特許第6671677号(P6671677)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 中国電力株式会社の特許一覧
<>
  • 特許6671677-超臨界水ガス化システム 図000002
  • 特許6671677-超臨界水ガス化システム 図000003
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6671677
(24)【登録日】2020年3月6日
(45)【発行日】2020年3月25日
(54)【発明の名称】超臨界水ガス化システム
(51)【国際特許分類】
   C10J 3/72 20060101AFI20200316BHJP
   C10J 3/78 20060101ALI20200316BHJP
【FI】
   C10J3/72 B
   C10J3/78
【請求項の数】5
【全頁数】12
(21)【出願番号】特願2019-554705(P2019-554705)
(86)(22)【出願日】2019年4月25日
(86)【国際出願番号】JP2019017696
【審査請求日】2019年10月3日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000211307
【氏名又は名称】中国電力株式会社
(73)【特許権者】
【識別番号】504136568
【氏名又は名称】国立大学法人広島大学
(73)【特許権者】
【識別番号】596133119
【氏名又は名称】中電プラント株式会社
(73)【特許権者】
【識別番号】592148878
【氏名又は名称】株式会社東洋高圧
(74)【代理人】
【識別番号】110000176
【氏名又は名称】一色国際特許業務法人
(72)【発明者】
【氏名】和田 泰孝
(72)【発明者】
【氏名】谷川 博昭
(72)【発明者】
【氏名】松村 幸彦
(72)【発明者】
【氏名】川井 良文
(72)【発明者】
【氏名】野口 琢史
【審査官】 上坊寺 宏枝
(56)【参考文献】
【文献】 国際公開第2018/083785(WO,A1)
【文献】 国際公開第2016/135979(WO,A1)
【文献】 国際公開第2016/139723(WO,A1)
【文献】 特開2002−263465(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C10J 3/72、3/78
(57)【特許請求の範囲】
【請求項1】
バイオマスを調製して生成されたスラリー体を超臨界水ガス化処理するガス化反応器と、前記ガス化反応器で超臨界水ガス化処理される前に前記スラリー体を予熱する第一熱交換器と、を備え、前記スラリー体を超臨界状態で分解処理して燃料ガスを生成する超臨界水ガス化システムであって、
前記第一熱交換器にて前記スラリー体を予熱するために利用する蒸気を排出するドラム型ボイラを有する加熱部と、
前記加熱部と前記第一熱交換器との間を連結する流路に設けられ、前記蒸気の流量を制御する流量調整部と、を備え、
前記流量調整部は、前記蒸気の流量を調整することで、前記第一熱交換器の出口における前記スラリー体の温度を制御する
ことを特徴とする超臨界水ガス化システム。
【請求項2】
前記第一熱交換器とは別の第二熱交換器を更に備え、
前記第一熱交換器は、前記第一熱交換器にて前記スラリー体を予熱して温度が低下した前記蒸気を利用して、前記ガス化反応器の生成物を冷却する
ことを特徴とする請求項1に記載の超臨界水ガス化システム。
【請求項3】
前記加熱部は、前記ドラム型ボイラへ給水するための給水ポンプと、前記給水ポンプを駆動するための駆動用タービンと、を更に備え、
前記駆動用タービンは、前記第二熱交換器にて生成物を冷却した後の蒸気を利用して駆動されることを特徴とする請求項2に記載の超臨界水ガス化システム。
【請求項4】
前記加熱部は、前記ドラム型ボイラと当該ドラム型ボイラへの給水流路との間で水を循環する循環流路を更に備えていることを特徴とする請求項1〜3のいずれか一項に記載の超臨界水ガス化システム。
【請求項5】
前記ドラム型ボイラは、前記ガス化処理によって生成された生成ガスを燃料として使用することを特徴とする請求項1〜4のいずれか一項に記載の超臨界水ガス化システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バイオマスに水および触媒を添加して調整されたスラリー体を、超臨界状態で分解処理して燃料ガスを生成する超臨界水ガス化システムに関する。
【背景技術】
【0002】
近年、含水性バイオマス(焼酎残渣・採卵鶏糞・下水汚泥等)を超臨界水でガス化する技術において、含水性バイオマスの超臨界水ガス化により得られた生成物や、その熱を利用して、含水性バイオマスまたは該バイオマスのスラリー体を加熱する二重管式熱交換器を備えた超臨界水ガス化システムが開発されている(例えば、特許文献1および2参照)。なお、超臨界水とは、374℃以上、22.1MPa以上の水である。また、この場合、含水性バイオマスは燃料ガスの原料となる。
【0003】
