特許第6622665号(P6622665)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクノロジーズの特許一覧
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6622665
(24)【登録日】2019年11月29日
(45)【発行日】2019年12月18日
(54)【発明の名称】電解質濃度測定装置
(51)【国際特許分類】
   G01N 27/26 20060101AFI20191209BHJP
   G01N 35/00 20060101ALI20191209BHJP
【FI】
   G01N27/26 371A
   G01N27/26 371F
   G01N35/00 C
【請求項の数】7
【全頁数】22
(21)【出願番号】特願2016-146319(P2016-146319)
(22)【出願日】2016年7月26日
(65)【公開番号】特開2018-17543(P2018-17543A)
(43)【公開日】2018年2月1日
【審査請求日】2018年11月27日
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテクノロジーズ
(74)【代理人】
【識別番号】110001689
【氏名又は名称】青稜特許業務法人
(72)【発明者】
【氏名】岸岡 淳史
(72)【発明者】
【氏名】小野 哲義
【審査官】 黒田 浩一
(56)【参考文献】
【文献】 特開2015−125018(JP,A)
【文献】 特開2015−122823(JP,A)
【文献】 特開2007−333706(JP,A)
【文献】 実開昭60−148965(JP,U)
【文献】 特開平4−138365(JP,A)
【文献】 特開平8−220049(JP,A)
【文献】 特開平9−33538(JP,A)
【文献】 特表2003−516549(JP,A)
【文献】 実用新案登録第2503751(JP,Y2)
【文献】 特開2004−251799(JP,A)
【文献】 特開平8−220050(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/26−27/49
G01N 35/00
G01N 1/00
(57)【特許請求の範囲】
【請求項1】
イオン選択性電極と比較電極と電位測定部とを有して前記イオン選択性電極に内部標準液又は検体を供給した際の電位差を前記電位測定部で測定する測定部と、
前記測定部に前記内部標準液を含む試薬を供給する試薬供給部と、
前記測定部で測定した電位差の情報を処理して前記内部標準液又は検体のイオン濃度を求める記録演算部と、
前記記録演算部で求めた前記内部標準液のイオン濃度が予め設定した値の範囲に入っているかを判断するとともに前記記録演算部で求めた前記内部標準液のイオン濃度値を補正する濃度値補正・判断部と、
前記濃度値補正・判定部で判定した結果を出力する出力部と、
前記測定部と前記記録演算部と前記濃度値補正・判定部と前記出力部とを制御する制御部とを備え、
前記試薬供給部は前記内部標準液などの試薬を収容するボトルを前記試薬の種類ごとにそれぞれ複数収納するボトル収納部と、前記ボトル収納部に収納された複数のボトルのそれぞれの内部の前記試薬の残量を検知して前記測定部に前記試薬を供給することにより前記試薬の残量が予め設定した量よりも少なくなったボトルについて前記ボトル収納部に収納した同じ種類の試薬を収容するボトルで前記試薬の残量が前記予め設定した量よりも十分に多いボトルに切替えて前記測定部に前記試薬を供給するボトル切替え部を有し、
前記濃度値補正・判定部は、前記試薬供給部において前記同じ種類の試薬を収容する複数のボトル間で前記測定部に前記試薬を供給するボトルを切り替えたときに、前記ボトルを切り替える前に前記記録演算部で求めた前記内部標準液又は検体のイオン濃度の情報を用いて前記同じ種類の試薬を収容するボトルを切り替えた後に前記記録演算部で求めた前記内部標準液又は検体のイオン濃度を補正することを特徴とする電解質濃度測定装置。
【請求項2】
請求項1記載の電解質濃度測定装置であって、前記試薬供給部の前記ボトル切替え部は、前記複数のボトルのそれぞれの内部の前記試薬の残量を検出する残量検出部と、前記残量検出部で検出した前記ボトルの内部の前記試薬の残量の情報に基づいて同じ種類の前記試薬を収容する前記複数のボトル間で前記測定部に前記試薬を供給する前記試薬の流路を切替える流路切替え部とを備えることを特徴とする電解質濃度測定装置。
【請求項3】
請求項1に記載の電解質濃度測定装置であって、一方の試薬ボトル内の試薬を使用して電解質濃度測定を実施している間に、装置オペレーターが他方の試薬ボトルを新たな試薬ボトルに交換可能な試薬ボトル交換機構を備えることを特徴とする電解質濃度測定装置。
【請求項4】
請求項1に記載の電解質濃度測定装置であって、新たな試薬ボトルに置き換えられたことを認識する試薬ボトル交換検知機構を備えることを特徴とする電解質濃度測定装置。
【請求項5】
請求項1に記載の電解質濃度測定装置であって、前記イオン選択性電極を交換したことを認識する電極交換検知機構を備えることを特徴とする電解質濃度測定装置。
【請求項6】
請求項1記載の電解質濃度測定装置であって、前記試薬供給部の前記ボトル収納部は、前記ボトルに収容する前記試薬に応じた原薬を供給する原薬供給部と、前記ボトルに純水を供給する純水供給部と、前記原薬供給部から前記原薬が供給され前記純水供給部から前記純水が供給された前記ボトルの内部で前記原薬と前記純水とを撹拌混合する撹拌機構部とを備えていることを特徴とする電解質濃度測定装置。
【請求項7】
請求項6に記載の電解質濃度測定装置であって、試薬ボトル内の原薬と純水とを投入し終わった試薬を一定時間間隔で濃度測定し、試薬が均一な濃度に調合されたか否かを判断する調合試薬濃度判断機構を備えることを特徴とする電解質濃度測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液中の電解質濃度を測定する電解質濃度測定装置に関する。
【背景技術】
【0002】
イオン選択性電極(ISE:Ion Selective Electrode)は検出部に試料液を接触させ、比較電極との電位差を計測することで、試料中の測定対象イオンが定量できる。この簡便さゆえ分析分野で広く利用されている。特に、フロー型イオン選択性電極は、試料液が流れる流路に検出部が設けられており、複数の試料についてのイオン濃度の定量が連続してできる。
【0003】
そのため、フロー型イオン選択性電極を搭載したフロー型電解質濃度測定装置は、生化学自動分析装置などに搭載されており、そこでは血清や尿などの検体中の電解質濃度を高精度かつ高スループットで分析すること特徴としている。
【0004】
