特許第6647622号(P6647622)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士重工業株式会社の特許一覧 ▶ 国立大学法人九州工業大学の特許一覧

特許6647622爆発性スパーク評価システム及び爆発性スパーク評価方法
<>
  • 特許6647622-爆発性スパーク評価システム及び爆発性スパーク評価方法 図000002
  • 特許6647622-爆発性スパーク評価システム及び爆発性スパーク評価方法 図000003
  • 特許6647622-爆発性スパーク評価システム及び爆発性スパーク評価方法 図000004
  • 特許6647622-爆発性スパーク評価システム及び爆発性スパーク評価方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6647622
(24)【登録日】2020年1月17日
(45)【発行日】2020年2月14日
(54)【発明の名称】爆発性スパーク評価システム及び爆発性スパーク評価方法
(51)【国際特許分類】
   G01N 21/67 20060101AFI20200203BHJP
【FI】
   G01N21/67 A
【請求項の数】15
【全頁数】15
(21)【出願番号】特願2015-170339(P2015-170339)
(22)【出願日】2015年8月31日
(65)【公開番号】特開2017-49025(P2017-49025A)
(43)【公開日】2017年3月9日
【審査請求日】2018年7月23日
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成26年度、経済産業省、研究題目「航空機用先進システム基盤技術開発(耐雷・帯電特性解析技術開発)」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000005348
【氏名又は名称】株式会社SUBARU
(73)【特許権者】
【識別番号】504174135
【氏名又は名称】国立大学法人九州工業大学
(74)【代理人】
【識別番号】100136504
【弁理士】
【氏名又は名称】山田 毅彦
(72)【発明者】
【氏名】西 孝裕樹
(72)【発明者】
【氏名】大塚 信也
【審査官】 伊藤 裕美
(56)【参考文献】
【文献】 米国特許出願公開第2007/0258090(US,A1)
【文献】 特表2013−503930(JP,A)
【文献】 特開2004−069681(JP,A)
【文献】 特開2007−225447(JP,A)
【文献】 特開2014−048296(JP,A)
【文献】 国際公開第2014/112257(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/62−21/74
G01J 3/00−3/52
(57)【特許請求の範囲】
【請求項1】
検査対象から生じたスパークに含まれる特定の波長帯域における光の強度を測定する測定系と、
前記光の強度に基づいて前記スパークが爆発性のスパークであるか否かを判定する処理系と、
を備え
前記特定の波長帯域は、前記スパークが爆発性を有する場合に前記スパークに含まれる光の波長スペクトルにピークが出現する波長帯域である爆発性スパーク評価システム。
【請求項2】
前記処理系は、前記特定の波長帯域における光の波長スペクトルにピークが検出された場合には前記スパークが爆発性のスパークであると判定するように構成される請求項1記載の爆発性スパーク評価システム。
【請求項3】
前記処理系は、前記特定の波長帯域における光の波長スペクトルと、基準となる光の波長スペクトルとの間における乖離量に基づいて前記スパークが爆発性のスパークであるか否かを判定するように構成される請求項1記載の爆発性スパーク評価システム。
【請求項4】
前記測定系は、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つの波長帯域における光の強度を測定するように構成され、
前記処理系は、前記少なくとも1つの波長帯域における光の波長スペクトルにピークが検出されたか否か又は前記少なくとも1つの波長帯域における光の波長スペクトルと、基準となる光の波長スペクトルとの間における乖離量に基づいて前記スパークが爆発性のスパークであるか否かを判定するように構成される請求項1記載の爆発性スパーク評価システム。
【請求項5】
前記測定系は、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域を少なくとも含む波長帯域における光の強度を測定するように構成され、
前記処理系は、前記第1の波長帯域、前記第2の波長帯域及び前記第3の波長帯域の少なくとも1つにおける光の波長スペクトルにピークが検出された場合には前記スパークが爆発性のスパークであると判定するように構成される請求項1又は2記載の爆発性スパーク評価システム。
【請求項6】
前記測定系は、
前記検査対象から生じた前記スパークを入射させて分光する分光器と、
