特許第6624464号(P6624464)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友金属鉱山株式会社の特許一覧
<>
  • 特許6624464-ニッケル粉の製造方法 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6624464
(24)【登録日】2019年12月6日
(45)【発行日】2019年12月25日
(54)【発明の名称】ニッケル粉の製造方法
(51)【国際特許分類】
   C22B 23/00 20060101AFI20191216BHJP
   B22F 9/26 20060101ALI20191216BHJP
   C22B 1/16 20060101ALI20191216BHJP
   C22B 3/08 20060101ALI20191216BHJP
   C22B 3/14 20060101ALI20191216BHJP
   C22B 3/22 20060101ALI20191216BHJP
   C22B 3/26 20060101ALI20191216BHJP
   C22B 3/44 20060101ALI20191216BHJP
【FI】
   C22B23/00 102
   B22F9/26 C
   C22B1/16 F
   C22B3/08
   C22B3/14
   C22B3/22
   C22B3/26
   C22B3/44 101A
   C22B3/44 101B
【請求項の数】15
【全頁数】14
(21)【出願番号】特願2017-245631(P2017-245631)
(22)【出願日】2017年12月21日
(65)【公開番号】特開2019-112661(P2019-112661A)
(43)【公開日】2019年7月11日
【審査請求日】2019年6月11日
(73)【特許権者】
【識別番号】000183303
【氏名又は名称】住友金属鉱山株式会社
(74)【代理人】
【識別番号】100123869
【弁理士】
【氏名又は名称】押田 良隆
(72)【発明者】
【氏名】平郡 伸一
(72)【発明者】
【氏名】高石 和幸
【審査官】 中西 哲也
(56)【参考文献】
【文献】 特開2017−150063(JP,A)
【文献】 特開2017−150002(JP,A)
【文献】 特開2015−140480(JP,A)
【文献】 国際公開第2015/125650(WO,A1)
【文献】 特開2017−155319(JP,A)
【文献】 特開昭48−000022(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C22B 23/00
C22B 3/00
B22F 9/26
B22F 9/24
(57)【特許請求の範囲】
【請求項1】
硫酸ニッケル溶液からニッケル粉を生成する製造工程において、
下記(1)から(6)に示す処理工程を施すことを特徴とするニッケル粉の製造方法。

(1)前記硫酸ニッケル溶液にアルカリを添加し、水酸化ニッケルの沈殿物を生成する水酸化工程。
(2)前記水酸化工程(1)で生成された前記水酸化ニッケルの沈殿物に、固液分離工程(4)から得られる還元終液と、種晶としてニッケル粉を添加して、前記水酸化ニッケルの沈殿物を溶解し、硫酸ニッケルアンミン錯体溶液と種晶と水酸化ニッケルを含有する混合スラリーを形成する錯化工程。
(3)前記錯化工程(2)で形成した前記混合スラリーに水素ガスを吹き込み、前記混合スラリー中のニッケル成分が前記種晶上に析出して形成したニッケル粉を含む還元スラリーを形成する還元工程。
(4)前記還元工程(3)で形成した還元スラリーを、固液分離してニッケル粉と還元終液をそれぞれ回収する固液分離工程。
(5)前記回収したニッケル粉を、前記錯化工程(2)、前記還元工程(3)のいずれか又は両工程に繰り返し、且つ、前記回収した還元終液に硫化剤を添加し、硫化ニッケルを析出させて固液分離し、硫化ニッケルとニッケル回収後液を生成するニッケル回収工程。
(6)前記ニッケル回収工程(5)で得た硫化ニッケルを酸化浸出し、得られる硫酸ニッケル溶液を前記水酸化工程(1)に繰り返すニッケル再生工程。
【請求項2】
前記固液分離工程(4)で回収したニッケル粉を粒径により篩別し、予め設定した粒径より小さなニッケル粉を選別して種晶として、前記錯化工程(2)、前記還元工程(3)のいずれか又は両工程に添加することを繰り返し行い、前記種晶のニッケル粉の粒径より粗大なニッケル粉を得ることを特徴とする請求項1記載のニッケル粉の製造方法。
