(58)【調査した分野】(Int.Cl.,DB名)
前記多孔質層が、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォン、およびポリビニルアルコール、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、及びポリプロピレンからなる群から選ばれる少なくとも1種の繊維を含む不織布からなる繊維層である、請求項1又は2に記載の積層吸音材。
垂直入射吸音率測定法において、周波数が400Hzから1000Hzまでの吸音率の測定により、吸音率の平均吸音率(α)を算出し、平均吸音率(α)の値が下記式を満たす範囲である、請求項1〜4のいずれか1項に記載の積層吸音材。
1.00 ≧ α ≧ 0.23
垂直入射吸音率測定法において、周波数が1000Hzから3150Hzまでの吸音率の測定により、吸音率の平均吸音率(β)を算出し、平均吸音率(β)の値が下記式を満たす範囲である、請求項1〜5のいずれか1項に記載の積層吸音材。
1.00 ≧ β ≧ 0.60
垂直入射吸音率測定法において、周波数が2000Hzから5000Hzまでの吸音率の測定により、吸音率の平均吸音率(γ)を算出し、平均吸音率(γ)の値が下記式を満たす範囲である、請求項1〜6のいずれか1項に記載の積層吸音材。
1.00 ≧ γ ≧ 0.85
垂直入射吸音率測定法において、周波数が5000Hzから12500Hzまでの吸音率の測定により、吸音率の平均吸音率(η)を算出し、平均吸音率(η)の値が下記式を満たす範囲である、請求項1〜7のいずれか1項に記載の積層吸音材。
1.00 ≧ η ≧ 0.90
【背景技術】
【0002】
吸音材とは音を吸収する機能を有する製品であって、建築分野や自動車分野において多用されている。吸音材を構成する材料として、不織布を用いることが公知である。例えば特許文献1には、吸音性を有する多層物品として、支持体層と、支持体層上に積層されるサブミクロン繊維層とを含み、サブミクロン繊維層は、中央繊維直径が1μm未満かつ平均繊維直径が0.5〜0.7μmの範囲であり、溶融フィルムフィブリル化法や電界紡糸法によって形成されることが開示されている。特許文献1の実施例においては、坪量(目付)100g/m
2、直径約18μmのポリプロピレンスパンボンド不織布を支持体層とし、その上に、目付14〜50g/m
2、平均繊維直径約0.56μmのサブミクロンポリプロピレン繊維を積層した積層物品が開示されている。また別の実施例では、目付62g/m
2のポリエステルのカード処理ウェブの上に、目付6〜32g/m
2、平均繊維直径0.60μmの電界紡糸ポリカプロラクトン繊維を積層させた多層物品が開示されている。実施例で作製された多層物品は、音響吸収特性が測定され、支持体のみの音響吸収特性よりも優れた音響吸収特性を備えることが示されている。
【0003】
また、吸音材に発泡体を用いることも知られている。例えば特許文献2には、音響快適性(音の反射性分の減少及び最適化)及び熱快適性を向上させる積層構造体であって、支持層として特定範囲の開放多孔率を有する有機ポリマー発泡体を備え、表面層として特定の通気抵抗を有するガラス布帛を備え、支持層と表面層との間に非連続の接着層を備えるものが開示されている。有機ポリマー発泡体としては、ポリウレタン、特にポリエステルウレタン、ネオプレン(登録商標)、シリコーンやメラミンを基礎材料とするものが挙げられており、その密度は好ましくは10〜120kg/m
3であること、厚みは好ましくは1.5〜2.5mmであることが開示されている。
【0004】
特許文献3には、低周波及び高周波の音を吸収する積層吸音不織布であって、共振膜と、少なくとも1つの別の繊維材料層とを含み、共振膜は、直径600nmまでで表面重量(目付)0.1〜5g/m
2のナノ繊維層によって形成されるものが開示されている。ナノ繊維層は典型的には電界紡糸によって作り出され、一方、基材層は、直径10〜45μmで目付5〜100g/m
2の繊維織物であり、さらに別の層が積層されてもよいことが開示されている。また、適切な厚さ及び目付に到達するために、この積層体をさらに積層してもよいことが開示されている。
【0005】
特許文献4には、ナノ繊維による、吸音特性に優れる不織布構造体が開示されている。特許文献4の不織布構造体は、繊維径が1μm未満のナノ繊維を含む繊維体を含み、当該繊維体の厚みが10mm以上であることを特徴とする。また、前記繊維体は支持体に支持されていてもよく、繊維体と支持体とが繰り返し積層された構造になっていてもよいことが開示されている。ナノ繊維は例えばメルトブローン法で形成され、実施例においては、支持体であるポリプロピレンスパンレース不織布の上に、繊維径0.5μm、目付350g/m
2のナノ繊維体の層を形成することが開示されている。
【発明を実施するための形態】
【0012】
以下、本発明を詳細に説明する。
(積層吸音材の構造)
本発明の積層吸音材は、多孔質層と、基材層とを含む積層吸音材であって、多孔質層は、平均流量細孔径が0.1〜30μmであり、目付けが0.1〜200g/m
2であり、前記基材層は、1000Hzから12500Hzでの平均音響透過損失が、2dB以上であり、基材層が音の入射側、多孔質層が音の透過側となるように配置されるものである。
【0013】