フロー型電解質濃度測定装置は、通常複数のイオン(ナトリウムイオン、カリウムイオン、カルシウムイオン、塩化物イオンなど)を同時に分析するため、検出するイオンに対応した複数のイオン選択性電極(ISE:Ion Selective Electrode)が搭載される。一般的にこれらの電極は消耗品であり、例えば、2、3ヶ月もしくは数千テストで使用寿命となり新しい電極に交換される。
【0005】
また、分析値の精度を担保するため、電解質濃度測定装置内で定常的に数種類の試薬が使用される。使用する試薬の種類は装置構成によって異なるが、例えば、検体分析前後に流す内部標準液、検体を希釈する希釈液、比較電極液などがある。
【0006】
電解質濃度測定装置は、装置の立上げや電極交換の際、既知濃度の標準液を用いてキャリブレーションし、検量線を作成する。また、試薬のボトル交換や補充を行った際にも、キャリブレーションを実施する。
【0007】
特許文献1には、試薬の継ぎ足しによる試薬劣化や標準液濃度値の入力ミスを確認し、警告する管理システムについて記載されている。
【0008】
また、特許文献2には、高精度な濃度を有する試薬を調整する試薬調整装置について記載されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2013−213841号公報
【特許文献2】特開平9−33538号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
従来の電解質濃度測定装置では、装置内で使用する内部標準液や希釈液などの試薬は、例えば2Lのボトルで供給される。従来装置では連続稼動すると数時間に一度のボトル交換が必要となる。大規模検査センタでは多数の装置を並べて運用しており、装置オペレーターが試薬ボトル交換のタイムスケジュールに縛られていた。
【0011】
また、特に内部標準液は分析と分析との間に流し、分析標準となる試薬のため微小な濃度変化が分析値に影響する。そのため、同種の試薬のボトル交換の際もキャリブレーションし直す必要が生じていた。この試薬ボトル交換およびキャリブレーションを実行している間は装置のダウンタイムとなり、実質的な分析スループットの低下原因となっていた。また、試薬は重いため輸送コストが負担であった。
【0012】
そこで本発明は、上記の従来技術の課題を解決し、試薬補充を簡便化した電解質濃度測定装置を提供する。
【課題を解決するための手段】
【0013】
上記した課題を解決するために、本発明では、電解質濃度測定装置を、イオン選択性電極と比較電極と電位測定部とを有してイオン選択性電極に内部標準液又は検体を供給した際の電位差を前記電位測定部で測定する測定部と、測定部に内部標準液を含む試薬を供給する試薬供給部と、測定部で測定した電位差の情報を処理して内部標準液又は検体のイオン濃度を求める記録演算部と、記録演算部で求めた内部標準液のイオン濃度が予め設定した値の範囲に入っているかを判断するとともに記録演算部で求めた内部標準液のイオン濃度値を補正する濃度値補正・判断部と、濃度値補正・判定部で判定した結果を出力する出力部と、測定部と記録演算部と濃度値補正・判定部と出力部とを制御する制御部とを備え、試薬供給部は内部標準液などの試薬を収容するボトルを試薬の種類ごとにそれぞれ複数収納するボトル収納部と、ボトル収納部に収納された複数のボトルのそれぞれの内部の試薬の残量を検知して測定部に試薬を供給することにより試薬の残量が予め設定した量よりも少なくなったボトルについてボトル収納部に収納した同じ種類の試薬を収容するボトルで試薬の残量が予め設定した量よりも十分に多いボトルに切替えて測定部に試薬を供給するボトル切替え部を有し、濃度値補正・判定部は、試薬供給部において同じ種類の試薬を収容する複数のボトル間で測定部に試薬を供給するボトルを切り替えたときに、ボトルを切り替える前に記録演算部で求めた内部標準液又は検体のイオン濃度の情報を用いて同じ種類の試薬を収容するボトルを切り替えた後に記録演算部で求めた内部標準液又は検体のイオン濃度を補正するように構成した。
【発明の効果】
【0014】
本発明によれば、フロー型電解質濃度測定装置において、装置内に同種試薬のボトルを複数本設置可能であり、自動的に試薬ボトルの切替えが行われるため、装置オペレーターは比較的自由なタイミングで試薬ボトルを交換できる。また、装置内で自動的に試薬調合する機能を付加することで、さらに長時間、試薬補充の必要がなくなる。その結果、オペレーターの負荷と装置のダウンタイムを低減できる。
【0015】
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0016】
図1】本発明の実施例1に係るフロー型電解質濃度測定装置の全体構成を示すブロック図である。
図2A】本発明の実施例1における電解質濃度測定の装置立ち上げ時のフローチャートである。
図2B】本発明の実施例1における電解質濃度測定の連続分析時のフローチャートである。
図2C】本発明の実施例1における電解質濃度測定の試薬ボトル切替え時のフローチャートである。
図3A】本発明の実施例1における図2Aで説明した装置立ち上げ時のフローのS203の詳細を示すS301からS313までのフロー図である。
図3B】本発明の実施例1における図2Aで説明した装置立ち上げ時のフローのS203の詳細を示すS314からS321までのフロー図である。
図4】本発明の実施例2に係るフロー型電解質濃度測定装置の全体構成を示すブロック図である。
図5A】本発明の実施例2における電解質濃度測定の装置立ち上げ時のフローチャートである。
図5B】本発明の実施例2における電解質濃度測定の連続分析時のフローチャートである。
図5C】本発明の実施例2における電解質濃度測定の装置立ち上げ試薬時容器切替えのフローチャートである。
図6】本発明の比較例における従来型のフロー型電解質濃度測定装置の全体構成を示すブロック図である。
図7A】本発明の比較例における電解質濃度測定の装置立上時のフローチャートである。
図7B】本発明の比較例における電解質濃度測定の連続分析時のフローチャートである。
図8】本発明の実施例1におけるフロー型電解質濃度測定装置の分析値の安定性を実証するための実験フローである。
図9】本発明の比較例において、比較例装置における分析値の安定性の実証実験結果を示すグラフである。
図10】本発明の実施例1におけるフロー型電解質濃度測定装置における分析値の安定性の実証実験結果を示すグラフである。
図11】本発明の実施例1及び実施例2におけるフロー型電解質濃度測定装置の効果を従来装置との比較で示した表である。
【発明を実施するための形態】
【0017】
発明者らはフロー型電解質濃度測定装置において、従来の高い測定精度を維持したまま、連続運転時の試薬供給に関する装置オペレーターの負荷を低減する方法を考案すべく、研究開発を行った。その結果、これまで、微小な濃度変化でも分析値に影響を与えるため、キャリブレーションなしで試薬ボトルの交換が困難と考えられていた内部標準液に関しても、本発明装置では、適切な補正がなされるため、キャリブレーションなしで自動的に試薬ボトルの切替えが可能となることが分った。
