱硬化型のシリコーン組成物を提供することを目的とする。また、該組成物からなるダイボンド材を提供することを目的とする。さらに、該ダイボンド材の硬化物を有する光半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明によれば、
(A)下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサン:100質量部、
【化1】
[式中、mは0、1、2のいずれかであり、R
1は水素原子、フェニル基又はハロゲン化フェニル基、R
2は水素原子又はメチル基、R
3は置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Z
1は−R
4−、−R
4−O−、−R
4(CH
3)
2Si−O−(R
4は置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Z
2は酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:0.1〜30質量部、
(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン:0.1〜20質量部、
(D)白金系触媒:(A)成分に対して(D)成分中の白金の質量換算で0.01〜1,000ppmとなる量、
を含有することを特徴とする加熱硬化型シリコーン組成物を提供する。
【0009】
本発明の加熱硬化型シリコーン組成物は、(メタ)アクリル基の、パーオキサイドによる硬化と、SiH基と不飽和基の付加反応との両方の硬化を行う事で、酸素阻害による表面部分の未硬化を克服した硬化物を与えるものとなる。
【0010】
またこの場合、前記(A)成分のオルガノ(ポリ)シロキサンのZ
1が−R
4−であり、Z
2が酸素原子であることが好ましい。
【0011】
またこの場合、前記(A)成分のオルガノ(ポリ)シロキサンのZ
1が−R
4−O−又は、−R
4(CH
3)
2Si−O−であり、Z
2が置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基であることが好ましい。
【0012】
このようなZ
1、Z
2の組み合わせである(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。
【0013】
また、前記(A)成分のオルガノ(ポリ)シロキサンは、該オルガノ(ポリ)シロキサンを構成する全シロキサン単位のうち0.1mol%以上の(SiO
2)単位を有するものであることが好ましい。
【0014】
このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が更に効果的に反応し、より一層、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。
【0015】
また本発明では、前記加熱硬化型シリコーン組成物からなるものであることを特徴とするダイボンド材を提供する。
【0016】
本発明の加熱硬化型シリコーン組成物は、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができるため、ダイボンド材として好適に用いることができる。
【0017】
また本発明では、前記ダイボンド材を硬化して得られる硬化物を有するものであることを特徴とする光半導体装置を提供する。
【0018】
このような本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置は、信頼性の高い光半導体装置となる。
【発明の効果】
【0019】
本発明の加熱硬化型シリコーン組成物は、(メタ)アクリル基のパーオキサイドによる硬化と、SiH基と不飽和基の付加反応との両方の硬化を行う事で、酸素阻害による表面部分の未硬化を克服した、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。このような本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置は、信頼性の高い光半導体装置となる。
【発明を実施するための形態】
【0021】
本発明者は、上記目的を達成するため鋭意検討を行った結果、下記(A)〜(D)成分を含有するものであることを特徴とする加熱硬化型シリコーン組成物であれば、(メタ)アクリル基の、パーオキサイドによる硬化と、SiH基と不飽和基の付加硬化との両方の硬化により、UV照射を行わなくても、酸素阻害による表面部分の未硬化を克服した硬化物を与えることができる加熱硬化型シリコーン組成物となることを見出し、本発明を完成させた。以下、本発明の加熱硬化型シリコーン組成物、ダイボンド材及び光半導体装置について詳細に説明する。
【0022】
即ち、本発明は、