本発明の積層吸音材は、音の入射側と透過側が規定されており、入射側に平均音響透過損失が高い材料を配置し、透過側に平均流量細孔径が小さい、緻密で薄い材料を配置することによって、幅広く高い吸音性を実現するものである。本発明の積層吸音材は、1層の基材層と1層の多孔質層とが積層されてなることが好ましい。多孔質層は、1層から構成されていてもよいし、2層以上で構成されていてもよい。基材層も同様であり、1層で構成されていてもよいし、2層以上で構成されていてもよい。
【0014】
本発明の積層吸音材には、本発明の効果を損なわない限り、多孔質層及び基材層以外の構成が含まれていてもよい。例えば、本発明に規定する範囲外のさらなる多孔質層(1層でも2層以上でもよい)、保護層、印刷層、発泡体、メッシュ、織布等が含まれていてもよい。また、各層間を連結するための接着剤、クリップ、縫合糸等を含んでいてもよい。
なお、本明細書において「基材層が音の入射側、多孔質層が音の透過側」とは、積層吸音材において、基材層が多孔質層よりも音の入射側に配置されている(言い換えると、多孔質層が基材層よりも音の透過側に配置されている)という相対的な位置関係を表す。すなわち、(入射側)基材層/多孔質層(透過側)という典型的な積層形態のみならず、(入射側)基材層/その他の層/基材層/多孔質層(透過側)、(入射側)基材層/多孔質層/その他の層(透過側)、(入射側)その他の層/基材層/多孔質層/その他の層(透過側)、(入射側)基材層/その他の層/多孔質層/その他の層(透過側)、という積層形態等も含む。
【0015】
積層吸音材を構成する各層は、物理的及び/または化学的に接着されていてもよいし、接着されていなくてもよい。積層吸音材の層間の一部が接着され、一部は接着されていない形態であってもよい。接着は、例えば、多孔質層の形成工程において、または後工程として加熱を行い、多孔質層を構成する材料の一部を融解し、多孔質層を他の層に融着させることによって多孔質層と他の層とを接着してもよい。また、層の表面に接着剤を付与して層間を接着することもできる。
【0016】
積層吸音材の厚みは、本発明の効果が得られる限り特に制限されないが、例えば、3〜50mmとすることができ、5〜30mmとすることが好ましく、5〜20mmであれば、省スペース性の観点からより好ましい。なお、積層吸音材の厚みとは、多孔質層及び基材層の厚みの合計のことを意味し、カートリッジや蓋等の外装体が取り付けられている場合、その部分の厚みは含まないものとする。
【0017】
(多孔質層)
本発明の積層吸音材に含まれる多孔質層は、繊維層または微多孔膜からなる層であって、平均流量細孔径が0.1〜30μmであり、0.2〜20μmであればより好ましい。平均流量細孔径が0.2μm以上であれば、音の反射による吸音率の低下を抑えることができ、20μm以下であれば流れ抵抗を制御できるため吸音率を上昇させることができる。また、多孔質層は、目付けが0.1〜200g/m
2とすることができる。目付が0.1g/m
2以上であれば、流れ抵抗を制御できるため吸音率を上昇させることができ、200g/m
2以下であれば、吸音材の厚みを薄く保つことができる。また、多孔質層は、厚みが3〜50mmであることが好ましい。
【0018】
前記の平均流量細孔径と目付とを同時に満たす具体的な多孔質層としては、繊維層、あるいは、微多孔膜が典型的に挙げられる。
本発明に用いる繊維層としては、おおむね、平均繊維径が500nm未満である繊維からなる繊維集合体である。平均繊維径が500nm未満であれば、高い吸音性が得られるため好ましく、450nm未満であれば、より高い吸音性が得られるためさらに好ましい。平均繊維径の下限は特に限定されないが、平均繊維径が10nm以上であれば加工性に優れるため利用しやすい。平均繊維径の測定は、公知の方法によることができる。平均繊維径は、例えば、繊維層表面の拡大写真から測定ないし算出することによって得られる値であり、詳細な測定方法は実施例に詳述される。
【0019】
繊維層を構成する繊維集合体は、好ましくは不織布であり、前記の範囲の繊維径及び目付を有している限り特に制限されないが、メルトブローン不織布、電界紡糸法によって形成される極細繊維の不織布等であることが好ましい。電界紡糸法によれば、極細繊維を基材層上に繊維集合体として効率よく積層させることができる。電界紡糸法の詳細は製造方法に詳述する。
【0020】
繊維層がメルトブローン不織布である場合、繊維層を構成する繊維の素材となる樹脂としては、発明の効果を得られる限り特に制限されないが、例えば、ポリオレフィン系樹脂、ポリウレタン、ポリ乳酸、アクリル樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル類、ナイロン6、ナイロン6,6、ナイロン1,2等のナイロン(アミド樹脂)類、ポリフェニレンスルフィド、ポリビニルアルコール、ポリスチレン、ポリスルフォン、液晶ポリマー類、ポリエチレン−酢酸ビニル共重合体、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン等が挙げられる。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレンが例示できる。ポリエチレンとしては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等を挙げることができ、ポリプロピレンとしては、プロピレンの単独重合体や、プロピレンと他の単量体、エチレンやブテン等が重合した共重合ポリプロピレン等を挙げることができる。繊維集合体は、前記の樹脂の1種を含むことが好ましく、2種類以上を含んでいてもよい。