【0018】
本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0019】
ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
【実施例1】
【0020】
図1は、本実施例に関わるフロー型電解質濃度測定装置100の一例を示す概略図である。
本フロー型電解質濃度測定装置100は、測定部170、記録演算部172、濃度値補正・判断部173、出力部174、制御部175、入力部176を備えている。
【0021】
測定部170は、イオン選択性電極部110を構成する塩素イオン電極101、カリウムイオン電極102とナトリウムイオン電極103の3種類の電極と、比較電極104を備える。シッパーシリンジポンプ133を用いて、比較電極104の流路1041に比較電極液ボトル161もしくは162から比較電極液が導入される。
【0022】
一方、イオン選択性電極部110の流路1011,1021,1031には希釈槽120に内部標準液ボトルA:141又はB:142から分注された内部標準液や希釈された検体などが導入される。比較電極104と各イオン選択性電極101,102,103との電位差(起電力)は、各イオン選択性電極101,102,103の流路1011,1021,1031に導入された液中の分析対象イオン濃度によって変化するため、その起電力を電位測定部171で測定し、イオン濃度を記録演算部172にて算出する。算出方法の詳細は後述する。
【0023】
本実施例によるフロー型電解質濃度測定装置100内では、定常的に比較電極液、内部標準液と希釈液を使用するため、連続分析時にいずれかの試薬が不足すると分析ができなくなる。
【0024】
本実施例に係るフロー型電解質濃度測定装置100には、内部標準液ボトル切替え手段140と希釈液ボトル切替え手段150と比較電極液ボトル切替え手段160を備えており、これらはそれぞれ同種試薬の各ボトル141と142,151と152,161と162をそれぞれ2本同時に設置するポートと電磁弁126、127、128を備えた切替弁を有している。この機構により、片方のボトル内の試薬が不足した場合、もう片方のボトルに切替えることができる。また、片方のボトルを装置が使用している間に、装置オペレーターが好きなタイミングで、空になったボトルを試薬が充填された新たなボトルに取り替えることが可能である。
【0025】
本実施例に係るフロー型電解質濃度測定装置100には、各試薬ボトル141、142,151、152,161及び162内の試薬量をモニターする試薬量モニター機構(図1に示した例では、試薬ボトルの重量を計測する重量センサ:143,144、153,154,163,164)を有しており、試薬ボトルの重量を予め設定した値と比較し、試薬ボトルの重量が予め設定した重さよりも軽くなった場合には、試薬が十分に収容されているボトルと切替えることで試薬ボトル切替えのタイミングを管理している。試薬量モニター機構としてはこの重量センサを用いた方式に限らず、試薬ボトル内部の試薬液の液面の高さをモニターする液面計などを用いても良い。また、試薬量モニター機構を備えずとも分析回数やシリンジの動作履歴などから試薬の消費量を制御部175で管理しても良い。
【0026】
なお、電磁弁122、123、124、125、126、127、128は流路の切替えや開閉を行うことができ、液を導入する方向やタイミングに従って適宜動作する。また、本実施例に係るフロー型電解質濃度測定装置100では同種の試薬ボトルは2本設置しているが、2本でなくとも複数本であれば本発明の効果を発揮する。装置内で使う全種類の試薬でなく、一部の試薬のみに本発明を適用することもできる。
【0027】
次に、図2A乃至図2Cを用いて、本実施例に係るフロー型電解質濃度測定装置100における電解質濃度測定のフローを説明する。
【0028】
まず、装置立上げ時の手順について図2Aを用いて説明する。最初に図示していない電源を投入して装置を立上げ(S201)、試薬用のボトル141(内部標準液ボトルA141)、ボトル142(内部標準液ボトルB142),ボトル151(希釈液ボトルA151)、ボトル152(希釈液ボトルB152),ボトル161(比較電極液ボトルA161)及びボトル162(比較電極液ボトルB162)をそれぞれボトル切り替え手段140,150,160に設置する(S202)。温調後、イオン選択性電極101,102,103の検量線を求めるために、2種類の既知濃度の標準液を測定し、スロープを算出する(S203)。続いて、内部標準液濃度を算出する(S204)。
【0029】
ここで、S203とS204の具体的な操作について、図3のフロー図を用いて説明する。
【0030】
先ず、既知低濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を作動させて希釈液ボトル151(ボトル151)内の希釈液を希釈槽120の内部に分注し、設定した割合Dで既知低濃度標準液を希釈する(S301)。その間に、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S302)。次に、希釈槽中の希釈した既知低濃度標準液をシッパーノズル107から吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S303)。
【0031】
液絡部121では、比較電極104の流路1041に供給された比較電極液と各イオン選択性電極101,102,103の流路1011,1021,1031に供給された希釈した既知低濃度標準液が接触する。この状態で、各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S304)。
【0032】
次に、真空ポンプ112を駆動させ、希釈槽120の内部の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S305)。その後、内部標準液用シリンジポンプ131を作動させて、内部標準液供給ノズル109から希釈槽120に、内部標準液ボトル141(ボトル141)内の内部標準液を分注する(S306)。その間に、ピンチ弁105を閉じて電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S307)。
【0033】
次に、ピンチ弁105を開いて電磁弁128を閉じた状態でシッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で(S308),各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S309)。
【0034】