前記分光器で分光された前記特定の波長帯域における光の強度を検出する検出器と、
を有する請求項1乃至5のいずれか1項に記載の爆発性スパーク評価システム。
【請求項7】
前記測定系は、
前記検査対象から生じた前記スパークから前記特定の波長帯域における光を抽出する波長フィルタと、
前記波長フィルタによって抽出された前記特定の波長帯域における光の強度を検出する検出器と、
を有する請求項1乃至5のいずれか1項に記載の爆発性スパーク評価システム。
【請求項8】
前記測定系は、前記特定の波長帯域又は他の特定の波長帯域における光の強度の時間変化を測定するように構成され、
前記処理系は、前記時間変化を表す波形に基づいて前記スパークが爆発性のスパークであるか否かを判定するように構成される請求項1乃至7のいずれか1項に記載の爆発性スパーク評価システム。
【請求項9】
検査対象から生じたスパークに含まれる特定の波長帯域における光の強度を測定するステップと、
前記光の強度に基づいて前記スパークが爆発性のスパークであるか否かを判定するステップと、
を有し、
前記特定の波長帯域は、前記スパークが爆発性を有する場合に前記スパークに含まれる光の波長スペクトルにピークが出現する波長帯域である爆発性スパーク評価方法。
【請求項10】
光学カメラで前記スパークを撮影し、撮影結果に基づいて前記スパークの発生位置を特定するステップを更に有する請求項9記載の爆発性スパーク評価方法。
【請求項11】
前記スパークの発生位置に基づいて前記スパークの種類を判定するステップを更に有する請求項10記載の爆発性スパーク評価方法。
【請求項12】
複合材を含む検査対象に電流を流すことによって前記スパークを発生させ、前記複合材から生じたスパークが爆発性のスパークであるか否かを判定する請求項9乃至11のいずれか1項に記載の爆発性スパーク評価方法。
【請求項13】
前記特定の波長帯域における光の波長スペクトルにピークが確認された場合には前記スパークが爆発性のスパークであると判定する請求項9乃至12のいずれか1項に記載の爆発性スパーク評価方法。
【請求項14】
588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つの波長帯域における光の強度を測定し、
前記少なくとも1つの波長帯域における光の波長スペクトルにピークが検出されたか否か又は前記少なくとも1つの波長帯域における光の波長スペクトルと、基準となる光の波長スペクトルとの間における乖離量に基づいて前記スパークが爆発性のスパークであるか否かを判定する請求項9乃至13のいずれか1項に記載の爆発性スパーク評価方法。
【請求項15】
588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域を少なくとも含む波長帯域における光の強度を測定し、
前記第1の波長帯域、前記第2の波長帯域及び前記第3の波長帯域の少なくとも1つにおける光の波長スペクトルにピークが確認された場合には前記スパークが爆発性のスパークであると判定する請求項9乃至13のいずれか1項に記載の爆発性スパーク評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、爆発性スパーク評価システム及び爆発性スパーク評価方法に関する。
【背景技術】
【0002】
雷撃や静電気等によって航空機の構造体に電気エネルギが蓄積すると、スパークが発生する。スパークが発生すると、燃料に引火して飛行の安全が阻害される恐れがある。そこで、航空機の開発では、従来、スパークの発生の有無を確認するために、膨大な試験が行われている(例えば特許文献1参照)。スパークの発生の有無を確認する方法としては、写真撮影法とガス引火確認法が知られている。
【0003】
写真撮影法は、試験用の供試体に電流を流して撮影し、スパークの有無を確認する方法である。一方、ガス引火確認法は、引火性ガスを入れた試験用の供試体に電流を流して引火の有無を確認する方法である。
【0004】
また、関連する技術として、スパークのエネルギを評価する技術も提案されている(例えば特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2014−153298号公報
【特許文献2】特開2014−137227号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
写真撮影法によるスパークの確認試験では、引火しないようなエネルギが小さいスパークであっても、スパークが撮影されれば不合格と判定されることになる。このため、スパークの発生を防止するための過剰な対策が要求される恐れがある。また、写真撮影法では、カメラが異なると、スパークの写りが変わる場合があるという問題やカメラの撮影方向は固定されるため複雑な構造を有する供試体を撮影する場合にはスパークの有無を確認できない場合があるといった問題がある。
【0007】
一方、ガス引火確認法の場合には、試験用の供試体からスパーク以外の原因で引火する場合がある、スパークが発生しても引火しない場合がある、試験に時間を要し、かつ安全対策が必要になるといった問題がある。