【0021】
繊維層が前記のメルトブローン不織布である場合、その目付は特に、50〜200g/m
2とすることができ、60〜150g/m
2であればより好ましい。メルトブローン不織布を用いると、平均流量細孔径が小さく、かつ、ナノ繊維と比較して、従来設備により生産できる点で、比較的安価な積層吸音材を実現できるため有利である。
【0022】
繊維層が電界紡糸法による不織布である場合、繊維層を構成する繊維の素材となる樹脂としては、発明の効果を得られる限り特に制限されないが、例えば、ポリプロピレンやポリエチレン等のポリオレフィン、ポリウレタン、ポリ乳酸、アクリル樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル類、ナイロン6、ナイロン6,6、ナイロン1,2等のナイロン(アミド樹脂)類、ポリフェニレンスルフィド、ポリビニルアルコール、ポリスチレン、ポリスルフォン、液晶ポリマー類、ポリエチレン−酢酸ビニル共重合体、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン等のポリフッ化ビニリデンの共重合体が挙げられる。これらの中でも、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォンおよびポリビニルアルコールが、電界紡糸法においては、各種溶剤に可溶である観点から、より好ましい。
繊維は、前記の樹脂の1種を含むことが好ましく、2種類以上を含んでいてもよい。
【0023】
繊維層が前記の電界紡糸法による不織布である場合、その目付は特に、0.1〜10g/m
2とすることができ、0.1〜5.0g/m
2であればより好ましい。電界紡糸法による不織布を用いると、平均流量細孔径が小さく、かつ、目付の小さな不織布層とすることができ、厚みの薄い積層吸音材を実現できるため有利である。
【0024】
本発明に用いる微多孔膜としては、特に微多孔膜の原料に限定はないが、例えば、ポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリオレフィン、ポリカーボネイト等の単体あるいはこれらの混合物等が用いられるが、ポリテトラフルオロエチレン(以下、「PTFE」と略記することもある。)を含むことが耐久性の観点から好ましく、PTFE製であることがより好ましい。好ましく用いられるPTFE微多孔膜の製造方法は、特に限定されないが、寸法変化を抑制する観点から、延伸PTFE微多孔膜であることが好ましい。
【0025】
微多孔膜は、公知の方法で製造してもよいし、市販品を適用することも可能であり、例えばポアフロン(住友電工社製)、メンブレンフィルター(アドバンテック社製)等を用いることができる。微多孔膜には、必要に応じて、非繊維化物(例えば低分子量PTFE)、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の公知の添加剤を、本発明の課題達成及び効果を損なわない範囲で含有してもよい。
【0026】
また、微多孔膜は、1層でも、必要に応じて2層以上を組み合わせて用いる構成であってもよい。仮にボイドやピンホール等の欠陥が発生した場合にも欠陥が伝播しないという観点からは、2層以上とすることが好ましい。
【0027】
上記のほか、多孔質層には、樹脂以外の各種の添加剤を含んでもよい。樹脂に添加されうる添加剤としては例えば、充填剤、安定化剤、可塑剤、粘着剤、接着促進剤(例えば、シランおよびチタン酸塩)、シリカ、ガラス、粘土、タルク、顔料、着色剤、酸化防止剤類、蛍光増白剤類、抗菌剤類、界面活性剤類、難燃剤類、およびフッ化ポリマーが挙げられる。前記添加物のうち1つ以上を用いて、得られる繊維および層の重量および/またはコストを軽減してもよく、粘度を調整してもよく、または繊維の熱的特性を変性してもよく、あるいは電気特性、光学特性、密度に関する特性、液体バリアもしくは粘着性に関する特性を包含する、添加物の特性に由来する様々な物理特性活性を付与してもよい。
【0028】
(基材層)
積層吸音材における基材層は、吸音性を有するとともに、多孔質層を支持して吸音材全体の形状を保持する機能を有している。本発明の積層吸音材において、多孔質層のうち、繊維層を用いた場合、繊維層は極めて細い繊維径の繊維から形成される繊維集合体であるか、微多孔膜であるため、強度(剛性)が低い。そのため、基材層が実質的に積層吸音材の強度を担うことになる。
【0029】
基材層は、1000Hzから12500Hzでの平均音響透過損失が、2dB以上であるものを用いる。平均音響透過損失が2dB以上である基材層を用いることによって、多孔質層と組み合わせた時に、予想外に幅広い周波数領域で優れた吸音性能を得ることができたものである。基材層として典型的には、不織布、織物、発泡フォーム、ハニカムコア等の構造体を用いることができ、その少なくとも一方の表面上に多孔質層を積層できるものであれば特に制限されない。特に、不織布、発泡フォームのいずれか1種以上であることが好ましい。積層吸音材に含まれる基材層は1種類であってもよく、2種類以上の基材層を含むことも好ましい。
【0030】