その後、また真空ポンプ112を駆動させ、希釈槽120の内部の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S310)。その後、既知高濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を作動させて希釈液ボトル151内の希釈液を希釈液供給ノズル108から希釈槽120に分注し、設定した割合Dで既知高濃度標準液を希釈する(S311)。その間に、ピンチ弁105を閉じて電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S312)。
【0035】
次に、ピンチ弁105を開いて電磁弁128を閉じた状態で希釈槽120中の希釈した既知高濃度標準液をシッパーノズル107から吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S313)。液絡部121では、比較電極104の流路1041に供給された比較電極液と各イオン選択性電極101,102,103の流路1011,1021,1031に供給された希釈した既知高濃度標準液が接触する。この状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S314)。
【0036】
次に、真空ポンプ112を駆動させ、希釈槽120の内部の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S315)。その後、内部標準液用シリンジポンプ131を作動させて、内部標準液供給ノズル109から希釈槽120に、内部標準液ボトル141内の内部標準液を分注する(S316)。その間に、ピンチ弁105を閉じて電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する(S317)。
【0037】
次に、ピンチ弁105を開いて電磁弁128を閉じた状態でシッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たし(S318),この状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S319)。
【0038】
その後、また真空ポンプ112を駆動させ、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S320)。
【0039】
以上の操作により電位測定部171で測定した起電力から、記録演算部172にて下記の計算式を用いて、検量線に相当するスロープ感度SLを算出する(S321)。
【0040】
(A)スロープ感度
SL=(EMFH−EMFL)/(LogCH−LogCL) ………(数1)
SL:スロープ感度
EMFH:既知高濃度標準液の測定起電力
EMFL:既知低濃度標準液の測定起電力
CH:高濃度標準液の既知濃度値
CL:低濃度標準液の既知濃度値
以上の操作をキャリブレーションと呼ぶ。なお、スロープ感度SLはネルンスト式
E = E0 + 2.303×( RT / zF )×log( f × C )
(E0:測定系により定まる一定電位、z:測定対象イオンの価数、F:ファラデー定数、R:気体定数、T:絶対温度、f:活量係数、C:イオン濃度)
の2.303×(RT/zF)に相当する。温度と測定対象イオン価数から計算で求めることができるが、より分析精度を高めるため本実施例装置では上記のキャリブレーションによって電極固有のスロープ感度SLを求めている。
【0041】
S203の詳細について、具体的な測定シーケンスを上記したが、この手順にかかわらず、イオン濃度の異なる2種類の液を流路にそれぞれ導入し、起電力を測定できれば、異なる手順でも良い。
【0042】
続いて、S203で求めたスロープ感度と内部標準液の起電力から内部標準液濃度を算出する(S204)。
【0043】
(B)内部標準液濃度
CIS=CL×10a ………………………………(数2)
a=(EMFIS−EMFL)/SL …………(数3)
CIS:内部標準液濃度
EMFIS:内部標準液の起電力
【0044】
次に、内部標準液のイオン濃度が設定濃度範囲か否かを濃度値補正・判断部173にて判断し(S205)、範囲内であれば図2Bに示した連続分析のフローへ進み、範囲外であれば、アラームを出す(S206)。装置内で使用する試薬の濃度が設計値から大きく異なる場合、イレギュラーな装置状態にあると考えられ、分析精度に影響を与える可能性があるため、本装置には濃度値補正・判断部173を備えている。
【0045】
次に、連続分析時の操作について、図2Bに示したフロー図を用いて説明する。キャリブレーション後、血清や尿などを検体として分析を行う。図2Bに示した処理フローにおいても、図2AのS203のステップを図3に示したフロー図で説明したような詳細な動作があるが、説明を簡単にするために、細かい動作の記載を省略する。
【0046】
具体的には、検体を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液ボトル151内の希釈液を希釈槽120に分注し、設定した割合Dで検体を希釈する。その間に、比較電極液ボトル161内から比較電極104の流路に比較電極液を導入する。希釈槽120中の希釈した検体をシッパーノズル107から吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031に導入する。
【0047】
液絡部では比較電極液と希釈した検体が接触する。イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部171で測定する(S211)。真空ポンプ112を作動させて希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に排気した後、希釈槽120に内部標準液ボトル141内の内部標準液を分注する。その間に、ピンチ弁105を閉じて、電磁弁122を開いた状態でシッパーシリンジポンプ133を作動させて比較電極104の流路1041に残っていた液体を廃液タンク111に廃棄するとともに、比較電極液ボトル161内から比較電極104の流路1041に比較電極液を導入する。
【0048】
次に、シッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各電極の起電力を電位測定部171で測定する(S212)。その後、希釈槽120の内部に残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。
【0049】
S203で求めたスロープ感度とS204で算出した内部標準液濃度から、下記の計算式を用いて検体の濃度を算出する(S213)。
【0050】
(C)検体の濃度
CS=CIS×10b …………………………………(数4)
b=(EMFIS−EMFS)/SL ……………(数5)