【0008】
このような従来のスパーク確認試験は、航空機の開発期間の増加を招き、航空機の開発コストを押し上げる要因となっている。これは、航空機の開発に限らず、爆発性を有するスパークの発生を防止することが必要となる製品の開発に共通する課題である。
【0009】
そこで、本発明は、より安全かつ簡易に爆発性を有するスパークの発生の有無を確認することが可能な爆発性スパーク評価システム及び爆発性スパーク評価方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の実施形態に係る爆発性スパーク評価システムは、測定系及び処理系を備える。測定系は、検査対象から生じたスパークに含まれる特定の波長帯域における光の強度を測定する。処理系は、前記光の強度に基づいて前記スパークが爆発性のスパークであるか否かを判定する。前記特定の波長帯域は、前記スパークが爆発性を有する場合に前記スパークに含まれる光の波長スペクトルにピークが出現する波長帯域である。
また、本発明の実施形態に係る爆発性スパーク評価方法は、検査対象から生じたスパークに含まれる特定の波長帯域における光の強度を測定するステップと、前記光の強度に基づいて前記スパークが爆発性のスパークであるか否かを判定するステップとを有するものである。前記特定の波長帯域は、前記スパークが爆発性を有する場合に前記スパークに含まれる光の波長スペクトルにピークが出現する波長帯域である。
【図面の簡単な説明】
【0011】
図1】本発明の第1の実施形態に係る爆発性スパーク評価システムの構成図。
図2】検査対象から生じたスパークを分光器で分光することによって測定された光の波長スペクトルの一例を示す図。
図3図1に示す爆発性スパーク評価システムにより検査対象から生じるスパークの爆発性スパーク評価方法の流れを示すフローチャート。
図4】本発明の第2の実施形態に係る爆発性スパーク評価システムの構成図。
【発明を実施するための形態】
【0012】
本発明の実施形態に係る爆発性スパーク評価システム及び爆発性スパーク評価方法について添付図面を参照して説明する。
【0013】
(第1の実施形態)
(構成及び機能)
図1は本発明の第1の実施形態に係る爆発性スパーク評価システムの構成図である。
【0014】
爆発性スパーク評価システム1は、検査対象Oから生じたスパークSが航空機燃料や引火性ガス等の引火物に引火することによって爆発性を有するスパークであるか否かを判定するシステムである。そのために、爆発性スパーク評価システム1は、電流印加回路2、測定系3、処理系4、光学カメラ5、入力装置6、表示装置7及び記憶装置8を備える。測定系3は、検査対象Oから生じたスパークSに含まれる特定の波長帯域における光の強度を測定するシステムである。一方、処理系4は、測定系3において測定された特定の波長帯域における光の強度に基づいて、検査対象Oから生じたスパークSが爆発性のスパークSであるか否かを判定するシステムである。
【0015】
測定系3は、図1に例示されるように、分光器9、光検出器10、波長フィルタ11及び光電子増倍管(PMT:photomultiplier tube)12を用いて構成することができる。
【0016】
分光器9は、検査対象Oから生じたスパークSを入射させて分光するための光学装置である。スパークSは、検査対象Oに電流を流すことによって意図的に発生させることができる。従って、検査対象Oには電流を流すための電流印加回路2が接続される。
【0017】
光検出器10は、分光器9で分光された波長ごとの光のうち少なくとも特定の波長帯域における光の強度を検出するための光強度センサである。従って、少なくとも分光された光の波長方向に配列された電荷結合素子(CCD:Charged−coupled device)センサや相補性金属酸化膜半導体(CMOS:Complementary Metal Oxide Semiconductor)センサ等の撮像素子を光検出器10として用いることができる。
【0018】
波長フィルタ11は、検査対象Oから生じたスパークSを入射させて、スパークSから特定の波長帯域における光を抽出する光学素子である。可視光に対する波長フィルタ11は、光学カラーフィルタとも呼ばれる。
【0019】
PMT12は、波長フィルタ11によって抽出された特定の波長帯域における光の強度を検出する高感度の光検出器である。PMT12では、特定の波長帯域における微弱な光が、増幅された電気信号に変換されて出力される。従って、PMT12では、波長フィルタ11を透過した特定の波長帯域における光の強度の時間変化を、電気信号の振幅の時間変化として検出することができる。
【0020】
尚、PMT12以外の光検出器を用いるようにしてもよい。但し、一般的にスパークSから生じる光の強度は微弱であるため光検出器としてPMT12を用いることが現実的である。
【0021】