基材層の平均音響透過損失の上限は特に制限されないが、例えば、2dB以上のものを用いることができる。一般に、平均音響透過損失は遮音性能を表すパラメータであり、本発明に用いる基材層は一定以上の遮音性能を有する。しかしながら、基材層の平均音響透過損失が2dBを超えるものであっても、基材層単体では必ずしも幅広い周波数領域で十分な吸音性を示すことはできない。本発明では、このような基材層と、緻密な多孔質層との組み合わせによって、予想外の幅広い吸音性を実現している。
平均音響透過損失の測定方法は公知の方法によることができる。具体的には実施例に詳述される。
【0031】
基材層が不織布である場合、メルトブローン不織布、エアレイド不織布、スパンレース不織布、スパンボンド不織布、スルーエア不織布、サーマルボンド不織布、ニードルパンチ不織布等を用いることができ、所望の物性や機能によって適宜選択できる。
【0032】
基材層の不織布の繊維を構成する樹脂としては、熱可塑性樹脂を用いることができ、例えば、ポリオレフィン系樹脂、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリアミド系樹脂が例示できる。ポリオレフィン系樹脂としては、エチレン、プロピレン、ブテン−1、若しくは4−メチルペンテン−1等の単独重合体、及びこれらと他のα−オレフィン、即ち、エチレン、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1あるいは4−メチルペンテン−1などのうちの1種以上とのランダム若しくはブロック共重合体あるいはこれらを組み合わせた共重合体のことであり、またはこれらの混合物などを挙げることができる。ポリアミド系樹脂としてはナイロン4、ナイロン6、ナイロン7、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ポリメタキシリレンアジパミド、ポリパラキシリレンデカンアミド、ポリビスシクロヘキシルメタンデカンアミドもしくはこれらのコポリアミド等を挙げることができる。ポリエステル系樹脂としては、ポリエチレンテレフタレートの他、ポリテトラメチレンテレフタレート、ポリブチルテレフタレート、ポリエチレンオキシベンゾエート、ポリ(1,4−ジメチルシクロヘキサンテレフタレート)若しくはこれらの共重合体を挙げることができる。これらの中でも、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレン繊維及びポリプロピレン繊維の1種又は2種以上を組み合わせて用いることが好ましい。また、ガラス繊維、炭素繊維、金属繊維等を用いることも好ましい。
基材層が、織布である場合にも同様の樹脂から構成される繊維を用いることができる。
【0033】
基材層の不織布を構成する繊維としては、1成分のみを含む繊維を使用することもできるが、繊維同士の交点の融着の効果を考慮したとき、低融点樹脂と高融点樹脂の複合成分からなる繊維、すなわち、融点が異なる2成分以上からなる複合繊維を用いることも好ましい。複合形態は例えば鞘芯型、偏心鞘芯型、並列型を挙げることができる。また、基材層の不織布を構成する繊維として、融点が異なる2成分以上の混繊繊維を用いることも好ましい。なお、混繊繊維とは、高融点樹脂からなる繊維と低融点樹脂からなる繊維とが独立して存在し、混合されてなる繊維を意味している。基材が、織布である場合にも同様の繊維を用いることができる。
【0034】
基材層の不織布を構成する繊維の繊維径は、特に制限されるものではないが、繊維径が500nm〜1mmである繊維からなるものを用いることができる。繊維径が500nm〜1mmであるとは、平均繊維径がこの数値範囲内であることを意味する。繊維径が500nm以上であれば、多孔質層と基材層の不織布を構成する繊維との密度差による流れ抵抗を制御することができ、1mm未満であれば、汎用性が失われることがなく、また入手も容易となる。繊維径は、1.0〜100μmであれば、多孔質層と基材層の不織布を構成する繊維の密度差による流れ抵抗を制御することができ入手も容易であるためより好ましい。繊維径の測定は、多孔質層の繊維径の測定と同様の方法で行うことができる。基材が、織布である場合にも同様の繊維を用いることができる。
【0035】
基材層が織物である場合、平織、目抜き平織、綾織、朱子織、模しゃ織などの織り方によって得られる織物を用いることができ、所望の物性や機能によって適宜選択できる。織物としては、例えば、ガラスヤーンを用いて製造したガラスクロスや、金属線または樹脂からなる繊維を平織や綾織したメッシュが利用できる。
【0036】
基材層が発泡フォームである場合、樹脂中にガスを細かく分散させ、発泡状または多孔質形状に成形させた樹脂発泡体であれば、特に制限なく用いることができる。樹脂発泡体としては、例えば、軟質ポリウレタンフォーム、硬質ポリウレタンフォーム、メラミンフォーム、ポリスチレンフォーム、シリコーンフォーム、ポリ塩化ビニルフォーム、アクリルフォーム、ユリアフォームが利用できる。発泡フォームは、連続気泡(連通孔)を有する発泡樹脂であることが好ましい。
【0037】