【請求項3】
前記錯化工程(2)、前記還元工程(3)のいずれか又は両工程に添加する種晶の平均粒径が、0.1〜100μmの大きさであることを特徴とする請求項2記載のニッケル粉の製造方法。
【請求項4】
前記錯化工程(2)が、硫酸ニッケルアンミン錯体溶液と種晶と水酸化ニッケルを含有する混合スラリーを形成する際、前記混合スラリーに分散剤をさらに添加することを特徴とする請求項1〜3のいずれか1項に記載のニッケル粉の製造方法。
【請求項5】
前記錯化工程(2)における種晶の添加量が、硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し、1〜100%となる量であることを特徴とする請求項1〜4のいずれか1項に記載のニッケル粉の製造方法。
【請求項6】
前記還元スラリーを篩分けし、篩下のニッケル粉と還元終液の篩下還元スラリーを、前記錯化工程(2)の還元終液と種晶のニッケル粉の一部として繰り返し使用することを特徴とする請求項1〜5のいずれか1項に記載のニッケル粉の製造方法。
【請求項7】
前記錯化工程(2)が、還元終液を添加して硫酸ニッケルアンミン錯体溶液を得る溶解工程と、
ニッケル粉若しくはニッケル粉と還元終液を含むスラリーを添加する種晶添加工程の2つの工程で構成されていることを特徴とする請求項6記載のニッケル粉の製造方法。
【請求項8】
前記硫酸ニッケル溶液が、ニッケル酸化鉱石を浸出して回収したニッケルおよびコバルトの混合硫化物、ニッケル硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、金属ニッケルの粉末の少なくとも1種を硫酸酸性溶液に溶解して得たものであることを特徴とする請求項1に記載のニッケル粉の製造方法。
【請求項9】
前記硫酸ニッケル溶液が、
コバルトを不純物として含むニッケル含有物を溶解する浸出工程と、
前記浸出工程で得られたニッケルとコバルトを含む浸出液をpH調整した後、溶媒抽出法により硫酸ニッケル溶液とコバルト回収液に分離する溶媒抽出工程を
経て得られた硫酸ニッケル溶液であることを特徴とする請求項1に記載のニッケル粉の製造方法。
【請求項10】
前記硫酸ニッケルアンミン錯体溶液中の硫酸アンモニウム濃度が、100〜500g/L、且つアンモニウム濃度が、前記錯体溶液中のニッケル濃度に対してモル比で1.9以上であることを特徴とする請求項1記載のニッケル粉の製造方法。
【請求項11】
前記還元工程(3)の水素ガスの吹き込みが、温度を100〜200℃、及び圧力を0.8〜4.0MPaの範囲に維持して行うことを特徴とする請求項1記載のニッケル粉の製造方法。
【請求項12】
前記分散剤が、ポリアクリル酸塩を含むことを特徴とする請求項4記載のニッケル粉の製造方法。
【請求項13】
前記還元工程(3)を経て得られたニッケル粉を、団鉱機を用いて塊状のニッケルブリケットに加工するニッケル粉団鉱工程と、
得られた塊状のニッケルブリケットを、水素雰囲気中で温度500〜1200℃での保持条件により、焼結処理を行い、焼結体のニッケルブリケットを形成するブリケット焼結工程を含むことを特徴とする請求項1記載のニッケル粉の製造方法。
【請求項14】
前記固液分離工程(4)の還元終液を濃縮し、硫酸アンモニウムを晶析させて硫安結晶を回収する硫安回収工程を含むことを特徴とする請求項1記載のニッケル粉の製造方法。
【請求項15】
前記固液分離工程(4)の還元終液にアルカリを加えて加熱し、アンモニアガスを揮発させ回収するアンモニア回収工程を含むことを特徴とする請求項1に記載のニッケル粉の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、硫酸ニッケルアンミン錯体溶液から低硫黄品位の高純度なニッケル粉やそれを固めたブリケットを得る方法に関するものである。
特に湿式ニッケル製錬プロセスで発生した工程内の中間生成溶液の処理に適用できる。
【背景技術】
【0002】
湿式製錬プロセスを用いてニッケル粉を工業的に製造する方法として、原料を硫酸溶液に溶解後、不純物を除去する工程を経て、得た硫酸ニッケル溶液にアンモニアを添加し、ニッケルのアンミン錯体を形成させ、生成した硫酸ニッケルアンミン錯体溶液に水素ガスを供給しニッケルを還元することによりニッケル粉を製造する方法がある。
【0003】
例えば非特許文献1には還元反応時に鉄化合物を種晶として添加し、鉄化合物上にニッケルを析出させるニッケル粉の製造プロセスが記載されているが、製品中への種晶由来の鉄混入を生じる点の問題を抱えている。