(A)下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサン:100質量部、
【化2】
[式中、mは0、1、2のいずれかであり、R
1は水素原子、フェニル基又はハロゲン化フェニル基、R
2は水素原子又はメチル基、R
3は置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Z
1は−R
4−、−R
4−O−、−R
4(CH
3)
2Si−O−(R
4は置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Z
2は酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:0.1〜30質量部、
(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン:0.1〜20質量部、
(D)白金系触媒:(A)成分に対して(D)成分中の白金の質量換算で0.01〜1,000ppmとなる量、
を含有することを特徴とする加熱硬化型シリコーン組成物を提供する。
【0023】
(A)成分:オルガノ(ポリ)シロキサン
(A)成分のオルガノ(ポリ)シロキサンは、下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノ(ポリ)シロキサンである。尚、本発明においてオルガノ(ポリ)シロキサンとは、1分子中にシロキサン結合(−Si−O−Si−)が1つであるオルガノシロキサン、及び/又は、1分子中に2つ以上のシロキサン結合を含むオルガノポリシロキサンをいう。
【化3】
[式中、mは0,1,2のいずれかであり、R
1は水素原子、フェニル基又はハロゲン化フェニル基、R
2は水素原子又はメチル基、R
3は置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基、Z
1は−R
4−、−R
4−O−、−R
4(CH
3)
2Si−O−(R
4は置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基)のいずれか、Z
2は酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素原子数1〜10の2価の有機基である。]
【0024】
(A)成分のオルガノ(ポリ)シロキサン中の、Z
1、Z
2の組み合わせとしては、Z
1が−R
4−であり、Z
2が酸素原子であるものや、Z
1が−R
4−O−又は、−R
4(CH
3)
2Si−O−であり、Z
2が置換又は非置換で同一又は異なってもよい炭素原子数1〜10の2価の有機基であるものが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。
【0025】
また、(A)成分のオルガノ(ポリ)シロキサンを構成する全シロキサン単位のうち、0.1mol%以上の(SiO
2)単位を有することが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が更に効果的に反応し、より一層、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。
【0026】
更に、(A)成分のオルガノ(ポリ)シロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分がより効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。
【化4】
(式中、m、R
1、R
2、R
3、R
4は上記と同様である。)
【0027】
(A)成分のオルガノ(ポリ)シロキサンは、25℃での粘度が5mPa・s以上の液状又は固体の分岐状又は三次元網状構造のオルガノポリシロキサンであることが好ましい。
【0028】
上記式(1)において、R
3で示されるケイ素原子に結合した置換又は非置換で同一又は異なってもよい炭素原子数1〜12の1価の有機基としては、好ましくは炭素原子数1〜8程度のものが挙げられ、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
【0029】
以下に(A)成分のオルガノ(ポリ)シロキサンを例示する。
【化5】
【0030】
また、(A)成分のオルガノ(ポリ)シロキサンとして、下記式に示す、MA単位、M単位、Q単位が、MA:M:Q=1:4:6の割合で含まれ、分子量がポリスチレン換算重量平均分子量で、5,000であるオルガノポリシロキサン、
【化6】
【0031】
下記式に示す、MA−D単位、D単位、T単位が、MA−D:D:T=2:6:7の割合で、分子量がポリスチレン換算重量平均分子量で、3500であるオルガノポリシロキサン等が例示される。
【化7】
【0032】
また、(A)成分のオルガノ(ポリ)シロキサンとして、下記に示される構造を持つオルガノ(ポリ)シロキサン等が例示される。