前記の発泡フォームを構成する樹脂としては、具体的には例えば、ポリオレフィン系樹脂、ポリウレタン系樹脂、メラミン系樹脂が例示できる。ポリオレフィン系樹脂としては、エチレン、プロピレン、ブテン−1、若しくは4−メチルペンテン−1等の単独重合体、及びこれらと他のα−オレフィン、即ち、エチレン、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1あるいは4−メチルペンテン−1などのうちの1種以上とのランダム若しくはブロック共重合体あるいはこれらを組み合わせた共重合体のことであり、又はこれらの混合物などを挙げることができる。
【0038】
基材層の目付けは、1g/m
2以上であればよく、1〜300g/m
2であることが好ましく、15〜300g/m
2であることがより好ましい。基材層の目付けが1g/m
2未満であると、吸音材として必要な強度を得ることができない恐れがある。
【0039】
本発明において、基材層の厚みは特に制限されるものではないが、基材層の厚みが積層吸音材の厚みの大部分となるため、省スペース性の観点からは3〜30mmであることが好ましく、3〜20mmであることがより好ましい。基材層が2以上の構造体から構成される場合、1枚あたりの厚みは、例えば、20μm〜20mmとすることができ、30μm〜10mmとすることがより好ましい。1枚あたりの厚みが20μm以上であれば、皺の発生がなく取り扱いが容易で、生産性が良好であり、1枚あたりの厚みが20mm以下であれば、省スペース性を妨げる恐れがない。
【0040】
基材層には、本発明の効果を妨げない範囲内で、各種の添加剤、例えば、着色剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、滑剤、抗菌剤、難燃剤、可塑剤及び他の熱可塑性樹脂等が添加されていてもよい。また、表面が各種の仕上げ剤で処理されていてもよく、これによって撥水性、制電性、表面平滑性、耐摩耗性などの機能が付与されていてもよい。
【0041】
(積層吸音材の吸音特性)
本発明の積層吸音材は、1枚の吸音材で、400〜1000Hzの低周波数領域、1000〜3150Hzの中周波数領域、2000〜5000Hzの高周波数領域、また、5000〜12500Hzの超高周波領域のすべてにおいて高い吸音性能を示す。特定の理論に拘束されるものではないが、本発明の積層吸音材は、音の入射側に音響透過損失の高い材料を配置し、透過側に平均流量細孔径の小さな材料を配置することによって、流れ抵抗が制御され、高い吸音特性がえられている。
吸音性の評価方法は、実施例に詳述される。
【0042】
(積層吸音材の製造方法)
積層吸音材の製造方法は特に制限されないが、例えば、基材層上に多孔質層を形成する方法、或いは、多孔質層を別の支持体上に作製しておき、基材層と支持体に支持された多孔質層とを一体化する方法等によって得ることができる。
【0043】
基材層として不織布を用いる場合、公知の方法で不織布を製造して用いてもよいし、市販の不織布を選択して用いることもできる。また、基材層上に多孔質層を形成する工程は、電界紡糸法を用いることが好ましい。電界紡糸法は、紡糸溶液を吐出させるとともに、電界を作用させて、吐出された紡糸溶液を繊維化し、コレクター上に繊維を得る方法である。例えば、紡糸溶液をノズルから押し出すとともに電界を作用させて紡糸する方法、紡糸溶液を泡立たせるとともに電界を作用させて紡糸する方法、円筒状電極の表面に紡糸溶液を導くとともに電界を作用させて紡糸する方法などを挙げることができる。本発明においては、コレクター上に基材層となる不織布等を挿入し、基材層上に繊維を集積させて多孔質層を形成することができる。
【0044】
紡糸溶液としては、曳糸性を有するものであれば特に限定されないが、高分子を含む溶液であることが好ましく、例えば、高分子樹脂を溶媒に分散させたもの、高分子樹脂を溶媒に溶解させたもの、高分子樹脂を熱やレーザー照射によって溶融させたものなどを用いることができる。
【0045】
樹脂を分散または溶解させる溶媒としては、例えば、水、メタノール、エタノール、プロパノール、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、トルエン、キシレン、ピリジン、蟻酸、酢酸、テトラヒドロフラン、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタン、1,1,1,3,3,3−ヘキサフルオロイソプロパノール、トリフルオロ酢酸及びこれらの混合物などを挙げることができる。混合して使用する場合の混合率は、特に限定されるものではなく、求める曳糸性や分散性、得られる繊維の物性を鑑みて、適宜設定することができる。
【0046】
電界紡糸の安定性や繊維形成性を向上させる目的で、紡糸溶液中にさらに界面活性剤を含有させてもよい。界面活性剤は、例えば、ドデシル硫酸ナトリウムなどの陰イオン性界面活性剤、臭化テトラブチルアンモニウムなどの陽イオン界面活性剤、ポリオキシエチレンソルビタモンモノラウレートなどの非イオン性界面活性剤などを挙げることができる。界面活性剤の濃度は、紡糸溶液に対して5重量%以下の範囲であることが好ましい。5重量%以下であれば、使用に見合う効果の向上が得られるため好ましい。また、本発明の効果を著しく損なわない範囲であれば、上記以外の成分も紡糸溶液の成分として含んでもよい。
【0047】
紡糸溶液の調製方法は、特に限定されず、撹拌や超音波処理などの方法を挙げることができる。また、混合の順序も特に限定されず、同時に混合しても、逐次に混合してもよい。撹拌により紡糸溶液を調製する場合の撹拌時間は、樹脂が溶媒に均一に溶解または分散していれば特に限定されず、例えば、1〜24時間程度撹拌してもよい。