以上のように、測定系3は、分光器9で分光された波長ごとの光を光検出器10で検出する第1の検出系と、波長フィルタ11を透過した特定の波長帯域における光の強度をPMT12で検出する第2の検出系とを備えている。そして、光検出器10及びPMT12の各出力側は、処理系4と接続される。但し、第1の検出系と第2の検出系の一方を省略してもよい。
【0022】
また、検査対象Oから生じたスパークSを入射させることが可能な位置に光ファイバの一端を光の入射用に配置し、光ファイバの他端に分光器9を接続するようにしてもよい。この場合、分光器9を任意の位置に設置することができる。このため、ノイズを抑制するために、分光器9を検査対象Oから離れた場所に設置されたシールドボックス内に配置することが可能となる。これは、波長フィルタ11及びPMT12で構成される第2の検出系についても同様である。
【0023】
処理系4は、コンピュータにデータ処理プログラムを読込ませて構築することができる。すなわち、処理系4は、単一又は複数の電子回路を構成要素とする処理回路類によって構成することができる。処理系4は、スペクトル取得部4A、強度−時間波形取得部4B及び爆発性判定部4Cを有する。
【0024】
スペクトル取得部4Aは、光検出器10から波長別の光強度の検出信号を入力してスパークSに対応する光の波長スペクトルを取得する機能を有する。強度−時間波形取得部4Bは、PMT12から電気信号に変換された光強度信号を入力して特定の波長帯域における光の相対強度の時間変化を表す強度−時間波形を取得する機能を有する。爆発性判定部4Cは、光の波長スペクトル及び特定の波長帯域におけるスパーク光の相対強度の時間変化の一方又は双方に基づいて検査対象Oから生じたスパークSが爆発性のスパークSであるか否かを判定する機能を有する。
【0025】
図2は、検査対象Oから生じたスパークSを分光器9で分光することによって測定された光の波長スペクトルの一例を示す図である。
【0026】
図2において横軸は光の波長を示し、縦軸は光の相対強度を示す。光の波長スペクトルの波形と、検査対象Oから生じたスパークSが爆発性を有するか否かとの関係性を実験によって調べた。その結果、検査対象Oから生じたスパークSが燃料等の引火物に引火することによって爆発性を有する場合には、図2に示されるように特定の波長帯域において、光の波長スペクトルにピークが出現することが判明した。つまり、特定の波長帯域において、光の波長スペクトルにピークが出現すれば、検査対象Oから生じたスパークSが爆発性のスパークSであるという関係が、経験的に確認された。
【0027】
より具体的には、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つの波長帯域において波長スペクトルにピークが観測されれば、スパークSは爆発性を有するという関係が確認された。尚、図2は、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の全てにおいてピークが観測された例を示している。特に、スパークSが爆発性のスパークSである場合には、588nm以上591nm以下の第1の波長帯域において最もレベルが高いピークが出現することが多いということも確認された。
【0028】
従って、測定系3の光検出器10では、必ずしも全ての波長帯域における光の強度を測定せずに、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つの波長帯域における光の強度を測定するようにしてもよい。その場合には、爆発性判定部4Cにおいて、少なくとも1つの波長帯域における光の波長スペクトルにピークが検出されたか否かに基づいて簡易にスパークSが爆発性のスパークSであるか否かを判定することができる。
【0029】
或いは、爆発性判定の確実性を向上させる観点から、測定系3の光検出器10において、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域を少なくとも含む波長帯域における光の強度を測定するようにしてもよい。この場合には、爆発性判定部4Cにおいて、第1の波長帯域、第2の波長帯域及び第3の波長帯域の少なくとも1つにおける光の波長スペクトルにピークが検出された場合にはスパークSが爆発性のスパークSであると判定することができる。
【0030】
このように、爆発性判定部4Cでは、特定の波長帯域における光の波長スペクトルにピークが検出された場合にはスパークSが爆発性のスパークSであると判定することができる。波長スペクトルからピークを自動検出する方法としては、公知の任意の方法を採用することができる。具体例として、特定の波長帯域における波長スペクトルの面積、最大値、変化率、微分値又は変動幅に対する閾値処理によってピークの有無を自動判定することができる。爆発性判定部4Cにおいて、ピークの有無を自動判定すれば、スパークSが爆発性のスパークSであるか否かについても自動的に判定することができる。
【0031】
但し、爆発性判定部4Cが特定の波長帯域における光の波長スペクトルの波形を表示装置7に表示させ、ユーザが目視によりピークの有無を判定するようにしてもよい。