ここで、一般的なバイオマスによるガス化システムは、熱交換器・加熱器およびガス化反応器等を含んで構成され、加水分解によって有機物を水素・メタン・エタン・一酸化炭素・二酸化炭素等にガス化する。例えば、熱交換器は、焼酎残渣・採卵鶏糞・下水汚泥等のバイオマスに、水および活性炭(ガス化触媒)を加えて混合することで調整されるスラリー体を加熱する装置である。加熱器は、熱交換器で加熱されたスラリー体をガス化反応温度である600℃まで昇温する装置である。ガス化反応器は、このスラリー体を水熱処理して有機物をガス化し、超臨界状態の高温流体にする装置である。超臨界状態となった流体は、その後、常温まで熱交換されて気液分離され、気体分が燃料ガスとして利用される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−271146号公報
【特許文献2】特開2009−242697号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上述のような超臨界水ガス化システムでは、ガス化の際に触媒として使用される非金属触媒(例えば、活性炭)の微細粉末、原料由来の無機質、ガス化の際に生成されるタール・チャー等によって、二重管式熱交換器の二重管における内管や、内管と外管との間に閉塞が生じる場合がある。
【0006】
具体的に、例えば、ガス化反応後の処理後流体は、全長約100mの二重管式熱交換器の内管と外管との間を流れ、内管内を流れるスラリー体との熱交換により液温が下げられた後、更に冷却して気液分離されることでガスと排水に分離される。そして、ガスは燃料として使用され、余剰ガスはタンクへ蓄圧して別途使用される。このとき、かかる二重管式熱交換器では、処理後流体の熱をガス化原料であるスラリー体の加熱に利用している。
【0007】
ところが、二重管式熱交換器の中間部分では、スラリー体の主体である水の物性の関係から温度差が小さくなるため熱交換が非効率になる。これは、スラリー体圧力が処理後流体圧力より高圧となるためで、内管内のスラリー体の擬臨界点温度が内管と外管との間における処理後流体の擬臨界点温度より高くなるが、水は擬臨界点で定圧比熱が最大となるため、熱交換器内の広い範囲で処理後流体とスラリー体の温度差が小さくなり、単位面積当たりの交換熱量が減少することが原因である。また、擬臨界点温度近傍で密度が大きく変化することも、この原因となっている。
【0008】
このため、二重管式熱交換器の内管内を流れるスラリー体から生成されるタールやチャーによって、当該熱交換器内管およびその出口以降の配管で閉塞が発生し、ひいてはシステムが停止する虞があった。
【0009】
また、熱交換器は、高温高圧に耐え得るために、高価な材料の厚肉配管を用いて法的規制をクリアした技士が溶接を行うため高価である。従って、極力小型の熱交換器を用いて効率よく温度上昇させたい要望がある。例えば、全長の長い熱交換器の場合、昇温に時間が掛かる。そして、中温部・高温部でタールやチャーが生成されるため、ここでの反応時間が長くなるとタールやチャーの生成量が増大し、ひいては熱交換器の内管出口における流路閉塞を招く虞があった。
【0010】
そこで、本発明者等は、上述した熱交換器の流路閉塞防止と、ガス化率の向上の観点から、前記スラリー体を、ガス化反応温度に近い温度で且つ超臨界水ガス化系統圧力に近い圧力の蒸気を利用して予熱することに着目した。
【0011】
本発明は、上記課題に鑑みてなされたものであり、燃料費用を最低限に抑えつつ熱交換器をコンパクト化し、タールやチャーの生成を抑制して熱交換器の配管閉塞を回避すると共に、含水性バイオマスからメタン・水素・一酸化炭素等の燃料ガスをより効率的に生成できる超臨界水ガス化システムを提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明に係る超臨界水ガス化システムは、
バイオマスを調製して生成されたスラリー体を超臨界水ガス化処理するガス化反応器と、前記ガス化反応器で超臨界水ガス化処理される前に前記スラリー体を予熱する第一熱交換器と、を備え、前記スラリー体を超臨界状態で分解処理して燃料ガスを生成する超臨界水ガス化システムであって、
前記第一熱交換器にて前記スラリー体を予熱するために利用する蒸気を排出するドラム型ボイラを有する加熱部と、
前記加熱部と前記第一熱交換器との間を連結する流路に設けられ、前記蒸気の流量を制御する流量調整部と、を備え、
前記流量調整部は、前記蒸気の流量を調整することで、前記第一熱交換器の出口における前記スラリー体の温度を制御することを特徴とする。
【0013】
また、本発明に係る超臨界水ガス化システムは、
前記第一熱交換器とは別の第二熱交換器を更に備え、
前記第一熱交換器は、前記第一熱交換器にて前記スラリー体を予熱して温度が低下した前記蒸気を利用して、前記ガス化反応器の生成物を冷却することとしても良い。
【0014】
前記加熱部は、前記ドラム型ボイラへ給水するための給水ポンプと、前記給水ポンプを駆動するための駆動用タービンと、を更に備え、
前記駆動用タービンは、前記第二熱交換器にて生成物を冷却した後の蒸気を利用して駆動されることとしても良い。
【0015】
前記加熱部は、前記ドラム型ボイラと当該ドラム型ボイラへの給水流路との間で水を循環する循環流路を更に備えていることとしても良い。
【0016】
前記ドラム型ボイラは、前記ガス化処理によって生成された生成ガスを燃料として使用することとしても良い。
【0017】