【0004】
さらに、水素ガス以外の還元剤を用いてニッケル粉を得る方法もこれまでに提案されてきている。
例えば、特許文献1には安価で、かつ耐侯性に優れ、樹脂と混練した状態で電気抵抗が低く、初期電気抵抗および使用中の電気抵抗を低減し、長期間にわたり安定して使用でき、導電ペーストおよび導電樹脂用の導電性粒子として好適なニッケル粉、およびその製造方法を提供する方法が開示されている。
【0005】
特許文献1に開示されるニッケル粉は、コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子で構成されるニッケル粉であって、酸素含有量が0.8質量%以下である。二次粒子の表層部にのみコバルトを含有し、その表層部におけるコバルト含有量が1〜40質量%とすることが好ましい、とされている。開示される製造方法によって、このニッケル粉を得ようとする場合、コバルトが共存することになり、例えばニッケル酸化鉱石のようにニッケルとコバルトが共存して存在し、これらを分離してそれぞれを高純度かつ経済的に回収しようとする用途には適していない。
【0006】
さらに特許文献2には、粒子凝集物を生じにくいように改善された、液相還元法による金属粉末の製造方法が提供されている。
この製造方法は、金属化合物、還元剤、錯化剤、分散剤を溶解することにより、金属化合物に由来する金属イオンを含有する水溶液を作製する第1工程と、水溶液のpH調整をすることで金属イオンを還元剤により還元させ、金属粉末を析出させる第2工程とを備える金属粉末の製造方法である。
しかし、この製造方法は高価な薬剤を用いて高コストであり、上記ニッケル製錬として大規模に操業するプロセスに適用するには経済面で有利とはいえない。
【0007】
以上のように様々なニッケル粉を製造するプロセスが提案されているが、工業的に安価な水素ガスを用いて高純度のニッケル粉を製造する方法は提唱されていなかった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005−240164号公報
【特許文献2】特開2010−242143号公報
【非特許文献】
【0009】
【非特許文献1】POWDER METALLURGY、1958、No.1/2、p.40−52.
【発明の概要】
【発明が解決しようとする課題】
【0010】
このような状況の中で、工業的に安価な水素ガスを使用し、微小なニッケル粉を用いて硫酸ニッケルアンミン錯体溶液から、不純物の少ない、特に硫黄品位が低い、所謂高純度のニッケル粉の粗大な粒を生成する製造方法の提供を目的とするものである。
【課題を解決するための手段】
【0011】
上記の課題を解決するための本発明の第1の発明は、硫酸ニッケル溶液からニッケル粉を生成する製造工程において、下記(1)から(6)に示す処理工程を施すことを特徴とするニッケル粉の製造方法である。

(1)前記硫酸ニッケル溶液にアルカリを添加し、水酸化ニッケルの沈殿物を生成する水酸化工程。
(2)前記水酸化工程(1)で生成された前記水酸化ニッケルの沈殿物に、固液分離工程(4)から得られる還元終液と、種晶としてニッケル粉を添加して、前記水酸化ニッケルの沈殿物を溶解し、硫酸ニッケルアンミン錯体溶液と種晶と水酸化ニッケルを含有する混合スラリーを形成する錯化工程。
(3)前記錯化工程(2)で形成した前記混合スラリーに水素ガスを吹き込み、前記混合スラリー中のニッケル成分が前記種晶上に析出して形成したニッケル粉を含む還元スラリーを形成する還元工程。
(4)前記還元工程(3)で形成した還元スラリーを、固液分離してニッケル粉と還元終液をそれぞれ回収する固液分離工程。
(5)前記回収したニッケル粉を、前記錯化工程(2)、前記還元工程(3)のいずれか又は両工程に繰り返し、且つ、前記回収した還元終液に硫化剤を添加し、硫化ニッケルを析出させて固液分離し、硫化ニッケルとニッケル回収後液を生成するニッケル回収工程。
(6)前記ニッケル回収工程(5)で得た硫化ニッケルを酸化浸出し、得られる硫酸ニッケル溶液を前記水酸化工程(1)に繰り返すニッケル再生工程。
【0012】
本発明の第2の発明は、第1の発明における固液分離工程(4)で回収したニッケル粉を粒径により篩別し、予め設定した粒径より小さなニッケル粉を選別して種晶として、前記錯化工程(2)、前記還元工程(3)のいずれか又は両工程に添加することを繰り返し行い、前記種晶のニッケル粉の粒径より粗大なニッケル粉を得ることを特徴とするニッケル粉の製造方法である。