【0048】
電界紡糸により繊維を得るためには、紡糸溶液の粘度を、10〜10,000cPの範囲に調製することが好ましく、50〜8,000cPの範囲であることがより好ましい。粘度が10cP以上であると、繊維を形成するための曳糸性が得られ、10,000cP以下であると、紡糸溶液を吐出させるのが容易となる。粘度が50〜8,000cPの範囲であれば、広い紡糸条件範囲で良好な曳糸性が得られるのでより好ましい。紡糸溶液の粘度は、樹脂の分子量、濃度や溶媒の種類や混合率を適宜変更することで、調整することができる。
【0049】
紡糸溶液の温度は、常温で紡糸することもできるし、加熱・冷却して紡糸してもよい。紡糸溶液を吐出させる方法としては、例えば、ポンプを用いてシリンジに充填した紡糸溶液をノズルから吐出させる方法などが挙げられる。ノズルの内径としては、特に限定されないが、0.1〜1.5mmの範囲であるのが好ましい。また吐出量としては、特に限定されないが、0.1〜10mL/hrであるのが好ましい。
【0050】
紡糸溶液に電界を作用させる方法としては、ノズルとコレクターに電界を形成させることができれば特に限定されるものではなく、例えば、ノズルに高電圧を印加し、コレクターをアースとして接地してもよい。印加する電圧は、繊維が形成されれば特に限定されないが、5〜100kVの範囲であるのが好ましい。また、ノズルとコレクターとの距離は、繊維が形成されれば特に限定されないが、5〜50cmの範囲であるのが好ましい。
【0051】
別々に準備した多孔質層と基材層とを重ね合わせて一体化する場合、一体化の方法は特に限定されず、接着を行わずに重ね合わせるだけでもよく、また、各種の接着方法、つまり、加熱したフラットロールやエンボスロールによる熱圧着、ホットメルト剤や化学接着剤による接着、循環熱風もしくは輻射熱による熱接着などを採用することもできる。極細繊維を含む多孔質層の物性低下を抑制するという観点では、なかでも循環熱風もしくは輻射熱による熱処理が好ましい。フラットロールやエンボスロールによる熱圧着の場合、加工温度を調整し、多孔質層が溶融してフィルム化したり、エンボス点周辺部分に破れが発生したりする等のダメージを受けないようにすることが必要である。また、ホットメルト剤や化学接着剤による接着の場合には、該成分によって多孔質層の空隙が埋められ、性能低下を生じないように加工することが必要である。一方で、循環熱風もしくは輻射熱による熱処理で一体化した場合には、多孔質層へのダメージが少なく、かつ十分な層間剥離強度で一体化できるので好ましい。循環熱風もしくは輻射熱による熱処理によって一体化する場合には、特に限定されるものではないが、熱融着性複合繊維からなる不織布および積層体を使用することが好ましい。
【実施例】
【0052】
以下、実施例によって本発明をより詳細に説明するが、以下の実施例は例示を目的としたものに過ぎない。本発明の範囲は、本実施例に限定されない。
実施例で用いた物性値の測定方法または定義を以下に示す。
【0053】
<平均繊維径>
株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡SU8020を使用して、繊維構造体(不織布)を観察し、画像解析ソフトを用いて繊維50本の直径を測定した。繊維50本の繊維径の平均値を平均繊維径とした。
【0054】
<平均流量細孔径>
POROUS MATERIAL社製Capillary FlowPorometer(CFP−1200−A)を使用して、平均流量細孔径を測定(JIS K 3822)した。
【0055】
<吸音率測定>
吸音率測定は、各条件の積層をした、各繊維積層体より直径16.6mmのサンプルを採取し、垂直入射吸音率測定装置「日本音響エンジニアリング社製WinZacMTX」を用いASTM E 1050に準拠し、周波数400〜12500Hzにおける試験片に平面音波が垂直に入射するときの垂直入射吸音率を測定した。
<低周波数領域の吸音性>
周波数が400Hzから1000Hzまでの吸音率を測定し得られた曲線をf(x)としたとき、下記(式1)により平均吸音率(α)を算出した。
【0056】
【数1】
平均吸音率(α)は400〜1000Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。αが0.23以上の場合、低周波数領域の吸音性を良好と評価し、0.23未満の場合、吸音性を不良と評価した。
【0057】
<中周波数領域の吸音性>
周波数が1000Hzから3150Hzまでの吸音率を測定し得られた曲線をf(x)としたとき、下記(式2)により平均吸音率(β)を算出した。
平均吸音率(β)は1000〜3150Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。βが0.60以上の場合、中周波数領域の吸音性を良好と評価し、0.60未満の場合、吸音性を不良と評価した。
【0058】
【数2】
【0059】
<高周波数領域の吸音性>
周波数が2000Hzから5000Hzまでの吸音率を測定し得られた曲線をf(x)としたとき、下記(式3)により平均吸音率(γ)を算出した。