【0032】
爆発性判定部4Cでは、ピークの有無に基づく爆発性評価の他、特定の波長帯域における光の波長スペクトルと、基準となる光の波長スペクトルとの間における乖離量に基づいてスパークSが爆発性のスパークSであるか否かを判定するようにすることもできる。
【0033】
その場合には、スパークSに爆発性が生じる最小のエネルギに対応する光の波長スペクトルが予め基準となる光の波長スペクトルとして取得される。取得された基準となる光の波長スペクトルは、記憶装置8に保存することができる。そして、爆発性判定試験の対象となるスパークSに対応する特定の波長帯域における光の波長スペクトルと、スパークSに爆発性が生じる時の基準となる光の波長スペクトルとの間における乖離量が閾値未満又は閾値以下となった場合に、爆発性判定試験の対象となるスパークSが爆発性を有すると判定することができる。
【0034】
爆発性判定試験の対象となるスパークSに対応する特定の波長帯域における光の波長スペクトルと、スパークSに爆発性が生じる時の基準となる光の波長スペクトルとの間における乖離量は、面積の差、2乗誤差又は相互相関係数等の任意の指標を用いて表すことができる。従って、爆発性判定試験の対象となるスパークSに対応する特定の波長帯域における波長スペクトルと、基準となる波長スペクトルとの間における面積(積分値)の差、2乗誤差又は相互相関係数等の任意の指標に対する閾値処理によってスパークSが爆発性のスパークSであるか否かを自動的に判定することができる。
【0035】
もちろん、乖離量に対して閾値処理を行う代わりに、基準となる波長スペクトルの面積や最大レベル等の代表値を閾値として、爆発性判定試験の対象となるスパークSに対応する波長スペクトルの面積や最大レベル等の代表値に対する閾値処理を行うようにしてもよい。その場合には、爆発性判定試験の対象となるスパークSに対応する波長スペクトルの代表値が基準となる波長スペクトルの代表値に達した場合には、爆発性判定試験の対象となるスパークSが爆発性を有すると判定することができる。
【0036】
尚、スパークSと光検出器10との相対的な位置関係等のスパークSの観測条件に応じて光検出器10の感度が変化する可能性がある。そこで、基準となる波長スペクトルの感度補正を行うことが適切である。具体例として、単一又は複数のモノクロメータを透過したスパークSを光検出器10で検出することによって光検出器10のキャリブレーションを行い、光強度信号の最大値等で光強度信号を除算することによって光強度信号を正規化することができる。このような光検出器10の感度補正を行うと、光検出器10の感度依存性を除去し、スパークSの観測条件に依らず、波長スペクトルの比較によるスパークSの爆発性評価を行うことが可能となる。
【0037】
以上のように、処理系4の爆発性判定部4Cでは、スペクトル取得部4Aから爆発性評価の対象となるスパークSに対応する光の波長スペクトルを取得し、少なくとも1つの特定の波長帯域における光の波長スペクトルにピークが検出されたか否か又は少なくとも1つの特定の波長帯域における光の波長スペクトルと、基準となる光の波長スペクトルとの間における乖離量に基づいてスパークSが爆発性のスパークSであるか否かを自動的に判定することができる。
【0038】
一方、爆発性判定部4Cでは、強度−時間波形取得部4Bから爆発性評価の対象となるスパークSに対応する特定の波長帯域における光の強度−時間波形を取得し、特定の波長帯域における光の強度−時間波形に基づいてスパークSが爆発性のスパークSであるか否かを自動的に判定することもできる。光の強度−時間波形の取得対象となる特定の波長帯域は、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つとすることができる。
【0039】
光の強度−時間波形に基づくスパークSの爆発性評価は、波長スペクトルに基づくスパークSの爆発性評価とは独立して行うことができる。従って、光の強度−時間波形に基づくスパークSの爆発性評価と波長スペクトルに基づくスパークSの爆発性評価のいずれかのみを行うようにしてもよい。但し、光の強度−時間波形に基づくスパークSの爆発性評価と波長スペクトルに基づくスパークSの爆発性評価の双方を併用すれば、評価の確実性を向上させることができる。
【0040】
光の強度−時間波形の取得対象となる特定の波長帯域は、波長スペクトルの取得対象となる特定の波長帯域と同一であっても良いし、波長スペクトルの取得対象となる特定の波長帯域と異なる波長帯域であっても良い。従って、測定系3の波長フィルタ11及びPMT12では、光検出器10において光強度の測定対象となる特定の波長帯域又は他の特定の波長帯域における光の強度の時間変化が測定される。このため、波長フィルタ11は、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域又は619nm以上623nm以下の第3の波長帯域を透過させる光学カラーフィルタとなる。尚、第1の波長帯域、第2の波長帯域及び第3の波長帯域のうちの複数の特定の波長帯域について光の強度−時間波形を取得できるように、複数の波長帯域に対応する複数の波長フィルタ11とPMT12を測定系3に設けてもよい。