【0013】
本発明の第3の発明は、第2の発明における錯化工程(2)、還元工程(3)のいずれか又は両工程に添加する種晶の平均粒径が、0.1〜100μmの大きさであることを特徴とするニッケル粉の製造方法である。
【0014】
本発明の第4の発明は、第1から第3の発明における錯化工程(2)が、硫酸ニッケルアンミン錯体溶液と種晶と水酸化ニッケルを含有する混合スラリーを形成する際、前記混合スラリーに分散剤をさらに添加することを特徴とするニッケル粉の製造方法である。
【0015】
本発明の第5の発明は、第1から第4の発明における錯化工程(2)における種晶の添加量が、硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し、1〜100%となる量であることを特徴とするニッケル粉の製造方法である。
【0016】
本発明の第6の発明は、第1から第5の発明における還元スラリーを篩分けし、篩下のニッケル粉と還元終液の篩下還元スラリーを、前記錯化工程(2)の還元終液と種晶のニッケル粉の一部として繰り返し使用することを特徴とするニッケル粉の製造方法である。
【0017】
本発明の第7の発明は、第6の発明における錯化工程(2)が、還元終液を添加して硫酸ニッケルアンミン錯体溶液を得る溶解工程と、ニッケル粉若しくはニッケル粉と還元終液を含むスラリーを添加する種晶添加工程の2つの工程で構成されていることを特徴とするニッケル粉の製造方法である。
【0018】
本発明の第8の発明は、第1の発明における硫酸ニッケル溶液が、ニッケル酸化鉱石を浸出して回収したニッケルおよびコバルトの混合硫化物、ニッケル硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、金属ニッケルの粉末の少なくとも1種を硫酸酸性溶液に溶解して得たものであることを特徴とするニッケル粉の製造方法である。
【0019】
本発明の第9の発明は、第1の発明における硫酸ニッケル溶液が、コバルトを不純物として含むニッケル含有物を溶解する浸出工程と、その浸出工程で得られたニッケルとコバルトを含む浸出液をpH調整した後、溶媒抽出法により硫酸ニッケル溶液とコバルト回収液に分離する溶媒抽出工程を経て得られた硫酸ニッケル溶液であることを特徴とするニッケル粉の製造方法である。
【0020】
本発明の第10の発明は、第1の発明における硫酸ニッケルアンミン錯体溶液中の硫酸アンモニウム濃度が、100〜500g/L、且つアンモニウム濃度が、前記錯体溶液中のニッケル濃度に対してモル比で1.9以上であることを特徴とするニッケル粉の製造方法である。
【0021】
本発明の第11の発明は、第1の発明における還元工程(3)の水素ガスの吹き込みが、温度を100〜200℃、及び圧力を0.8〜4.0MPaの範囲に維持して行うことを特徴とするニッケル粉の製造方法である。
【0022】
本発明の第12の発明は、第4の発明における分散剤が、ポリアクリル酸塩を含むことを特徴とするニッケル粉の製造方法である。
【0023】
本発明の第13の発明は、第1の発明における還元工程(3)を経て得られたニッケル粉を、団鉱機を用いて塊状のニッケルブリケットに加工するニッケル粉団鉱工程と、得られた塊状のニッケルブリケットを、水素雰囲気中で温度500〜1200℃での保持条件により、焼結処理を行い、焼結体のニッケルブリケットを形成するブリケット焼結工程を含むことを特徴とするニッケル粉の製造方法である。
【0024】
本発明の第14の発明は、第1の発明における固液分離工程(4)の還元終液を濃縮し、硫酸アンモニウムを晶析させて硫安結晶を回収する硫安回収工程を含むことを特徴とするニッケル粉の製造方法である。
【0025】
本発明の第15の発明は、第1の発明における固液分離工程(4)の還元終液にアルカリを加えて加熱し、アンモニアガスを揮発させ回収するアンモニア回収工程を含むことを特徴とするニッケル粉の製造方法である。
【発明の効果】
【0026】
本発明によれば、硫酸ニッケルアンミン錯体溶液から、水素ガスを用いてニッケル粉を生成する製造方法において、不純物の少ない高純度なニッケル粉を容易に得ることができ、工業上顕著な効果を奏するものである。
【図面の簡単な説明】
【0027】
図1】本発明のニッケル粉の製造フロー図である。
【発明を実施するための形態】
【0028】
本発明では、硫酸ニッケルアンミン錯体溶液からニッケル粉を得る製造方法において、湿式製錬プロセスの工程液に下記(1)〜(6)に示す工程を施すことによって、硫酸ニッケルアンミン錯体溶液から、より不純物の少ない高純度ニッケル粉を製造することを特徴とするものである。