CS:検体濃度
EMFS:検体の測定起電力
【0051】
なお、以上の計算式は基本的なものであり、温度ドリフトやキャリーオーバーなど各種の補正を追加してもよい。また、分析の途中に希釈槽や流路にリフレッシュのための液を導入しても良い。
【0052】
分析の合間に、ユーザーが各イオン選択性電極101,102,103又は比較電極104の何れかを交換した場合は、電極交換検知機構(図示せず)が電極交換されたことを検知し(S214)、キャリブレーション操作を行う。電極交換されていない場合、次に切替える予定の試薬ボトルが設置されているかを試薬ボトル交換検知機構(図示せず)が検知し(S215)、設置されていなければアラームを出す(S216)。このアラームが出た場合、装置オペレーターが次の試薬ボトル切替えのタイミングまでに、空になったボトルを取り出し、新たな試薬ボトルを設置する。
【0053】
次に、試薬ボトルの切替えが必要かを判断する(S217)。不要であれば、引き続き検体の分析を行い、必要であれば、図2Cのフロー図に示す試薬ボトル切替えを行う。
【0054】
ここで、試薬ボトル切替え時の操作について、図2Cのフロー図に基づいて説明する。図2Cに示した処理フローにおいても、図2AのS203のステップを図3に示したフロー図で説明したような詳細な動作があるが、説明を簡単にするために、細かい動作の記載を省略する。
【0055】
まず、試薬ボトル切替え前に、希釈槽120に現在使用している試薬ボトル、例えば内部標準液ボトルA141(ボトル141)内の内部標準液を分注する。その間に、比較電極液ボトルA161内から比較電極104の流路1041に比較電極液を導入する。シッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で、各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部171で測定する(S231)。
【0056】
次に、真空ポンプ112を作動させて希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。次に、電磁弁を切替え新たなボトルから試薬が供給されるようにし(S232)、供給流路内の液を置換する(S233)。その後、希釈槽に内部標準液ボトルB142内の内部標準液を分注する。その間に、比較電極液ボトルB162内から比較電極104の流路に比較電極液を導入する。
【0057】
次に、シッパーノズル107から希釈槽内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部171で測定する(S234)。希釈槽120の残った液を真空吸引ノズル106で吸い上げ廃液タンク111に廃棄する。
【0058】
次に、濃度値補正・判断部173にて、次の式を用いて内部標準液の濃度値を算出し、濃度に異常が無いか判断し、内部標準液の濃度値を補正する(S235)。スロープ感度SLは式(数1)で算出した値を用いる。
【0059】
(D)内部標準液濃度補正
CIS’=CIS×10c ……………………………(数6)
c =(EMFIS’−EMFIS)/SL …………(数7)
CIS:現ボトルの内部標準液濃度
CIS’:新ボトルの内部標準液濃度
EMFIS:現ボトルの内部標準液の起電力
EMFIS’:新ボトルの内部標準液の起電力
そして、また自動的に連続分析を再開する。
【0060】
本濃度補正は、検体の分析に使用するイオン選択電極そのもので切替え後の試薬を測定しているため、正確な補正を可能としている。
【0061】
上記の濃度補正に関しては、キャリブレーション時のスロープ感度と濃度既知の標準液を測定したときの起電力の値からも算出できる。また、試薬は3種同時ではなく1種類ずつ切替えても良い。
【0062】
本実施例に拠れば、試薬容器切替えのタイミングで適切に試薬濃度測定と補正を行っているため、切替え時に多少濃度調整誤差があっても分析値がずれない。これにより、本実施例によるフロー型電解質濃度測定装置では、試薬ボトル間で生じる多少の濃度誤差を吸収できるため、試薬ボトルの自動切換えが可能となり、オペレーターの負荷と装置のダウンタイムを低減することができる。
【実施例2】
【0063】
本発明の第2の実施例におけるフロー型電解質濃度測定装置400について図4を用いて説明する。本実施例におけるフロー型電解質濃度測定装置400は、実施例1で記載した試薬ボトル切替え手段140,150,160の代わりに、内部標準液調合手段440、希釈液調合手段450と比較電極液調合手段460を備えている。実施例1と同じ構成の部品については、同じ番号を付してある。
【0064】
内部標準液調合手段440には、内部標準液調合容器A441と内部標準液調合容器B442が設けられており、原薬447を供給する原薬供給手段448を備えている。また、純水を各調合容器に導入する純水供給ポンプ481と、原薬447と純水を攪拌混合する攪拌機構443,444と、調合容器Aと調合容器Bの切替弁(電磁弁421,422,423)を有している。希釈液調合手段450と比較電極液調合手段460も同様の機構、希釈原薬457を供給する希釈原薬供給手段458と、比較電極液薬467を供給する比較電極原薬供給手段468を備えている。
【0065】
本実施例におけるフロー型電解質濃度測定装置400は、装置内で定常的に使用する試薬である比較電極液、内部標準液と希釈液を連続分析中に自動的に調合できるため、例えば内部標準液調合容器A441内の試薬を使用して連続分析を行いながら、もう一方の内部標準液調合容器B442で新たな試薬を調合し、内部標準液調合容器A441の試薬が不足したら、内部標準液調合容器B442に自動的に切り替わり、自動的に濃度補正を行い、分析を継続することができる。希釈液調合手段450と比較電極液調合手段460についても同様である。これにより、試薬補給の間隔が従来装置に比べて格段に長くすることができる。そのため、装置オペレーターは例えば電極交換のタイミングで原薬を補給すれば良い。
【0066】
本実施例におけるフロー型電解質濃度測定装置400には、各試薬容器内の試薬量をモニターする試薬量モニター機構(図4に示した例では、各試薬ボトルの重量を計測する重量センサ:445,446、455,456,465,466)を有しており、計測した各試薬ボトルの重量を予め設定した値と比較することにより試薬容器切替えのタイミングを管理している。試薬量モニター機構としてはこの重量センサを用いた方式に限らず、試薬ボトル内部の試薬液の液面の高さをモニターする液面計などを用いても良い。また、試薬量モニター機構を備えずとも分析回数やシリンジの動作履歴などから試薬の消費量を制御部475で管理しても良い。また、本実施例におけるフロー型電解質濃度測定装置400では同種の試薬調合容器を2個設置しているが、2個で無くとも複数個であれば本発明の効果を発揮する。装置内で使う全種類の試薬でなく、一部の試薬のみに本発明を適用することもできる。