【化8】
(式中、p=18,q=180である。)
【0033】
【化9】
(式中、t=18,u=180である。)
【0034】
このような(A)成分の合成方法としては、例えば下記に示すオルガノハイドロジェンシラン、
【化10】
(式中、m、R
1、R
2、R
3、Z
1は上記と同様である。)
好ましくは下式に示す化合物、
【化11】
(式中、m、R
1、R
2、R
3、Z
1、Z
2は上記と同様である。)
より具体的には、1,3−ビス(3−メタクリロキシプロピル)テトラメチルジシロキサンと1,1,3,3−テトラメチルジシロキサンを酸触媒存在下で平衡化反応する事によって得られる(3−メタクリロキシプロピル)−1,1,3,3−テトラメチルジシロキサンと、脂肪族不飽和基(例えば、エチレン性不飽和基、及びアセチレン性不飽和基が挙げられる。)を含むオルガノ(ポリ)シロキサンとを、白金触媒存在下でヒドロシリル化反応させるとよく、この方法で本発明に好適なものを製造することができるが、前記の合成方法に制限されるものではない。また、脂肪族不飽和基を含むオルガノ(ポリ)シロキサンは、脂肪族不飽和基を有するオルガノアルコキシシランを含むアルコキシシランの(共)加水分解縮合など公知の方法で製造することができ、市販のものを用いても良い。
【0035】
これらの(A)成分は、単一でも、2種以上を併用しても良い。
【0036】
尚、(A)成分には、組成物の粘度や硬化物の硬度を調整する等の目的で、以下に示すようなシリコーンを含む反応性希釈剤や、シリコーンを含まない反応性希釈剤を添加することができる。
【0037】
シリコーンを含む反応性希釈剤としては、下記構造を持つオルガノポリシロキサンが挙げられる。
【化12】
このようなシリコーンを含む反応性希釈剤は単一でも、2種以上を併用しても良い。
【0038】
シリコーンを含まない反応性希釈剤としては、H
2C=CGCO
2R
5によって示されるような(メタ)アクリレート類があり、上記式中、Gは、水素、ハロゲン、または1〜約4個の炭素原子のアルキルであり;R
5は、1〜約16個の炭素原子を有するアルキル、シクロアルキル、アルケニル、シクロアルケニル、アルカリル、アラルキルまたはアリール基から選ばれ、これらのいずれかは、必要に応じ、シラン、ケイ素、酸素、ハロゲン、カルボニル、ヒドロキシル、エステル、カルボン酸、尿素、ウレタン、カルバメート、アミン、アミド、イオウ、スルホネート、スルホン等で置換または遮断し得る。
【0039】
反応性希釈剤としてとりわけ望ましいさらに詳細な(メタ)アクリレート類としては、ポリエチレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノール−A(メタ)アクリレート(“EBIPA”または“EBIPMA”)のようなビスフェノール−Aジ(メタ)アクリレート、テトラヒドロフラン(メタ)アクリレートおよびジ(メタ)アクリレート、シトロネリルアクリレートおよびシトロネリルメタクリレート、ヒドロキシプロピル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート(“HDDA”または“HDDMA”)、トリメチロールプロパントリ(メタ)アクリレート、テトラヒドロジシクロペンタジエニル(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート(“ETTA”)、トリエチレングリコールジアクリレートおよびトリエチレングリコールジメタクリレート(“TRIEGMA”)、イソボルニルアクリレートおよびイソボルニルメタクリレート、並びにこれらに相応するアクリレートエステルがある。もちろん、これらの(メタ)アクリレート類の組合せも反応性希釈剤として使用できる。
【0040】
反応性希釈剤を添加する場合の添加量としては、本発明の加熱硬化型シリコーン組成物量に対して0.01〜40質量%の範囲が好ましく、0.05〜20質量%の範囲がより好ましい。
【0041】
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物
(B)成分のジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物は、本発明の加熱硬化型シリコーン組成物を所望の形状に成形した後に、加熱処理を加えて架橋反応により硬化させるために配合される成分であり、目的とする接続温度、接続時間、ポットライフ等により適宜選択される。
【0042】
有機過酸化物は、高い反応性と長いポットライフを両立する観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が200℃以下であることが好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が180℃以下であることがより好ましい。