以下、図1に示す本発明の高純度ニッケル粉の製造フロー図を参照して、本発明の高純度ニッケル粉の製造方法を説明する。
【0029】
[浸出工程]
先ず、浸出工程は、出発原料となる、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、硫酸により溶解して、ニッケルを浸出させて浸出液(ニッケルを含む硫酸酸性溶液)を生成する工程で、特開2005−350766号公報などに開示された公知の方法を用いて行われる。
【0030】
[溶媒抽出工程]
次に、この浸出液にpH調整を行い、溶媒抽出工程に供する。
この工程は、浸出工程で得られた後、pH調整された浸出液と有機相を接触させ、各相中の成分を交換することで、水相中のある成分の濃度を高め、他の異なる成分の濃度を低くするものである。
本発明では有機相に、2−エチルヘキシルホスホン酸モノ2−エチルヘキシルエステル又はジ−(2,4,4−トリメチルペンチル)ホスフィン酸を用いて浸出液中の不純物元素、特にコバルトをコバルト回収液として選択的に抽出し、コバルト濃度の低い硫酸ニッケル溶液を得るものである。
なお、この工程時においてpH調整のために用いられるアンモニア水には、後述するアンモニア回収工程で生成されるアンモニア水を使用することもできる。
【0031】
(1)水酸化工程
本発明では、上述の工程を経るなどして得た硫酸ニッケル溶液にアルカリを添加して水酸化ニッケルの沈殿を生成し、固体成分の沈殿と液体成分を分離する。
この処理によって、硫酸ニッケルに含有されている不純物の多くは、液体成分へと分離され、固体成分である水酸化ニッケルの沈殿中に含まれる不純物濃度を減少させることができる。
添加するアルカリには、水酸化ナトリウム、水酸化カルシウムなど工業的に安価且つ大量に調達が可能であるものを用いることが好ましい。
【0032】
(2)錯化工程
この錯化工程は、具体的には溶解工程と種晶添加工程の2工程で成り立ち、先ず溶解工程では、水酸化工程(1)で得た沈殿物の水酸化ニッケルに、還元工程(3)で得られた還元スラリーを固液分離して得た還元終液の形でのアンモニアを添加し、水酸化ニッケルと還元終液の混合した溶液を形成することにより、錯化処理を施してニッケルのアンミン錯体である硫酸ニッケルアンミン錯体を生成させ、その硫酸ニッケルアンミン錯体溶液を形成する工程である。
【0033】
このとき、アンモニアガス又はアンモニア水を添加してアンモニウム濃度を調整することができる。そのときのアンモニウム濃度は、溶液中のニッケル濃度に対しモル比で1.9以上になるようにアンモニアを添加する。添加するアンモニアのアンモニウム濃度が1.9未満ではニッケルがアンミン錯体を形成せず、水酸化ニッケルの沈殿が生成してしまう。
【0034】
また、硫酸アンモニウム濃度を調整するために、本工程において硫酸アンモニウムを添加することができる。
このときの硫酸アンモニウム濃度は100〜500g/Lが好ましく、500g/Lを超えると溶解度が超えてしまい、結晶が析出してしまい、プロセスのメタルバランス上、100g/L未満を達成するのは困難である。
さらに、この工程で用いるアンモニアガスまたはアンモニア水にも、後述するアンモニア回収工程で生成されるアンモニアガスまたはアンモニア水を使用することができる。
【0035】
さらに溶解工程に続いて、生成した硫酸ニッケルアンミン錯体溶液に、平均粒径が0.1〜100μmのニッケル粉を種晶としてニッケル粉スラリーの形態で添加して種晶と硫酸ニッケルアンミン錯体溶液と水酸化ニッケルを含む混合スラリーを形成する種晶添加工程が行われる。
このときに添加する種晶の重量は、硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し1〜100%が好ましい。1%未満では次工程の還元時の反応効率が著しく低下する。また100%を超えると使用量が多く、種晶製造にコストが掛かり、経済的ではない。
【0036】
また、同時に分散剤を添加しても良い。この分散剤を添加することにより種晶が分散するため、次工程の還元工程の効率を上昇させることができる。
ここで使用する分散剤としては、スルホン酸塩を有するものであれば特に限定されないが、工業的に安価に入手できるものとしてリグニンスルホン酸塩が好ましい。
【0037】
(3)還元工程