【0041】
そして、爆発性判定部4Cでは、強度−時間波形取得部4Bにおいて取得された単一又は複数の特定の波長帯域における光の強度の時間変化を表す波形に基づいてスパークSが爆発性のスパークSであるか否かを判定することができる。
【0042】
より具体的には、光の強度の時間変化を表す波形の積分値を求め、予め求めておいた閾値と比較することによってスパークSの爆発性を評価することができる。積分値と比較される閾値は、爆発性を有し、かつ最小のエネルギを有するスパークSに対応する波形スペクトルの面積等の代表値としても良いし、爆発性を有し、かつ最小のエネルギを有するスパークSに対応する光の強度の時間変化を表す波形の積分値としても良い。積分値と比較される閾値についても、記憶装置8に保存することができる。
【0043】
尚、光の強度の時間変化を表す波形の積分値と比較される基準となる波形スペクトル又は基準となる波形の積分値についても光検出器10の感度補正を行うことが望ましい。加えて、PMT12で検出される光強度については、PMT12とスパークSの発生位置との間における距離依存性を除去するために、距離補正を行うことが望ましい。距離補正は、光強度が光の伝播距離の2乗に反比例して減衰することから光の伝播距離の2乗を光強度に乗じる補正とすることができる。
【0044】
尚、光の強度の時間変化を、スパークSを発生させるための検査対象Oへの通電期間に亘って計測すれば、スパークSの発光強度が通電期間中のどのようなタイミングで変化したのかを把握することが可能となる。このため、光の強度の時間変化を表示装置7に表示させて、ユーザが観察できるようにしてもよい。
【0045】
光学カメラ5は、検査対象Oから生じたスパークSを撮影するためのデジタルカメラ等のイメージセンサである。光学カメラ5で撮影されたスパークSの画像は、表示装置7に表示させることができる。このため、ユーザが表示装置7に表示された画像を観察することによって、スパークSの発生位置を確認することができる。
【0046】
(動作及び作用)
次に、爆発性スパーク評価システム1を用いた爆発性スパーク評価方法について説明する。
【0047】
図3は、図1に示す爆発性スパーク評価システム1により検査対象Oから生じるスパークSの爆発性スパーク評価方法の流れを示すフローチャートである。
【0048】
まずステップS1において、電流印加回路2から検査対象Oに電流が印加される。これにより、検査対象OからスパークSが生じる。
【0049】
次に、ステップS2において、検査対象Oから生じたスパークSが観測される。すなわち、検査対象Oから生じたスパークSによって生じる特定の波長帯域における光の強度が、測定系3によって測定される。具体的には、分光器9で分光された波長ごとの光のうち少なくとも特定の波長帯域における光の強度がCCDセンサやCMOSセンサ等の光検出器10で検出される。また、波長フィルタ11を透過した特定の波長帯域における時系列の光の強度がPMT12によって検出される。一方、検査対象Oから生じたスパークSが光学カメラ5で撮影される。
【0050】
次に、ステップS3において、測定された光の強度に基づいてスパークSが爆発性のスパークSであるか否かが判定される。スパークSの爆発性判定には、光検出器10で検出された波長別の光の強度及びPMT12で検出された光の強度の時系列信号の一方又は双方に基づいて行うことができる。
【0051】
光検出器10で検出された波長別の光の強度に基づいてスパークSの爆発性判定を行う場合には、処理系4のスペクトル取得部4Aにおいて、少なくとも特定の波長帯域における光の波長スペクトルが取得される。そして、爆発性判定部4Cにおいて、特定の波長帯域における光の波長スペクトルにピークが確認された場合にはスパークSが爆発性のスパークSであると判定される。或いは、特定の波長帯域における光の波長スペクトルを表示装置7に表示させ、ユーザが目視により特定の波長帯域における光の波長スペクトルにピークを確認した場合には、スパークSが爆発性のスパークSであると判定するようにしてもよい。
【0052】
また、別の方法として、特定の波長帯域における光の波長スペクトルを、予め取得して記憶装置8に保存した基準となる光の波長スペクトルと比較することによって、スパークSが爆発性のスパークSであるか否かを自動的に又は目視により判定するようにしてもよい。スパークSの爆発性判定を爆発性判定部4Cが自動的に行う場合には、例えば、2つの波長スペクトルの代表値を比較する閾値処理を実行すればよい。一方、ユーザが目視によりスパークSの爆発性判定を行う場合には、2つの波長スペクトルの差分値を表示装置7に表示させても良いし、2つの波長スペクトルを表示装置7に識別可能に重畳表示させるようにしてもよい。
【0053】