【0043】
ジアシルパーオキサイドとしては、例えば、イソブチルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン及びベンゾイルパーオキサイドが挙げられる。
【0044】
パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノネート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノネート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ビス(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート及びビス(t−ブチルパーオキシ)ヘキサヒドロテレフタレートが挙げられる。
【0045】
これらは1種を単独で又は2種以上を組み合わせて用いられる。
【0046】
その他の有機過酸化物としては、ジアルキルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。これらの有機過酸化物を上記ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上と組み合わせて、(B)成分の有機過酸化物として使用することもできる。
【0047】
ジアルキルパーオキサイドとしては、例えば、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン及びt−ブチルクミルパーオキサイドが挙げられる。
【0048】
パーオキシジカーボネートとしては、例えば、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ビス(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート及びビス(3−メチル−3−メトキシブチルパーオキシ)ジカーボネートが挙げられる。
【0049】
パーオキシケタールとしては、例えば、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−(t−ブチルパーオキシ)シクロドデカン及び2,2−ビス(t−ブチルパーオキシ)デカンが挙げられる。
【0050】
ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド及びクメンハイドロパーオキサイドが挙げられる。
【0051】
シリルパーオキサイドとしては、例えば、t−ブチルトリメチルシリルパーオキサイド、ビス(t−ブチル)ジメチルシリルパーオキサイド、t−ブチルトリビニルシリルパーオキサイド、ビス(t−ブチル)ジビニルシリルパーオキサイド、トリス(t−ブチル)ビニルシリルパーオキサイド、t−ブチルトリアリルシリルパーオキサイド、ビス(t−ブチル)ジアリルシリルパーオキサイド及びトリス(t−ブチル)アリルシリルパーオキサイドが挙げられる。
【0052】
(B)成分の添加量は、(A)成分のオルガノ(ポリ)シロキサン合計量100質量部に対して、0.1〜30質量部、好ましくは0.5〜20質量部である。添加量が、0.1質量部未満の場合、反応が十分に進行せず、目的とする硬化物の硬度が得られないおそれがある。30質量部を超える場合、所望とする硬化後の物性、すなわち十分な耐熱性、耐光性、耐クラック性が得られない可能性があることに加え、着色が発生するおそれがあり変色の原因となる。また、(B)成分が30質量部を超える場合、粘度が著しく低下し、ダイボンド材として使用が不可能になる場合がある。
【0053】
(C)一分子中にケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン
(C)成分のオルガノハイドロジェンポリシロキサンは、架橋剤として作用する成分であり、(A)成分とヒドロシリル化反応を起こし、本組成物の硬化に寄与する。該オルガノハイドロジェンポリシロキサンは、一分子中に少なくとも2個のケイ素原子結合水素原子(すなわち、SiH基)を有し、好ましくは3〜500個、より好ましくは3〜200個、特に好ましくは3〜150個有する。一分子中のケイ素原子数(または重合度)は、好ましくは2〜200個、より好ましくは3〜150個のものが使用される。前記のSiH基は、分子鎖末端および分子鎖非末端のいずれに位置していてもよく、この両方に位置するものであってもよい。
【0054】
このオルガノハイドロジェンポリシロキサン中のケイ素原子に結合している基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;3,3,3−トリフルオロプロピル基、3−クロロプロピル基等のハロゲン化アルキル基等の脂肪族不飽和結合を有しない、非置換または置換の、1価炭化水素基等が挙げられ、好ましくは、アルキル基およびアリール基、特に好ましくは、メチル基およびフェニル基が挙げられる。