この還元工程で得られた混合スラリーに水素ガスを吹き込み、溶液中のニッケル成分を還元して種晶上に析出させて形成したニッケル粉を含む還元スラリーを形成する工程である。
このとき、その反応温度は100〜200℃が好ましい。100℃未満、より好ましくは150℃未満では還元効率が低下し、200℃を超えても反応への影響はなく熱エネルギー等のロスが増加する。
【0038】
また、反応時の圧力は0.8〜4.0MPaが好ましい。0.8MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく水素ガスのロスが増加する。
なお、得られた混合スラリーの液中には、不純物として主にマグネシウムイオン、ナトリウムイオン、カルシウムイオン、硫酸イオン、アンモニウムイオンが存在するが、いずれも溶液中に残留するため、高純度のニッケル粉を生成することができる。
また、混合スラリーの液中の水酸化ニッケルは、還元反応により生成するアンモニウムイオンと反応し、溶液中にニッケルアンミン錯体として溶解し、水素ガスと反応することにより還元され、ニッケルが種晶上に析出する。
【0039】
(4)固液分離工程
先の還元工程(3)で生成した還元スラリーを固液分離して不純物の少ない高純度ニッケル粉と還元終液をそれぞれ回収し、高純度ニッケル粉を錯化工程(2)では種晶として、還元工程(3)では粒子成長を施されるニッケル粉として、そのいずれかの工程又は両工程に、その供給を繰り返し行う。
一方、回収した還元終液は錯化工程(2)のアンモニア水の代替品として繰り返す工程である。
【0040】
即ち、回収した不純物の少ない高純度なニッケル粉の内、小径のものや粉砕などにより小径化したものは、種晶として錯化工程(2)へ繰り返し供給される。ここで、さらに錯化工程(2)で得られた硫酸ニッケルアンミン錯体溶液に加えられ、還元工程(3)において、水素ガスを供給することにより、高純度のニッケル粉上に、さらにニッケルが還元析出するため、粒子を成長させることができる。
また、この還元工程への供給を複数回繰り返して行なうことにより、より嵩密度が高く、より粒径が大きな高純度のニッケル粉を生成することもできる。
さらに、得られた高純度なニッケル粉に対して、以下のニッケル粉団鉱工程やブリケット焼成工程を経てより粗大で酸化し難く取り扱いしやすいブリケットの形状に仕上げても良い。
さらにアンモニア回収工程を設けても良い。
【0041】
[ニッケル粉団鉱工程]
本発明により製造される高純度のニッケル粉は、製品形態として、乾燥後に団鉱機等により成形加工を行ない塊状のニッケルブリケットを得る。
また、このブリケットへの成形性を向上させるために、場合によってはニッケル粉に水等の製品品質を汚染しない物質をバインダーとして添加しても良い。
【0042】
[ブリケット焼結工程]
団鉱工程で作製したニッケルブリケットは、水素雰囲気中で焙焼して焼結を行ない、ブリケット焼結体を作製する。この処理では強度を高めると共に、微量残留するアンモニア、硫黄成分の除去を行なうもので、その焙焼・焼結温度は、500〜1200℃が好ましい。500℃未満では焼結が不十分となり、1200℃を超えても効率がほとんど変わらずエネルギーのロスが大きくなる。
【0043】
(5)ニッケル回収工程
固液分離工程(4)で発生した還元終液中にはニッケルが残留しており、残留ニッケル量が多い場合は、次工程の硫安回収工程で産出される硫安結晶に混入して品質を汚染する恐れがある。そのため、事前に除去することも必要である。
ここで用いる硫化剤は、硫化水素ガスや水硫化ナトリウムなどの工業的に用いられる硫化剤であればよいが、硫安結晶の品質をより向上させるためには硫化水素ガスを用いるのが好適である。
【0044】
(6)ニッケル再生工程 また、硫化剤を添加して析出した硫化ニッケルは、固液分離して回収した後、再び浸出して系内に繰り返すことができる。この浸出は前工程のニッケル回収工程で回収した硫化ニッケルを専用に単独で浸出すると不純物などの問題も少なく効率的で好ましいが、上述の出発原料の一つとして、前記[浸出工程]に繰り返しても設備が節約できてよい。なお、水相側であるニッケル回収後液は次工程へ送られる。
【0045】
[硫安回収工程]
前記[ニッケル回収工程]により発生したニッケル回収後液中には硫酸アンモニウムおよびアンモニアが含まれる。
そこで、硫酸アンモニウムは、硫安回収工程を施すことで、反応後液を加熱濃縮して硫酸アンモニウムを晶析させ、硫安結晶として回収することができる。
【0046】
[アンモニア回収工程]