平均吸音率(γ)は2000〜5000Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。γが0.85以上の場合、高周波数領域の吸音性を良好と評価し、0.85未満の場合、吸音性を不良と評価した。
【0060】
【数3】
【0061】
<超高周波数領域の吸音性>
周波数が5000Hzから12500Hzまでの吸音率を測定し得られた曲線をf(x)としたとき、下記(式4)により平均吸音率(η)を算出した。
平均吸音率(η)は5000〜12500Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。ηが0.90以上の場合、高周波数領域の吸音性を良好と評価し、0.90未満の場合、吸音性を不良と評価した。
【0062】
【数4】
【0063】
<平均音響透過損失測定>
平均音響透過損失測定は、各基材層の単体より、直径16.6mmのサンプルを採取し、垂直入射吸音率測定装置「日本音響エンジニアリング社製WinZacMTX」を用い、ASTM E 1050に準拠し、垂直入射吸音率測定時に背後空間層(0mmと10mm)を変化させ、音響透過損失の周波数依存性を測定し、また、1000Hz〜12500Hz間で測定し、下記(式5)により得られた曲線をg(x)としたときの平均音響透過損失θを算出した。
【0064】
【数5】
【0065】
<保護層の準備>
保護層として、市販のポリエチレンテレフタレート製カード法スルーエア不織布(目付け18g/m
2、厚み60μm)を準備した。
【0066】
<多孔質層の準備>
1)多孔質層A〜C(電界紡糸法による極細繊維不織布)
Arkema製のポリフッ化ビニリデン−ヘキサフルオロプロピレン(以下、「PVDF」と略記する。)であるKynar(商品名)3120を、N,N−ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製し、導電助剤として0.01質量%を添加した。保護層の上に前記PVDF−HFP溶液を電界紡糸して、保護層とPVDF−HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。
繊維積層体におけるPVDF極細繊維については、その層の目付けは0.6g/m
2であり、平均繊維径は80nmであり、融解温度は168℃であった。これを多孔質層Aとした。平均流量細孔径を評価したところ1.5μmであった。
また保護層の搬送速度を変化させ、目付けを0.2g/m
2となるように調節し、平均繊維径は80nmであり、融解温度は168℃であった。これを多孔質層Bとした。平均流量細孔径を評価したところ5.8μmであった。さらに目付けを6.0g/m
2となるように調節し、平均繊維径は80nmであり、融解温度は168℃であった。これを多孔質層Cとした。平均流量細孔径を評価したところ0.7μmであった。
【0067】
2)多孔質層D〜F(微多孔膜)
市販のADVANTEC製MEMBRANE FILTER T300A(PORE SIZE3.0μm 厚み75μm)の平均流量細孔径を評価したところ1.1μmであった。これを「多孔質層D」とした。同じくT100A(PORE SIZE1.0μm 厚み77μm)の平均流量細孔径を評価したところ0.53μmであった。これを「多孔質層E」とした。同じくT010A(PORE SIZE0.1μm 厚み80μm)の平均流量細孔径を評価したところ0.20μmであった。これを「多孔質層F」とした。
【0068】
3)多孔質層J(メルトブローン不織布)
多孔質層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)と、ポリプロピレンホモポリマー2(LOTTE CHEMICAL社製「FR−185」(MFR=1400g/10分))を用い、不織布製造装置の2機の押出機に前記2種類のポリプロピレンを投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した98kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、多孔質層を形成した。捕集コンベアーの速度を調整することによって、目付を80g/m
2に設定した。平均繊維径は、1.3μmであり、これを多孔質層Jとした。平均流量細孔径を評価したところ9.4μmであった。
【0069】
4)多孔質層R(メルトブローン不織布)
多孔質層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)と、ポリプロピレンホモポリマー2(LOTTE CHEMICAL社製「FR−185」(MFR=1400g/10分))を用い、不織布製造装置の2機の押出機に前記2種類のポリプロピレンを投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した63kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、多孔質層を形成した。捕集コンベアーの速度を調整することによって、目付を80g/m
2に設定した。平均繊維径は、1.9μmであり、これを多孔質層Rとした。平均流量細孔径を評価したところ12.6μmであった。
【0070】
5)多孔質層P(メルトブローン不織布)