【0055】
(C)成分の23℃における粘度は0.5〜100,000mPa・sであることが好ましく、特に、10〜5,000mPa・sであることが好ましい。このようなオルガノハイドロジェンポリシロキサンの分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、環状、三次元網状等が挙げられる。該オルガノハイドロジェンポリシロキサンは、単一種のシロキサン単位からなる単独重合体でも、2種以上のシロキサン単位からなる共重合体でも、これらの混合物でもよい。
【0056】
該オルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、メチルハイドロジェンシロキサン環状重合体、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、(CH
3)
2HSiO
1/2単位と(CH
3)
3SiO
1/2単位とSiO
4/2単位とからなる共重合体、(CH
3)
2HSiO
1/2単位とSiO
4/2単位とからなる共重合体、(CH
3)
2HSiO
1/2単位とSiO
4/2単位と(C
6H
5)
3SiO
1/2単位とからなる共重合体等が挙げられる。これらの中でも、ジメチルシロキサン単位を(C)成分中のシロキサン単位全体の1mol%以上含有するものが好ましく、より好ましくは1〜100mol%含有するものである。
【0057】
本組成物において、(C)成分の含有量は、(A)成分100質量部に対して0.1〜20質量部、好ましくは0.5〜20質量部、特に好ましくは1〜10質量部である。
【0058】
(C)成分の含有量が0.1質量部未満であると、本組成物が十分に硬化し難く、硬化物表面が固まらない場合が起こってしまう。20質量部を超えると、本組成物が(B)成分により硬化しなくなり、パーオキサイドによる硬化性能が薄れてしまう。なお、この(C)成分の配合量は、上記の理由により、本組成物中の全アルケニル基含有オルガノ(ポリ)シロキサン中のケイ素原子結合アルケニル基の総量に対する(C)成分中のケイ素原子結合水素原子(即ち、SiH基)のモル比−(A)成分以外の成分が前記アルケニル基を有しない場合には、(A)成分中のケイ素原子結合アルケニル基に対する(B)成分中のケイ素原子結合水素原子のモル比−が0.01〜4.0mol/mol、好ましくは0.05〜2.5mol/mol、特に好ましくは0.1〜1.0mol/molとなるように配合することもできる。
【0059】
(D)白金系触媒
(D)成分の白金系触媒は、本組成物の硬化を促進するための触媒であり、例えば、白金および白金化合物が挙げられ、具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体等が挙げられる。本組成物における(D)成分の含有量は、有効量でよく、具体的には、(A)成分に対して(D)成分中の白金金属成分が白金換算にして、質量基準0.01〜1,000ppm、好ましくは0.1〜500ppmとなる量である。
【0060】
その他の成分
本発明の加熱硬化型シリコーン組成物は、特定の用途において所望されるような硬化または未硬化特性を改変させる他の成分も含ませ得る。例えば、(メタ)アクリロキシプロピルトリメトキシシラン、トリアルキル−またはトリアリル−イソシアヌレート、グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような接着促進剤を、約20質量%までの量で含ませ得る。他の任意成分としては、約30質量%までの量の非(メタ)アクリルシリコーン希釈剤または可塑剤を含ませ得る。非(メタ)アクリルシリコーン類としては、100〜500cspの粘度を有するトリメチルシリル末端化オイル、およびシリコーンゴムが挙げられる。非(メタ)アクリルシリコーン類は、ビニル基のような共硬化性基を含み得る。
【0061】
また、本発明の加熱硬化型シリコーン組成物の強度を向上、粘度調整、チキソ性付与等を目的として、更に、ヒュームドシリカ、ナノアルミナ等の無機質充填剤を配合してもよい。必要に応じて、本発明の加熱硬化型シリコーン組成物に、染料、顔料、難燃剤等を配合してもよい。
【0062】
また、作業性を改善する目的で溶剤等を添加して使用することも可能である。溶剤の種類は特に制限されるものでなく、硬化前の加熱硬化型シリコーン組成物を溶解し、前記無機質充填剤等を良好に分散させ、均一なダイボンド材あるいは接着剤等を提供できる溶剤を使用することができる。該溶剤の配合割合はダイボンド材等を使用する作業条件、環境、使用時間等に応じて適宜調整すればよい。溶剤は2種以上を併用してもよい。このような溶剤としては、ブチルカルビトールアセテート、カルビトールアセテート、メチルエチルケトン、α−テルピネオール、及びセロソルブアセテート等が挙げられる。
【0063】