また、アンモニアは、還元終液にアルカリを添加し、pHを10〜13に調整後、加熱することによりアンモニアガスを揮発させ回収することができる。
ここで用いるアルカリは特に限定されるものではないが、苛性ソーダ、消石灰などが工業的に安価であり好適である。
さらに、回収したアンモニアガスは水と接触させることによりアンモニア水を生成することができ、得たアンモニア水を工程内に繰り返して使用することができる。
【実施例】
【0047】
以下、実施例を用いて本発明を、より詳細に説明する。
【実施例1】
【0048】
ニッケル濃度120g/Lの硫酸ニッケル液1000mlにスラリー濃度200g/Lに調整した消石灰を800ml添加することにより、116gの水酸化ニッケルを得た。
その水酸化ニッケルを、ニッケル濃度30g/Lの硫酸ニッケル液とアンモニア濃度40g/Lの硫酸アンモニウム溶液の混合液1700mlに、種晶として平均粒径2μmのニッケル粉12.8gと共に投入、撹拌することにより混合スラリーを作製した。
【0049】
この混合スラリーをオートクレーブにて撹拌しながら185℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給して還元工程を施した後に濾過による固液分離工程を経て、粒成長したニッケル粉を回収した。
この時、回収したニッケル粉は、平均粒径65μm、回収量119gであった。
さらに回収したニッケル粉を純水で洗浄した後、ニッケル粉の不純物品位を分析した。
その結果を表1に示す。MgやNaのニッケル粉への混入はなく、高純度のニッケル粉を生成することができた。
【0050】
【表1】
【実施例2】
【0051】
ニッケル濃度120g/Lの硫酸ニッケル液1000mlにスラリー濃度200g/Lに調整した消石灰を800ml添加することにより、116gの水酸化ニッケルを得た。
その水酸化ニッケル116gを、ニッケル濃度30g/Lの硫酸ニッケルアンミン錯体溶液と25%アンモニア水232mlと硫酸アンモニウム225gと混合し純水を加えて1000mlの混合スラリーを作成した。この溶液に平均粒径が1μmのニッケル粉を種晶として20gを添加して混合スラリーを作製した。
【0052】
次に、作製した混合スラリーを、オートクレーブにて撹拌しながら120℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給して還元処理であるニッケル粉生成処理を行った。
水素ガスの供給後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。冷却後に得られた還元スラリーを濾過による固液分離処理し、高純度の小径ニッケル粉を回収した。このときの回収したニッケル粉は70gであった。
【0053】
次に、上記固液分離後の還元終液に水酸化ニッケル116gを加えてスラリーを作製し、そのスラリーに回収した高純度の小径ニッケル粉を全量添加して混合スラリーを作製した。
その混合スラリーをオートクレーブにて撹拌しながら120℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給した。
水素ガスの供給後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。冷却後に得られたスラリーを濾過による固液分離処理し、高純度の粒成長したニッケル粉を回収した。
【実施例3】
【0054】
実施例1の固液分離工程で得られた還元終液をアンモニア源の一部に用い、混合スラリーを作製し、実施例1と同条件により還元工程を施し、固液分離工程を経て、粒成長したニッケル粉を回収した。実施例1と同様のニッケル粉を回収した。
【実施例4】
【0055】
実施例1と同じ条件で作製したニッケル粉を、硫酸ニッケル336g、硫酸アンモニウム濃度330gを含む溶液に、25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整した後、再度実施例1と同条件での還元工程、固液分離工程を経て、粒成長したニッケル粉を作製した。この作製したニッケル粉を用いて、同じ操作を10回、繰り返して行い、ニッケル粉を粒成長させた。
回収したニッケル粉の平均粒径は、111μmで、実施例1のニッケル粉に比べて、1.7倍の大きさに粒成長していた。
【0056】
この繰り返し操作により得られたニッケル粉中の硫黄品位は0.04%であった。また、ナトリウムやマグネシウムは前記表1と同じく定量下限以下だった。