多孔質層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)のポリプロピレンを2機の押出機に投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した63kPa(ゲージ圧)の圧縮空気によって紡糸口金から30cmの距離で、捕集コンベアー上に吹き付け、多孔質層を形成した。捕集コンベアーの速度を調整することによって、目付を60g/m
2に設定した。平均繊維径は、4.0μmであり、これを多孔質層Pとした。平均流量細孔径を評価したところ20μmであった。
【0071】
6)フィルム(多孔質層の範囲外となる無孔の薄膜)
市販の無延伸ポリプロピレンフィルムオージェイケイ株式会社製 製品名「25SS」、厚み25μmを用意した。
【0072】
7)多孔質層Q(多孔質層の範囲外となるメルトブローン不織布)
多孔質層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)のポリプロピレンを2機の押出機に投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した63kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、多孔質層を形成した。捕集コンベアーの速度を調整することによって、目付を60g/m
2に設定した。平均繊維径は、4.0μmであり、これを多孔質層Qとした。平均流量細孔径を評価したところ34μmであった。
【0073】
<基材層の準備>
1)基材層A〜C(エアレイド不織布)
高密度ポリエチレンとして、京葉ポリエチレン製の高密度ポリエチレン「M6900」(MFR17g/10分)を用い、ポリプロピレンとして、日本ポリプロ製のポリプロピレンホモポリマー「SA3A」(MFR=11g/10分)を用いて、熱溶融紡糸法により、繊維径16μmの鞘成分が高密度ポリエチレン、芯成分がポリプロピレンからなる鞘芯型熱融着性複合繊維を作製した。得られた鞘芯型熱融着性複合繊維を用いて、目付けが200g/m
2、厚み5mm、幅が1000mmのカード法スルーエア不織布を作製した。カード法スルーエア不織布を、商研株式会社製一軸式粉砕機(ES3280)にて約6mm程度に粉砕した。
この粉砕した不織布をエアレイド試験機にて、設定温度142℃で加熱し、目付け160g/m
2、厚み5mm、音響透過損失1.3dBの基材層A、320g/m
2、厚み10mm、音響透過損失2.4dBの基材層B、480g/m
2、厚み15mm、音響透過損失3.5dBの基材層Cを得た。
【0074】
2)基材層D〜H、M(メラミン発泡フォーム)
市販されているメラミン発泡樹脂材料として、イノアック社製バソテクト BAF-10G+(密度9.2kg/m
3)、厚み10mm、音響透過損失2.5dBを基材D、厚み15mm、音響透過損失3.0dBを基材E、厚み5mm、音響透過損失1.1dBを基材H、BAF-10W(密度9.0kg/m
3)、厚み10mm、音響透過損失2.8dBを基材F、厚み15mm、音響透過損失4.1dBを基材G、厚み5mm、音響透過損失1.0dBを基材Mとした。
【0075】
3)基材層I〜K(ウレタン発泡フォーム)
市販されているウレタン発泡樹脂材料として、イノアック社製カームフレックス F−2(密度25kg/m
3)、厚み10mm音響透過損失3.1dBを基材I、厚み15mm音響透過損失4.3dBを基材J、厚み20mm音響透過損失6.1dBを基材Kとした。
【0076】
4)基材層L(ガラス繊維マット)
市販されているガラス繊維材料として、旭ファイバーグラス社製アクリアマット厚み50mmを目付け320gsm厚み20mm音響透過損失6.6dBに加工し基材Lとした。
【0077】
<実施例1〜17>
表1、2に示される組み合わせで基材層と多孔質層とを重ね合わせ、吸音率測定用サンプルとした。基材層を音の入射側、多孔質層を音の透過側として、上述の方法で吸音率を測定した。低周波数領域、中周波数領域、高周波数領域、超高周波数領域それぞれの平均吸音率を表1、2に示す。なお、表中、積層吸音材のトータル厚み(mm)は、基材層及び多孔質層の厚みの合計であるが、多孔質層A〜Cは極めて薄いため、基材層の厚みとトータル厚みとが同じ数値となっている。
【0078】
【表1】
【0079】
【表2】
【0080】
<比較例1>
市販されているポリプロピレン樹脂製不織布(3M社製シンサレートT2203、繊維径0.7μm〜4.0μm、厚み29mm)を円形に打ち抜き、吸音率測定用サンプルとした。
垂直入射吸音率を測定し、低周波数領域の吸音性(400Hzから1000Hzまでの平均した値α)を評価したところ、0.157であり、中周波数領域の吸音性(1000Hzから3150Hzまでの平均した値β)を評価したところ、0.519であり、高周波数領域の吸音性(2000Hzから5000Hzまでの平均した値γ)を評価したところ、0.763であり、超高周波数領域の吸音性(5000Hzから12500Hzまでの平均した値η)を評価したところ、0.953であった。
【0081】
<比較例2〜9>
表3に示される組み合わせで基材層と多孔質層とを重ね合わせ、あるいは基材層単体で、吸音率測定用サンプルとした。基材層を音の入射側、多孔質層を音の透過側として、上述の方法で吸音率を測定した。低周波数領域、中周波数領域、高周波数領域、超高周波数領域それぞれの平均吸音率を表3に示す。
【0082】
【表3】