【0067】
図5A乃至図5Cを用いて、本実施例におけるフロー型電解質濃度測定装置400における電解質濃度測定のフローを説明する。
【0068】
まず、装置立上げ時の手順について図5Aのフローに基づいて説明する。
先ず装置を立上げ(S501)、試薬調合を開始する(S502)。このとき、内部標準液、希釈液と比較電極液をそれぞれ調合容器Aを優先して調合し、終わり次第、調合容器Bでの調合を開始する。内部標準液の場合、原薬447を原薬供給手段448を用いて調合容器A441に投入する。攪拌手段443で攪拌しながら純水供給ポンプ481を用いて調合容器A441に純水を定量供給することで内部標準液が調合される。このとき容器内の濃度が原薬の溶け残りなどなく均一になることが重要である。
【0069】
温調後、イオン選択性電極101,102,103の検量線を求めるために、2種類の既知濃度の標準液を測定し、スロープを算出する(S503)。続いて、調合した内部標準液濃度を算出する(S504)。
【0070】
ここで、S503とS504の具体的な操作について説明する。既知低濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液調合容器A451内の希釈液を希釈槽に分注し、設定した割合Dで既知低濃度標準液を希釈する(実施例1において、図3のフロー図で説明したS301に対応。以下、図3のフロー図の各ステップとの対応関係を示す。)。その間に、比較電極液容器A461内から比較電極104の流路に比較電極液を導入する(S302に対応)。
【0071】
希釈槽中の希釈した既知低濃度標準液をシッパーノズルから吸引し、イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S303に対応)。液絡部121では比較電極液と希釈した既知低濃度標準液が接触する。イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S304に対応)。
【0072】
各電位差を測定後、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄(S305に対応)した後、希釈槽120に内部標準液調合容器A441内の内部標準液を分注する(S306に対応)。その間に、比較電極液調合容器A461内から比較電極104の流路1041に比較電極液を導入する(S307に対応)。
【0073】
次に、シッパーノズル107から希釈槽120内の内部標準液を吸引し、各イオン選択性電極101,102,103の流路を内部標準液で満たす(S308に対応)。この状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S309に対応)。
【0074】
各電位差を測定後、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄(S310に対応)した後、既知高濃度標準液を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液調合容器A451内の希釈液を希釈槽120に分注し、設定した割合Dで既知高濃度標準液を希釈する(S311に対応)。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する(S312に対応)。
【0075】
希釈槽120への希釈液の分注が終了したら、希釈槽120中の希釈した既知高濃度標準液をシッパーノズルから吸引し、イオン選択性電極101,102,103の流路1011,1021,1031に導入する(S313に対応)。液絡部121では比較電極液と希釈した既知高濃度標準液が接触する。各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S314に対応)。
【0076】
各電位差の測定が終わったら、希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄(S315に対応)した後、希釈槽120に内部標準液調合容器A441内の内部標準液を分注する(S316に対応)。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する(S317に対応)。
【0077】
シッパーノズル107から希釈槽120内の内部標準液を吸引し、イオン選択性電極101,102,103の流路を内部標準液で満たし(S318に対応)、その状態で各イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S319)。また、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する(S320に対応)。
【0078】
以上の電位測定部471で測定した起電力から、記録演算部472にて下記の計算式を用いて、検量線に当たるスロープ感度SLを算出する(S321に対応)。
(A)スロープ感度
SL=(EMFH−EMFL)/(LogCH−LogCL) ……(数8)
SL:スロープ感度
EMFH:既知高濃度標準液の測定起電力
EMFL:既知低濃度標準液の測定起電力
CH:高濃度標準液の既知濃度値
CL:低濃度標準液の既知濃度値
以上の操作をキャリブレーションと呼ぶ。なお、スロープ感度SLはネルンスト式
E = E0 + 2.303×( RT / zF )×log( f × C )
(E0:測定系により定まる一定電位、z:測定対象イオンの価数、F:ファラデー定数、R:気体定数、T:絶対温度、f:活量係数、C:イオン濃度)
の2.303×(RT/zF)に相当する。温度と測定対象イオン価数から計算で求めることができるが、より分析精度を高めるため本実施例装置では上記のキャリブレーションによって電極固有のスロープ感度SLを求めている。
【0079】
以上、S503の詳細について具体的な測定シーケンスを上記したが、この手順にかかわらず、イオン濃度の異なる2種類の液を流路にそれぞれ導入し、起電力を測定できれば、異なる手順でも良い。
【0080】
続いて、S503で求めたスロープ感度と内部標準液の起電力から内部標準液濃度を算出する(S504)。
(B)内部標準液濃度
CIS=CL×10a ……………………………(数9)
a=(EMFIS−EMFL)/SL …………(数10)
CIS:内部標準液濃度
EMFIS:内部標準液の起電力
【0081】
次に、内部標準液のイオン濃度が設定濃度範囲か否かを濃度値補正・判断部473にて判断し(S505)、範囲内であれば図5Bに示した連続分析のフローへ進み、範囲外であれば、アラームを出し(S506)、もう一方の調合容器で調合した試薬に切替えS503に戻ってキャリブレーションをやり直す。試薬の濃度が設計値から大きく異なる場合、試薬調合機構の不具合などのイレギュラーな装置状態にあると考えられ、分析精度に影響を与える可能性があるため、本装置には濃度値補正・判断部473を備えている。