また、本発明の組成物には、接着性向上剤を配合してもよい。接着性向上剤としては、シランカップリング剤やそのオリゴマー、シランカップリング剤と同様の反応性基を有するシリコーン等が例示される。
【0064】
接着性向上剤としては、分子内に1個以上のエポキシ含有基を有するシラン化合物又はシロキサン化合物が好ましい。例えば、エポキシ基を含有するシランカップリング剤やその加水分解縮合物等が例示される。エポキシ基を含有するシランカップリング剤やその加水分解縮合物としては、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン等のシラン化合物やその加水分解縮合物等を挙げることができる。
【0065】
接着性向上剤は、本発明の加熱硬化型シリコーン組成物及びその硬化物の基材に対する接着性を向上させるために該組成物に配合される任意的成分である。ここで、基材とは、金、銀、銅、ニッケルなどの金属材料、酸化アルミニウム、窒化アルミニウム、酸化チタンなどのセラミック材料、シリコーン樹脂、エポキシ樹脂などの高分子材料を指す。接着性向上剤は、1種単独でも2種以上を組み合わせても使用することができる。
【0066】
接着性向上剤の配合量は、上記(A)成分と(B)の合計100質量部に対し、好ましくは1〜30質量部であり、より好ましくは、5〜20質量部である。該配合量が5〜20質量部であると、本発明の加熱硬化型シリコーン組成物及びその硬化物は、基材に対する接着性が効果的に向上し、また、着色しにくい。
【0067】
接着性向上剤の好適な具体例としては、下記が挙げられるが、これらに限定されるものではない。
【化13】
【0069】
【化15】
(a,rは0〜50の整数、b、s、tは1〜50の整数である。)
【0070】
また、ポットライフを確保するために、3−メチル−1−ドデシン−3−オール、1−エチニルシクロヘキサノール、3,5−ジメチル−1−ヘキシン−3−オール等の付加反応制御剤を配合することができる。
【0071】
硬化物の着色、酸化劣化等の発生を抑えるために、2,6−ジ−t−ブチル−4−メチルフェノール等の従来公知の酸化防止剤を本発明の加熱硬化型シリコーン組成物に配合することができる。また、光劣化に対する抵抗性を付与するために、ヒンダードアミン系安定剤等の光安定剤を本発明の加熱硬化型シリコーン組成物に配合することもできる。
【0072】
本発明の加熱硬化型シリコーン組成物は、上記各成分を、公知の混合方法、例えば、ミキサー、ロール等を用いて混合することによって製造することができる。また、本発明の加熱硬化型シリコーン組成物は、回転粘度計、例えば、E型粘度計を用いて23℃で測定した粘度が10〜1,000,000mPa・s、特には100〜1,000,000mPa・sであることが好ましい。
【0073】
本発明の加熱硬化型シリコーン組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。具体的には、通常、80〜200℃、好ましくは100〜160℃で加熱することにより、該組成物を硬化させることができる。加熱時間は、0.5分〜5時間程度、特に1分〜3時間程度でよい。作業条件、生産性、発光素子及び筐体耐熱性とのバランスから適宜選定することができる。
【0074】
本発明の加熱硬化型シリコーン組成物は、(メタ)アクリル基の、パーオキサイドによる硬化と、SiH基と不飽和基の付加反応との両方の硬化を行う事で、酸素阻害による表面部分の未硬化を克服した硬化物を与えることが可能となる。また、本発明の加熱硬化型シリコーン組成物は、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。
【0075】
また、本発明では、上記本発明の加熱硬化型シリコーン組成物からなるものであるダイボンド材を提供する。特には、半導体素子を配線板に接続するために使用することができるダイボンド材が挙げられる。
【0076】
本発明の加熱硬化型シリコーン組成物は、LEDチップをパッケージに固定するために好適に用いることができる。また、その他有機電界発光素子(有機EL)、レーザーダイオード、及びLEDアレイ等の光半導体素子にも好適に用いることができる。
【0077】
本発明の加熱硬化型シリコーン組成物は、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。従って、上記加熱硬化型シリコーン組成物からなるダイボンド材であれば、LEDチップを配線板に搭載するためのダイボンド材として好適に用いることができる。
【0078】
ダイボンド材を塗布する方法は特に制限されず、例えば、スピンコーティング、印刷、及び圧縮成形等が挙げられる。ダイボンド材の厚みは適宜選択すればよく、通常5〜50μm、特には10〜30μmである。例えば、ディスペンス装置を用いて23℃の温度、0.5〜5kgf/cm