さらに、得られたニッケル粉を、2%水素雰囲気中にて1000℃に加熱し60分間保持した。保持後の得られたニッケル粉中の硫黄品位は0.008%であり、焙焼により一層硫黄品位を低減させることができた。
【実施例5】
【0057】
表2に示す硫酸ニッケルアンミン錯体溶液1000mlに、種晶として平均粒径1μmのニッケル粉を75g添加した後、オートクレーブにて撹拌しながら185℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを吹き込み、供給した。
水素ガスの供給後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。冷却後に得られたスラリーを濾過による固液分離処理を施し、回収したニッケル粉を純水で洗浄した後、ニッケル粉の不純物品位を分析した。
その結果を表2に示す。
MgやNaはニッケル粉への混入はなく、高純度のニッケル粉を生成することができた。
【0058】
【表2】
【実施例6】
【0059】
硫酸ニッケル六水和物135gと25%アンモニア水191mlと硫酸アンモニウム169gと純水を混合して作成した硫酸ニッケルアンミン錯体溶液に水酸化ニッケル75gを添加し、液量が1000mlになるように純水を加え、平均粒径が1μmのニッケル粉を種晶として15gを添加して混合スラリーを作製した。
【0060】
この混合スラリーを、オートクレーブにて撹拌しながら100℃に昇温し、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給してニッケル粉生成処理を行った。
水素ガスの供給後、1時間が経過した後に水素ガスの供給を停止し、オートクレーブを冷却した。冷却後に得られた還元スラリーを濾過による固液分離処理し、高純度の小径ニッケル粉を回収した。このときのニッケル還元率58%であった。
【実施例7】
【0061】
実施例6と同じ混合スラリーを用いて、温度100℃、オートクレーブ内の圧力が0.8MPaの条件で実施例6と同じ操作を行なった。このときのニッケル還元率56%であった。
【実施例8】
【0062】
実施例6と同じ混合スラリーを用いて、温度120℃、オートクレーブ内の圧力が3.5MPaの条件で実施例6と同じ操作を行なった。このときのニッケル還元率74%であった。
【実施例9】
【0063】
実施例6と同じ混合スラリーを用いて、温度120℃、オートクレーブ内の圧力が2.0MPaの条件で実施例6と同じ操作を行なった。このときのニッケル還元率74%であった。
【実施例10】
【0064】
実施例6と同じ混合スラリーを用いて、温度120℃、オートクレーブ内の圧力が1.5MPaの条件で実施例6と同じ操作を行なった。このときのニッケル還元率74%であった。
【0065】
表3に示す実施例6〜10の結果の通り、いずれも高純度のニッケルが生成し、その還元率は圧力の影響はあまり及ばず、温度の低下により顕著に低下することがわかる。
【0066】
【表3】
【0067】
(比較例1)
実施例1における水酸化工程を施さずに、ニッケル75gが含まれる硫酸ニッケル溶液と硫酸アンモニウム330gを含む溶液に、25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整した溶液に、平均粒径が1μmのニッケル粉を種晶として7.5gを添加して混合スラリーを作製した以外は、実施例1と同条件によりニッケル粉の作製を行った。
回収したニッケル粉を純水で洗浄した後、ニッケル粉の不純物品位を分析した。
その結果を表4に示す。MgやNaのニッケル粉への混入は実施例1に比べて多い結果となっていた。なお平均粒径及び回収量は、実施例1とほぼ同等であった。
【0068】
【表4】
【0069】
(比較例2)
上記比較例1と同じ方法を用いて、水酸化工程を施さずにニッケル粉の作製を行った。このニッケル粉を上記実施例3と同じ方法で10回繰り返して粒を成長させた。この繰り返し操作により得られたニッケル粉中の硫黄品位は0.1%であり、本発明の実施例3で得た硫黄品位0.04%ほどの高純度なニッケル粉を得ることはできなかった。
【実施例11】
【0070】
実施例1で生成した還元終液の成分分析を行うと、還元終液中にはニッケルが1g/L残留していた。
そこで、この還元終液を密閉容器に入れ、60℃に加熱し撹拌しながら硫化水素ガスを合計1.0L吹き込む硫化処理を施し、処理後に固液分離して硫化ニッケルとニッケル回収後液を得た。得られたニッケル回収後液中のニッケル濃度は0.01g/Lに低下し、大部分のニッケルが硫化ニッケルとして回収されたことが判る。
図1