【実施例】
【0040】
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例によって何等制限されることはない。
【0041】
先ず、アジルサルタンの溶解性の評価、アジルサルタンの定量、および純度の測定、粉末X線回折(XRD)の測定、示差走査熱量計(DSC)を用いた融点の測定は、以下の方法でおこなった。
【0042】
<アジルサルタンの溶解性評価>
1gのアジルサルタンをナスフラスコに量りとり、室温条件下、5mLの有機溶媒を加えた後、スターラーピースを用いて1時間攪拌を行った。その後、30分間静置して得られた飽和溶液中のアジルサルタン量を、下記<アジルサルタンの純度の測定>における条件と同じ条件で高速液体クロマトグラフィー(HPLC)を用いて検量線法により定量した。
【0043】
<アジルサルタンの純度の測定>
装置:高速液体クロマトグラフィー(HPLC)
機種:2695−2489−2998(Waters社製)
検出器:紫外吸光光度計(測定波長:210nm)
カラム:Kromasil C18、内径4.6mm、長さ15cm(粒子径5μm)(AkzoNobel社製)
カラム温度:30℃一定
サンプル温度:25℃一定
移動相A:アセトニトリル
移動相B:15mMリン酸二水素カリウム水溶液(pH=2.5 リン酸にて調整)
移動相の送液:移動相A,Bの混合比を表1のように変えて濃度勾配制御する。
【0044】
【表1】
【0045】
流速:1.0mL/min
測定時間:40分
上記条件において、アジルサルタンは約7.3分にピークが確認される。以下の実施例、比較例において、アジルサルタンの純度は、すべて、上記条件で測定される全ピークの面積値(溶媒由来のピークを除く)の合計に対する各化合物のピーク面積値の割合である。
【0046】
<アジルサルタンの結晶形の測定>
装置:X線回折装置(XRD)
機種:SmartLab(株式会社リガク製)
測定方法:ASC6 BB Dtex
X 線出力:40kV−30mA
波長:CuKa/1.541882Å
【0047】
<アジルサルタンの融点の測定>
装置:示差走査熱量計(DSC)
機種:DSC6200(エスアイアイ・ナノテクノロジー社製)
昇温条件:5℃/分
ガス:アルゴン
【0048】
製造例1
(アジルサルタンの製造:特許文献1)
直径15cmの2枚撹拌翼を備えた5000mL四つ口フラスコにアジルサルタンメチルエステル100g、メタノール730mLを入れ、撹拌しながら加熱溶解した。そこに2N水酸化リチウム水溶液590mLを添加し、還流温度まで昇温した後、3時間反応を行った。得られた反応溶液を室温まで冷却し、2N塩酸水溶液を用いて反応液のpHを3に調製した。該反応溶液を濃縮して、得られた残渣に水1200mL、ジクロロメタン3000mLを加えて30分間撹拌、15分間静置した後、ジクロロメタン層を分液により分取した。得られたジクロロメタン溶液を濃縮して、得られた残渣に酢酸エチル2000mLを加えて20〜30℃で終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、82.5gのアジルサルタンの無色プリズム晶を得た(アジルサルタン純度:96.12%)。このアジルサルタンを試料として、XRDを測定すると2θ=7.6°、9.3°、17.4°、19.5°、21.3°に特徴的なピークを与える結晶構造を有する化合物であることが分かった。また、DSC測定による融点は157℃であった。
【0049】
(溶解性評価)
製造例1で得られたアジルサルタンの無色プリズム晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:15.8g/L、酢酸エチル:1.3g/L、アセトン:1.9g/L、テトラヒドロフラン:5.9g/Lであった。
【0050】
製造例2
(アジルサルタンの製造:非特許文献1)
直径10cmの2枚撹拌翼を備えた1000mL四つ口フラスコにアジルサルタンメチルエステル50g、0.4N水酸化ナトリウム水溶液780mLを入れ、70℃まで昇温した後、同温度にて1.5時間反応を行った。得られた反応溶液を室温まで冷却し、2N塩酸水溶液を用いて反応液のpHを3に調製した。析出したアジルサルタン結晶を減圧濾過により濾別した後、エタノールを用いてアジルサルタン結晶を洗浄した。得られたアジルサルタン湿体を50℃で乾燥して、44.0gのアジルサルタンの無色プリズム晶を得た(アジルサルタン純度:95.58%)。このアジルサルタンを試料として、XRDを測定すると2θ=9.1°、9.6°、18.2°、21.8°、24.4°に特徴的なピークを与える結晶構造を有する化合物であることが分かった。また、DSC測定による融点は212℃であった。
【0051】
(溶解性評価)
製造例2で得られたアジルサルタンの無色プリズム晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:11.1g/L、酢酸エチル:1.1g/L、アセトン:1.5g/L、テトラヒドロフラン:5.6g/Lであった。
【0052】
実施例1
直径2.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例1で得られたアジルサルタン5gを量りとり、ジメチルホルムアミド10mLを入れ、30℃で加熱溶解した。得られたアジルサルタン溶液に酢酸エチル50mLを加えた後、5℃まで冷却し、終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、4.9gのアジルサルタンの結晶を得た(アジルサルタン純度:99.14%)。このアジルサルタンを試料として、XRDを測定すると、
図1に示すX線回折チャートが得られ、この結晶は2θ=9.3°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は128℃であった(
図2)。
【0053】
(溶解性評価)
実施例1で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:121.9g/L、酢酸エチル:110.1g/L、アセトン:113.8g/L、テトラヒドロフラン:110.4g/Lであった。
【0054】
実施例2
直径2.5cmの2枚撹拌翼を備えた100mL三つ口フラスコに製造例2で得られたアジルサルタン5gを量りとり、ジメチルホルムアミド10mLを入れ、40℃で加熱溶解した。得られたアジルサルタン溶液を30℃以下まで冷却した後、酢酸エチル50mLを加え、さらに冷却し、5℃で終夜撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、4.9gのアジルサルタンの結晶を得た(アジルサルタン純度:98.49%)。このアジルサルタンを試料として、XRDを測定すると、2θ=9.4°、11.4°、13.4°、14.8°、26.1°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は123℃であった。