2の圧力で吐出することで容易に塗布ができる。また、スタンピング装置を用いることで、所定の量のダイボンド材を基板に転写することでも容易にできる。
【0079】
光半導体素子の搭載方法は特に制限されず、例えば、ダイボンダーが挙げられる。ダイボンド材の厚みを決定する要素は、前述のダイボンド材の粘度に加え、光半導体素子の圧着荷重、圧着時間、圧着温度が挙げられる。これら条件は、光半導体素子の外形形状、目的とするダイボンド材厚みに応じて適宜選択すればよく、圧着荷重は一般的に1gf以上1kgf以下である。好ましくは10gf以上100gf以下である。1gf以上の圧着荷重であれば、ダイボンド材を十分に圧着することができる。また1kgf以下の圧着荷重を用いれば、光半導体素子表面の発光層にダメージを与えることがない。圧着時間は工程の生産性との兼ね合いで適宜選択すればよく、一般的に0msecを超え1sec以下である。好ましくは1msec以上30msecである。1sec以下であれば生産性の点で好ましい。圧着温度は特に制限はなく、ダイボンド材の使用温度範囲に従えばよいが、一般的に15℃以上100℃以下であると好ましい。ダイボンダーの圧着ステージに加温設備が無い場合は室温付近での温度帯で使用すればよい。15℃以上であれば、ダイボンド材の粘度が高くなりすぎないため十分に圧着することができる。100℃以下であれば、ダイボンド材の硬化が始まることがないため、目的とするダイボンド材の厚さに到達することができる。
【0080】
更に本発明では、上記本発明のダイボンド材を硬化して得られる硬化物を有するものである光半導体装置を提供する。
【0081】
本発明の光半導体装置は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有するため、表面部分の未硬化を克服された、耐熱性、耐光性及び耐クラック性に優れた硬化物を有する光半導体装置となる。
【0082】
本発明の光半導体装置は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を基板に塗布した後、従来公知の方法に従い光半導体素子をダイボンディングすることにより製造することができる。
【0083】
以下、本発明の光半導体装置の一態様について図面を参照して説明する。
図1は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置の一例を示す断面図である。
図1に示す光半導体装置10は、パッケージ基板の筐体1の第1のリード電極3上に、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物5を有し、この硬化物5の上に光半導体素子2が搭載されたものである。この光半導体素子2の電極は、金線6によって第1のリード電極3と電気的に接続されている。また、この光半導体素子2の電極は、金線7によって第2のリード電極4と電気的に接続されている。また、この光半導体素子2は、封止樹脂8で封止されている。
【0084】
図1の光半導体装置10の製造方法としては、以下の方法を例示できる。
まず、パッケージ基板の筐体1の第1のリード電極3上に、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を定量転写し、その上に光半導体素子2を搭載する。次に、ダイボンド材を加熱硬化させて硬化物5とする。次に、光半導体素子2の電極と第1のリード電極3を金線6を用いて電気的に接続し、光半導体素子2の電極と第2のリード電極4を金線7を用いて電気的に接続し、光半導体素子2が搭載されたパッケージ基板を得る。次いで、封止樹脂8を定量塗布し、塗布された封止樹脂を公知の硬化条件下で公知の硬化方法により、硬化させることによってパッケージ基板を封止することができる。本発明のダイボンド材を硬化して得られる硬化物を有する光半導体デバイスとしては、例えば、LED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD等が挙げられる。
【実施例】
【0085】
以下に実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0086】
(実施例1〜8、比較例1〜5)
下記成分を用意し、表1、2に示す組成のシリコーン組成物を調製した。
(A−1)
下記シロキサン単位からなり、
【化16】
MA:M:Q=1:4:6の割合で、分子量がGPCによるポリスチレン換算の重量平均分子量で、5,000であり、25℃で固体のオルガノポリシロキサン
【0087】
(A−2)
下記構造式で表される、25℃での粘度が7mPa・sのオルガノシロキサン
【化17】
【0088】
(B−1)
ジアシルパーオキサイドとしてDi−(3−methylbenzoyl)peroxide, Benzoyl(3−methylbenzoyl)peroxide and Dibenzol peroxideの40%キシレン溶液(商品名:ナイパーBMT−K40、日本油脂株式会社製)をそのまま用いた。