具体例として、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つの波長帯域における光の強度が光検出器10で測定された場合であれば、少なくとも1つの波長帯域における光の波長スペクトルにピークが検出されたか否か又は少なくとも1つの波長帯域における光の波長スペクトルと、基準となる光の波長スペクトルとの間における乖離量に基づいてスパークSが爆発性のスパークSであるか否かを判定することができる。
【0054】
或いは、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域を少なくとも含む波長帯域における光の強度が光検出器10で測定された場合であれば、第1の波長帯域、第2の波長帯域及び第3の波長帯域の少なくとも1つにおける光の波長スペクトルにピークが検出された場合にスパークSが爆発性のスパークSであると判定することができる。もちろん、第1の波長帯域、第2の波長帯域及び第3の波長帯域それぞれについて光の波長スペクトルを基準となる波長スペクトルと比較し、少なくとも1つの波長帯域における乖離量が閾値以下又は閾値未満となった場合にスパークSが爆発性のスパークSであると判定するようにしてもよい。
【0055】
一方、PMT12で検出された光の強度の時系列信号に基づいてスパークSの爆発性判定を行う場合には、処理系4の強度−時間波形取得部4BにおいてスパークSに対応する特定の波長帯域における光の強度−時間波形が取得される。そして、爆発性判定部4Cにおいて、スパークSに対応する特定の波長帯域における光の強度−時間波形を閾値と比較することによってスパークSが爆発性のスパークSであるか否かを自動的に判定することができる。或いは、スパークSに対応する特定の波長帯域における光の強度−時間波形を基準となる波形又は基準となるレベルとともに表示装置7に表示させ、ユーザが目視によりスパークSが爆発性のスパークSであるか否かを判定するようにしてもよい。
【0056】
そして、スパークSが爆発性のスパークSでないと判定された場合には、検査対象Oの検査結果を合格とすることができる。一方、スパークSが爆発性のスパークSであると判定された場合には、スパークSの発生位置及び種類を把握することが重要となる。
【0057】
その場合には、ステップS4において、光学カメラ5で撮影されたスパークSの撮影結果に基づいてスパークSの発生位置が特定される。光学カメラ5で撮影されたスパークSの画像は、表示装置7に表示される。このため、ユーザは画像を観察することによってスパークSの発生位置を確認することができる。尚、画素値に対する閾値処理等の画像処理によってスパークSが生じた位置を自動検出するようにしてもよい。
【0058】
次に、ステップS5において、スパークSの発生位置に基づいてスパークSの種類が判定される。スパークSの種類としては、ボルテージスパーク、サーマルスパーク及び複合材のエッジグローが挙げられる。ボルテージスパークは、静電気や被雷時に生じる電位差に起因として生じるスパークである。サーマルスパークは、複合材に熱が溜まることに起因するスパークである。エッジグローは、複合材の端部において電荷の増大によって生じるスパークである。
【0059】
このため、スパークSの発生位置に基づいて、スパークSが生じた検査対象Oの部位を特定することができる。そして、スパークSが生じた検査対象Oの部位を確認することによって、スパークSの種類がボルテージスパーク、サーマルスパーク及び複合材のエッジグローのいずれであるのかを判定することができる。
【0060】
例えば、スパークSが生じた部位が複合材であれば、スパークSがサーマルスパークであると判定することができる。一方、スパークSが生じた部位が金属部品間であればスパークSがボルテージスパークであると判定することができる。また、スパークSが生じた部位が複合材のエッジであれば、スパークSが複合材のエッジグローであると判定することができる。
【0061】
つまり以上のような爆発性スパーク評価システム1及び爆発性スパーク評価方法は、スパークSが爆発性を有する場合には、波長スペクトルの特定の波長帯域にピークが出現するという観測結果を利用して、特定の波長帯域における光の強度に基づいてスパークSの爆発性評価を行うようにしたものである。
【0062】
(効果)
このため、爆発性スパーク評価システム1及び爆発性スパーク評価方法によれば、簡単かつ定量的にスパークSの爆発性の有無を評価することができる。しかも、引火性ガスを用いることなく大気中においてスパークSの爆発性評価を行うことができる。例えば、発生したスパークSが燃料タンク内の雰囲気において爆発を生じるものであるかどうかを大気中の試験によって確認することができる。このため、雷撃や静電気等により発生するスパークSが燃料等の引火の恐れがある物質に引火するかどうかを安全に判定することができる。
【0063】
逆に、引火性ガス雰囲気中において爆発性スパーク評価システム1及び爆発性スパーク評価方法によるスパークSの爆発性評価を行うこともできる。その場合には、スパークSが発生しても爆発しなかった場合において、波長スペクトルにピークが出現したか否か等を判定することによって、爆発しなかった理由がスパークSのエネルギが小さかったためであると推測することができる。