【0082】
次に、連続分析時の操作について、図5Bに示したフロー図を用いて説明する。キャリブレーション後、血清や尿などを検体として分析を行う。図5Bに示した処理フローにおいても、実施例1で図2AのS203のステップを図3に示したフロー図で説明したような詳細な動作があるが、説明を簡単にするために、細かい動作の記載を省略する。
【0083】
具体的には、検体を分注ノズル(図示せず)で希釈槽120に分注後、希釈液用シリンジポンプ132を用いて希釈液調合容器A451内の希釈液を希釈槽120に分注し、設定した割合Dで検体を希釈する。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する。
【0084】
希釈槽120中の希釈した検体をシッパーノズル107から吸引し、イオン選択性電極101,102,103の流路1011,1021,1031に導入する。液絡部121では比較電極液と希釈した検体が接触する。イオン選択性電極101,102,103と比較電極104との間の各電位差(起電力)を電位測定部471で測定する(S511)。
【0085】
希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄した後、希釈槽120に内部標準液調合容器A441内の内部標準液を分注する。その間に、比較電極液調合容器A461内から比較電極104の流路1041に比較電極液を導入する。シッパーノズル107から希釈槽120内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各電極の起電力を電位測定部471で測定する(S512)。また、希釈槽120の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。
【0086】
S503で求めたスロープ感度とS504de算出した内部標準液濃度から、下記の計算式を用いて検体の濃度を算出する(S513)。
(C)検体の濃度
CS=CIS×10b ……………………………………(数11)
b=(EMFIS−EMFS)/SL ………………(数12)
CS:検体濃度
EMFS:検体の測定起電力
【0087】
なお、以上の計算式は基本的なものであり、温度ドリフトやキャリーオーバーなど各種の補正を追加してもよい。また、分析の途中に希釈槽や流路をリフレッシュさせるための操作を行っても良い。
【0088】
分析の合間に、ユーザーが各イオン選択性電極101,102,103又は比較電極104の何れかを交換した場合は、電極交換検知機構(図示せず)が電極交換されたことを検知し(S514)、キャリブレーション操作を行う。電極交換されていない場合、試薬調合容器内の残量を試薬量モニター機構(図示せず)で確認する(S515)。試薬残量が十分であれば、引き続き検体の分析を行い、不十分であれば、試薬調合容器の切替えを行う。ここで、試薬調合容器の切替え時の操作について説明する。
【0089】
まず、試薬調合容器の切替え前に、希釈槽に現在使用している試薬容器、例えば内部標準液調合容器A441内の内部標準液を分注する。その間に、比較電極液調合容器A461内から比較電極104の流路に比較電極液を導入する。シッパーノズル107から希釈槽120内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部471で測定する(S531)。
【0090】
次に、希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。次に、電磁弁を切替えもう一方の試薬調合容器から試薬が供給されるようにし(S532)、供給流路内の液を置換する(S533)。このとき、元の試薬調合容器では、残った試薬を排液機構(図示せず)で排液し、新たに試薬の調合を開始する。希釈槽に内部標準液調合容器B442内の内部標準液を分注する。その間に、比較電極液調合容器B462内から比較電極104の流路に比較電極液を導入する。
【0091】
次に、シッパーノズル107から希釈槽内の内部標準液を吸引し、イオン選択性電極101,102,103の流路1011,1021,1031を内部標準液で満たした状態で各イオン選択性電極101,102,103と比較電極104との間の電位差(起電力)を電位測定部471で測定する(S534)。希釈槽の残った液を真空吸引ノズル106で吸い上げて廃液タンク111に廃棄する。
【0092】
次に、濃度値補正・判断部473にて、次の式を用いて内部標準液の濃度値を算出し、濃度に異常が無いか判断を行い、内部標準液の濃度値を補正する(S535)。スロープ感度SLは式(数8)で算出した値を用いる。
(D)内部標準液濃度補正
CIS’=CIS×10c …………………………………(数13)
c =(EMFIS’−EMFIS)/SL ………………(数14)
CIS:現在使用している調合容器の内部標準液濃度
CIS’:切替え後の調合容器の内部標準液濃度
EMFIS:現在使用している調合容器の内部標準液の起電力
EMFIS’:切替え後の調合容器の内部標準液の起電力
そして、また自動的に連続分析を再開する。
【0093】
本濃度補正は、検体の分析に使用するイオン選択電極そのもので調合した試薬を測定しているため、正確な補正を可能としている。また、調合後の試薬を複数回分析し、均一な濃度に調合できているかを確認しても良い。
【0094】
上記の濃度補正に関しては、キャリブレーション時のスロープの値と濃度既知の標準液を測定したときの起電力の値からも算出できる。また、試薬調合容器は3種同時ではなく1種類ずつ切替えても良い。
【0095】
本実施例によるフロー型電解質濃度測定装置400では、試薬の濃度誤差10%以内で調合が可能であり、試薬容器切替えのタイミングで適切に試薬濃度測定と補正を行っているため、切替え時に多少濃度調整誤差があっても分析値がずれない。これにとり、従来装置では、内部標準液の厳密な濃度調整が必要であったが、本実施例によるフロー型電解質濃度測定装置では、多少の濃度調整誤差を吸収できるため、簡便な機構での試薬調合を可能にして、オペレーターの負荷と装置のダウンタイムを低減することができる。なお、本実施例では、原薬として固形を用いたが、濃縮した液体の原薬でも良く、その場合、原薬供給機構を液体用に交換する必要がある。
【0096】
[比較例]
ここで、実施例1及び実施例2に対する比較例として、従来のフロー型電解質濃度測定装置600の全体構成のブロック図を図6に示す。図7A及び図7Bに従来装置における電解質濃度測定のフローを示す。図7Aの従来装置における装置立ち上げ時の処理のフローは、実施例1で説明した図2Aの装置立ち上げ時の処理フローと同じであるので、同じステップ番号で示し、説明を省略する。
【0097】