【0089】
(B−2)
パーオキシエステルとしてt−Butyl peroxybenzoate(商品名:パーブチルZ、日本油脂株式会社製)をそのまま用いた。
【0090】
(C) 架橋剤
下記シロキサン単位からなり、
M:(CH
3)
3SiO
1/2
D:(CH
3)
2SiO
2/2
D
H:(CH
3)SiHO
2/2
M:D:D
H=2:32:66で表される、25℃での粘度が150mPa・sの直鎖状オルガノポリシロキサン
【0091】
(D)白金系触媒:
白金含有量が0.5質量%の、白金1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液
【0092】
その他の任意成分
粘度調整剤:ヒュームドシリカ(商品名レオシロールDM−30S トクヤマ社製)
接着性向上剤: 側鎖にエポキシ基を含有する環状シリコーンオイル(商品名:X−40−2670、信越化学工業株式会社製)
反応制御剤:3−メチル−1−ドデシン−3−オール
【0093】
【表1】
【表2】
【0094】
[硬度の測定]
得られた組成物を2mm厚みのセルに流し込み、150℃×2時間の条件で硬化し、硬化物を調製した。その後、上島製作所製デュロメータタイプDにより硬度を測定した。
【0095】
[表面タックの評価]
得られた組成物をアルミシャーレに流し込み、150℃×2時間の条件で大気下で硬化し、硬化物を調製した。得られた硬化物の表面タックを指触にて評価した。
【0096】
[光半導体パッケージの作製]
LED用パッケージ基板として、光半導体素子を載置する凹部を有し、その底部に銀メッキされた第1のリード電極と第2のリード電極が設けられたLED用パッケージ基板[SMD5050(I−CHIUN PRECISION INDUSTRY CO.,社製、樹脂部PPA(ポリフタルアミド))]、光半導体素子として、Bridgelux社製 BXCD33を、それぞれ用意した。
【0097】
ダイボンダー(ASM社製 AD−830)を用いて、パッケージ基板の銀メッキされた第1のリード電極に、表1、2に示す各組成物をスタンピングにより定量転写し、その上に光半導体素子を搭載した。このときの光半導体素子の搭載条件は、圧着時間13msec、圧着荷重60gfであり、加温装置を用いず室温25℃の環境で行った。次に、パッケージ基板をオーブンに投入し各ダイボンド材を加熱硬化させた(実施例1〜8、比較例2および比較例4は150℃、4時間、比較例1は170℃、1時間)。次に、光半導体素子の電極と第1のリード電極を金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続し、光半導体素子の電極と第2のリード電極を金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続した。これにより、光半導体素子が搭載されたLED用パッケージ基板各1枚(パッケージ数にして120個)を得た。
【0098】
上記のようにして、ダイボンド材の異なる光半導体パッケージを作製し、以下の試験に用いた。
【0099】
[ダイシェア試験]
上記の方法で得られた光半導体パッケージのうち10個を、25℃の室内でボンドテスター(Dage社製 Series4000)を用いてダイシェア強度の測定を行い、得られた測定値の平均値をMPaで示した。
【0100】
[酸素による表面硬化阻害の評価]
上記の方法で得られた光半導体パッケージにおいて、25℃の室内で、先端の尖った針にてチップ周辺をこすり、酸素による表面硬化阻害の有無を確認した。
得られた結果を表3、4に示す。
【0101】
【表3】
【表4】
【0102】
表3に示すように、本発明の範囲を満たす加熱硬化型シリコーン組成物をダイボンド材として用いた実施例1〜実施例8では、いずれも高硬度、かつ表面タックの無い、酸素阻害による表面部分の未硬化を克服した硬化物が得られた。更に、ダイシェア測定の結果、接着力が高く信頼性の高い光半導体デバイスを製造できることがわかった。
【0103】
一方、C、D成分を含まない比較例1、2ではいずれも高硬度、かつ高いダイシェアが観測されたものの、表面タックがあり、酸素による表面硬化阻害が確認された。なお、比較例2から明らかなように、この表面硬化阻害はパーオキサイドの量を増加させたとしても防ぐことが出来なかった。B成分の量が過剰な場合(比較例3)、粘度が顕著に低下し、スタンピングが出来なくなった。また、C成分が過剰な場合(比較例4)、酸素による表面硬化阻害は防止できたもののダイシェアが低下する結果となった。B成分を含まず、白金触媒のみで硬化させた比較例5では硬度が顕著に低下し、また、粘度の上昇によりスタンピング不能となった。
【0104】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。