【0064】
加えて、爆発性スパーク評価システム1及び爆発性スパーク評価方法によれば、従来はスパークSが生じると一律不合格となっていた雷撃試験等の供試体であっても、スパークSに爆発性がなければ合格と判定することができる。すなわち、雷撃試験等のスペックを、より無駄のないスペックに変更することが可能となる。その結果、試験時間の削減及び試験費用の低減を図ることができる。
【0065】
特に、航空機の構造体が検査対象Oである場合には、ガラス繊維強化プラスチック(GFRP: Glass fiber reinforced plastics)や炭素繊維強化プラスチック(CFRP: Carbon Fiber Reinforced Plastics)等の複合材が素材として用いられる場合が多い。そのような場合には、複合材を含む検査対象Oに電流を流すことによってスパークSを発生させ、複合材から生じたスパークSが爆発性のスパークSであるか否かを判定することができる。
【0066】
もちろん、航空機の雷撃試験等に限らず、CFRP等の複合材に金属部材を連結して使用される任意の検査対象OについてスパークSの爆発性評価を行うことができる。例えば、自動車、バイク、船又はロボット等の燃料タンクにおける落雷や事故によって大電流が流れた場合におけるスパークSの爆発性評価を行うこともできる。
【0067】
(第2の実施形態)
図4は本発明の第2の実施形態に係る爆発性スパーク評価システムの構成図である。
【0068】
図4に示された第2の実施形態における爆発性スパーク評価システム1Aでは、分光器9を波長フィルタ11Aに置換した点が第1の実施形態における爆発性スパーク評価システム1と相違する。第2の実施形態における爆発性スパーク評価システム1Aの他の構成及び作用については第1の実施形態における爆発性スパーク評価システム1と実質的に異ならないため同一の構成又は対応する構成については同符号を付して説明を省略する。
【0069】
すなわち、爆発性スパーク評価システム1Aの測定系3は、光検出器10に入射させる光を特定の波長帯域における光とするための第1の波長フィルタ11Aと、特定の波長帯域における光を透過させてPMT12に入射させるための第2の波長フィルタ11Bとを有する。
【0070】
光の波長スペクトルからピークの有無を判定すべき特定の波長帯域が定まっている場合には、少なくとも特定の波長帯域についてのみ波長スペクトルを取得すれば、ピークの有無を判定することが可能である。従って、全ての波長帯域における光を分光器9で分光して波長スペクトルを取得する代わりに、第1の波長フィルタ11Aを透過した特定の波長帯域における光の波長スペクトルのみを取得するようにしてもよい。
【0071】
尚、複数の波長帯域における波長スペクトルについてそれぞれピークの有無を判定する場合には、第1の波長フィルタ11Aを可変フィルタとすればよい。或いは、異なる波長帯域の光を透過させて検出する複数の第1の波長フィルタ11A及び光検出器10の組合せを測定系3に設けるようにしてもよい。
【0072】
第2の実施形態における爆発性スパーク評価システム1Aによれば、第1の実施形態における爆発性スパーク評価システム1と同様な効果に加え、波長スペクトルからのピーク検出処理を不要にできるというメリットが得られる。すなわち、限られた波長帯域における光強度の最大値のレベル或いは面積を閾値と単純に比較するのみで、検査対象Oから生じたスパークSが爆発性のスパークSであるか否かを判定することができる。このため、スパークSの爆発性評価を自動的に行う場合はもちろん、ユーザが目視によってスパークSの爆発性評価を行う場合においても、スパークSの爆発性評価が容易となる。
【0073】
(他の実施形態)
以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。
【0074】
例えば、上述した各実施形態では、スパークSが爆発性を有する場合には、光の波長スペクトルにおいて、588nm以上591nm以下の第1の波長帯域、552nm以上555nm以下の第2の波長帯域及び619nm以上623nm以下の第3の波長帯域の少なくとも1つにピークが出現するという観測結果を前提としたが、検査対象Oの材質やスパークSの発生環境が著しく異なる場合には、異なる波長帯域でピークが観測される可能性も否めない。従って、そのような観測結果が得られた場合には、観測結果に応じた波長帯域においてピークが出現することを前提として爆発性スパーク評価システムの機能を決定することができる。爆発性スパーク評価方法についても同様である。
【符号の説明】
【0075】
1、1A 爆発性スパーク評価システム
2 電流印加回路
3 測定系
4 処理系
4A スペクトル取得部
4B 強度−時間波形取得部
4C 爆発性判定部
5 光学カメラ
6 入力装置
7 表示装置
8 記憶装置
9 分光器
10 光検出器
11、11A、11B 波長フィルタ
12 光電子増倍管(PMT)
O 検査対象
S スパーク
図1
図2
図3
図4