【0055】
(溶解性評価)
実施例2で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:119.8g/L、酢酸エチル:109.4g/L、アセトン:111.3g/L、テトラヒドロフラン:109.8g/Lであった。
【0056】
実施例3
追加溶媒としてアセトンを使用した以外は、実施例1と同様の操作を行い、4.6gのアジルサルタン結晶を得た(アジルサルタン純度:98.85%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.3°、11.5°、13.3°、14.8°、26.0°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は118℃であった。
【0057】
(溶解性評価)
実施例3で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:120.4g/L、酢酸エチル:111.5g/L、アセトン:112.2g/L、テトラヒドロフラン:111.6g/Lであった。
【0058】
実施例4
追加溶媒として酢酸プロピルを使用した以外は、実施例1と同様の操作を行い、4.4gのアジルサルタン結晶を得た(アジルサルタン純度:99.02%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.3°、11.4°、13.3°、14.8°、26.1°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は124℃であった。
【0059】
(溶解性評価)
実施例4で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:118.6g/L、酢酸エチル:112.4g/L、アセトン:111.9g/L、テトラヒドロフラン:111.8g/Lであった。
【0060】
実施例5
追加溶媒としてメチルエチルケトンを使用した以外は、実施例1と同様の操作を行い、4.8gのアジルサルタン結晶を得た(アジルサルタン純度:98.80%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.3°、11.3°、13.2°、14.9°、26.1°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は120℃であった。
【0061】
(溶解性評価)
実施例5で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:121.1g/L、酢酸エチル:111.4g/L、アセトン:110.6g/L、テトラヒドロフラン:109.9g/Lであった。
【0062】
比較例1
(特許文献2に記載の方法によるアジルサルタン結晶形Aの製造)
直径5.0cmの2枚撹拌翼を備えた300mL三つ口フラスコに製造例1で得られたアジルサルタン5gを量りとり、メタノール50mLを入れ、還流温度で加熱撹拌した。還流温度にて1時間撹拌を行ったが、完全に溶解しなかったため、不溶物を濾過した後に得られたアジルサルタン溶液を25℃まで冷却し、同温度にて1時間撹拌を行った。その後、さらに10℃で2時間撹拌した。次いで、析出した結晶を減圧濾過して分取し、50℃で乾燥して、2.1gのアジルサルタンの結晶を得た(アジルサルタン純度:98.44%)。このアジルサルタンを試料として、XRDを測定すると、
図3に示すX線回折チャートが得られ、2θ=9.1°、18.3°、21.5°、23.8°に特徴的なピークを与えるA型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は201℃であった(
図4)。
【0063】
(溶解性評価)
比較例1で得られたアジルサルタンA型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:13.2g/L、酢酸エチル:1.9g/L、アセトン:2.4g/L、テトラヒドロフラン:7.1g/Lであった。
【0064】
比較例2
(特許文献2に記載の方法によるアジルサルタン結晶形Bの製造)
直径5.0cmの2枚撹拌翼を備えた300mL三つ口フラスコに製造例1で得られたアジルサルタン5gを量りとり、テトラヒドロフラン25mLを入れ、還流温度まで加熱撹拌した。還流温度にて1時間撹拌を行ったが、完全に溶解しなかったため、不溶物を濾過した後に得られたアジルサルタン溶液を25℃まで冷却し、同温度にて1時間撹拌を行った。その後、さらに10℃で2時間撹拌した。次いで、減圧濾過して析出した結晶を分取し、50℃で乾燥して、2.5gのアジルサルタンの結晶を得た(アジルサルタン純度:97.22%)。このアジルサルタンを試料として、XRDを測定すると2θ=9.1°、18.6°、21.5°に特徴的なピークを与えるB型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は197℃であった。
【0065】
(溶解性評価)
比較例2で得られたアジルサルタンB型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:11.5g/L、酢酸エチル:1.7g/L、アセトン:1.9g/L、テトラヒドロフラン:6.3g/Lであった。
【0066】
実施例6
比較例1で得られたアジルサルタンのA型結晶を使用した以外は、実施例2と同様の操作を行い、4.8gのアジルサルタン結晶を得た(アジルサルタン純度:99.69%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.3°、11.2°、13.4°、14.7°、26.0°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は130℃であった。
【0067】
(溶解性評価)
実施例6で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:120.2g/L、酢酸エチル:114.4g/L、アセトン:110.9g/L、テトラヒドロフラン:111.5g/Lであった。
【0068】
実施例7
比較例2で得られたアジルサルタンのB型結晶を使用した以外は、実施例2と同様の操作を行い、4.8gのアジルサルタン結晶を得た(アジルサルタン純度:99.44%)。このアジルサルタンを試料としてXRDを測定すると、2θ=9.3°、11.2°、13.5°、14.6°、26.0°に特徴的なピークを与えるM型結晶構造を有する化合物であることが分かった。また、DSC測定による融点は126℃であった。
【0069】
(溶解性評価)
実施例7で得られたアジルサルタンM型結晶の各有機溶媒への溶解性を上記方法で確認したところ、メタノール:119.1g/L、酢酸エチル:113.1g/L、アセトン:111.1g/L、テトラヒドロフラン:109.5g/Lであった。