図7Bに示した連続分析時の従来のフロー型電解質濃度測定装置600における処理フローでは、フロー型電解質濃度測定装置600にボトル切替え手段が無いことが本発明各実施例に記載したフロー型電解質濃度測定装置100または400と大きく異なる。
【0098】
そのため、図7Bに示した従来のフロー型電解質濃度測定装置600では、連続分析時に、検体を分析し(S711),内部標準液の分析を行った(S712)後、試薬ボトル交換の判定ステップ(S713)において試薬ボトル641,651または661の何れかの交換の必要が生じた際、分析を停止し(S714)、アラームを出す(S715)。
【0099】
アラームが出ると、装置オペレーターが試薬ボトル641,651または661の何れかの交換を実施し、キャリブレーションが完了するまで分析ができないため、その期間が装置のダウンタイムとなる。そのため、装置の稼働率が低下するとともにオペレーターが試薬ボトル交換のタイムスケジュールに縛られる。
【0100】
図8に本発明の実施例1におけるフロー型電解質濃度測定装置100の分析値の安定性を実証するために行った実験フローを示す。比較実験として、従来のフロー型電解質濃度測定装置600についても、同じ実験フローを実施して比較データを得た。
【0101】
まず、キャリブレーションを行い(S801)、3種類の濃度の標準血清を2回分析する(S802)。ここで、試薬ボトルの交換により極端な濃度変化が起こった場合を模擬するため、元の90%濃度の内部標準液が入った内部標準液ボトルに交換し、供給流路の液置換を行う(S803)。標準血清を2回分析し(S804)、キャリブレーションした(S805)後に再度、標準血清を2回分析する(S806)。ここで、また元の濃度の内部標準液の入ったボトルに交換し(S807)、液置換を行い、標準血清を2度分析する(S808)。再度、キャリブレーションした(S809)後に、再度、標準血清を2回分析する(S810)。
【0102】
従来装置で、上記の検証実験を行った結果を図9に示す。図9は標準血清のNaイオン濃度について、高濃度Naイオン:901、中濃度Naイオン:902、低濃度Naイオン:903について測定した結果を示している。内部標準液ボトルを交換したタイミング(図9の横軸の2と3の間、及び6と7の間)で、高濃度Naイオン:901、中濃度Naイオン:902、低濃度Naイオン:903何れもが大きく濃度が変化した。一方で、キャリブレーション(図9中の「キャリブ」)の後は、内部標準液の濃度に係わらず、一定の値を示した。従来装置では、分析値の正確さを保つために内部標準液ボトルの交換後に、キャリブレーションが必要であることが確認できた。
【0103】
本発明の実施例1におけるフロー型電解質濃度測定装置100で同様の実験を行った場合の標準血清のNaイオン濃度について、高濃度Naイオン:1001、中濃度Naイオン:1002、低濃度Naイオン:1003について測定した結果を図10に示す。
【0104】
本発明の実施例1におけるフロー型電解質濃度測定装置100では、濃度の異なる内部標準液に切替えても(図10の横軸の2と3の間、及び6と7の間)、分析値(Naイオン濃度)に影響を与えなかった。前記の通り、本発明の実施例1におけるフロー型電解質濃度測定装置100では、ボトル交換のタイミングで適切に試薬濃度測定と補正を行っているため、ボトル交換時に多少試薬濃度が変化しても分析値に影響せず、自動的に試薬ボトルを切替えることが可能であると確認できた。
【0105】
本発明の実施例2におけるよるフロー型電解質濃度測定装置400でも、実施例1のフロー型電解質濃度測定装置100で得られた図10と同等の分析値の安定性を得ることができた。
【0106】
また、図11の表1100に、に本発明の実施例1の装置1101および実施例2の装置1102の効果を従来装置1103と比較した。従来装置1103では、装置立上げ時、電極および試薬ボトルを設置し、温調後キャリブレーションを行う。この時間は約30分要する。その後、試薬が無くなる8時間毎に装置オペレーターが試薬ボトルを交換し、キャリブレーションする。このときの分析停止時間は約10分である。例えば、数千テスト後、電極を交換する際は、装置立上げと同様の操作を行う。このように、従来装置1103では、装置オペレーターは約8時間毎の試薬交換スケジュールに縛られる。
【0107】
一方、本発明の実施例1の装置1101では、装置立上げ時は従来と同等の時間がかかるが、その後8時間毎に自動的にボトルを切替え、試薬濃度補正する。各分析停止時間は約1分であり、従来に比べ大幅に短縮しており、かつ試薬容器切替え時は装置オペレーターの操作を必要としない。装置オペレーターは次の8時間が経つまでに、空になったボトルを好きなタイミングで交換できるため、負荷は大幅に低減される。
【0108】
さらに、実施例2の装置1102では、装置オペレーターは、装置立上げ時に電極と試薬の原薬を設置し、キャリブレーションを実施するだけでよく。連続分析時は、調合容器に新たな試薬を自動的に調合、切替え、補正する。装置オペレーターは電極交換のタイミングにだけに必要であり、約30時間装置から離れることができる。また、試薬を濃縮した原薬のみを使用するため、試薬の重さは100分の1程度となる。
【符号の説明】
【0109】
100,400,600……フロー型電解質濃度測定装置 101…塩素イオン電極 102…カリウムイオン電極 103…ナトリウムイオン電極 104…比較電極 105…ピンチ弁 106…真空吸引ノズル 107…シッパーノズル 108…希釈液供給ノズル 109…内部標準液供給ノズル 110…イオン選択性電極部 111…廃液タンク 112…真空ポンプ 122、123、124、125、126、127、128、421,422,423,424,425,426…電磁弁 131…内部標準液用シリンジポンプ 132…希釈液用シリンジポンプ 133…シッパーシリンジポンプ 140…内部標準液ボトル切替え手段 141…内部標準液ボトルA 142…内部標準液用のボトルB 150…希釈液ボトル切替え手段 151…希釈液ボトルA 152…希釈液ボトルB 160…比較電極液ボトル切替え手段 161…比較電極液ボトルA 162…比較電極液ボトルB 171,471…電位測定部 172,472…記録演算部 173,473…濃度値補正・判断部 174,474…出力部 175,475…制御部 176,476…入力部 440…内部標準液調合手段 441…内部標準液調合容器A 442…内部標準液調合容器B 450…希釈液調合手段 451…希釈液調合容器A 452…希釈液調合容器B 460…比較電極液調合手段 461…比較電極液調合容器A 462…比較電極液調合容器B 443,444,453,454,463,464…攪拌手段 447、457、467…原薬 448、458、468…原薬供給手段 481…純水供給ポンプ。
図1
図2A
図2B
図2C
図3A
図3B
図4
図5A
図5B
図5C
図6
図7A
図7B
図8
図9
図10
図11