なお、熱交換器での予熱は、反応器での水熱処理を考慮し、反応器温度が600℃の場合、その近傍である538℃〜566℃の蒸気で行うことが好ましい。
【発明の効果】
【0018】
本発明によれば、スラリー体を熱交換器で加熱部からの蒸気を利用し予熱することで、燃料費用を最低限に抑えつつ熱交換器をコンパクト化し、また、コンパクト化により昇温速度を向上することで、タールやチャーの生成を抑制し、熱交換器の配管閉塞を回避すると共に、含水性バイオマスからメタン・水素・一酸化炭素等の燃料ガスをより効率的に生成できる。
【図面の簡単な説明】
【0019】
図1】本発明の一実施形態に係る超臨界水ガス化システムの概略構成を示す図である。
図2】他の実施形態に係る超臨界水ガス化システムの概略構成を示す図である。
【発明を実施するための形態】
【0020】
以下、本発明の好ましい実施形態を、図面を参照して詳細に説明する。なお、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨または思想に反しない範囲で適宜変更可能であり、そのような変更を伴う超臨界水ガス化システムもまた本発明の技術思想に含まれる。
【0021】
==本発明に係る超臨界水ガス化システムの全体構成==
図1は、本発明の一実施形態として説明する超臨界水ガス化システムの概略構成を示す図である。図1に示すように、本発明に係る超臨界水ガス化システム(以下、適宜、単に「システム」と称する場合がある。)は、調整タンク100・破砕機110・供給ポンプ120・第一熱交換器130・第二熱交換器131・第三熱交換器132・第四熱交換器133・減圧装置134・ドラム型ボイラ140・ガス化反応器141・反応器用バーナ142・ボイラ水冷壁143・過熱器144・気液分離器170・ガスタンク171・触媒回収器172・給水ポンプ180等を備えており、供給ポンプ120と第一熱交換器130の間・第一熱交換器130とガス化反応器141の間・ガス化反応器141と第二熱交換器131の間・第二熱交換器131と第三熱交換器132の間および第三熱交換器132と第四熱交換器133の間は、それぞれ配管によって接続されている。
【0022】
また、本実施形態の場合、本システムは、ドラム型ボイラ140・第一熱交換器130および第二熱交換器131が、流路150によって連結されている。かかる流路150は、ドラム型ボイラ140と第一熱交換器130の間に流量調整弁160を備えている。そして、ドラム型ボイラ140・第一熱交換器130および第二熱交換器131の間で、ドラム型ボイラ140から送出される蒸気(詳細は、後述する)を流通し、各々の用途に利用している。なお、この流路150の構成は一例であってこれに限らない。
【0023】
さらに、本実施形態の場合、第一熱交換器130(ガス化反応器141で超臨界水によりガス化処理される前にスラリー体を予熱する熱交換器)、第二熱交換器131(スラリー体を予熱し温度が低下した蒸気を利用して、ガス化反応器141の生成物を冷却すると共に熱回収する熱交換器)、第三熱交換器132(ガス化反応器141から第二熱交換器131を介して送出される生成物を100℃〜150℃まで冷却すると共に熱回収する熱交換器)、第四熱交換器133(復水ポンプ193から供給される水を利用して第三熱交換器132から送出される生成物をほぼ常温まで冷却すると共に熱回収する熱交換器)は、それぞれ二重管式熱交換器で構成されている場合について述べるが、本発明はこれに限らない。
【0024】
調整タンク100は、含水性バイオマス(バイオマスのスラリー体であっても良い。以下、同じ。)・非金属系触媒・水等を混合するタンクである。本システムで処理されるスラリー体は、調整タンク100に投入された含水性バイオマスおよび非金属系触媒、並びに必要に応じて投入された水を混合して、含水性バイオマスに非金属系触媒を懸濁することにより調製される。なお、水の投入は、バイオマスの含水率に応じて適宜行われる。上記含水性バイオマスは、例えば、焼酎残渣・採卵鶏糞・下水汚泥等である。また、上記非金属系触媒としては、例えば、活性炭・ゼオライト・これらの混合物等を用いることができるが、平均粒径200μm以下の粉末を用いることが好ましく、平均粒径200μm以下の多孔質の粒子を用いることがより好ましい。
【0025】
破砕機110は、調整タンク100で調製したスラリー体中のバイオマスを破砕して、バイオマスを予め均一な大きさ(好ましくは平均粒径が800μm以下、より好ましくは平均粒径が300μm以下)にするための装置である。
【0026】
加熱部としてのドラム型ボイラ140は、水冷壁143・過熱器144およびドラム145を含んで構成され、給水ポンプ180から供給され、第三熱交換器132を介すことで予熱された水を水冷壁143で加熱して蒸気を生成し、更にこの蒸気をドラム145を介して送給した過熱器144にて過熱する。そして、かかる過熱により発生する538℃〜566℃程度、および15MPa〜20MPa程度の蒸気を、第一熱交換器130へと供給する。このとき、給水ポンプ180は、後述する第二熱交換器131から送給される蒸気(ガス化反応器141によって生成される生成物を冷却した後の蒸気)を利用する駆動タービン181によって駆動される。
なお、前記ドラム型ボイラ140は、石炭や重油等の安価な燃料の使用が可能で、且つ、高いボイラ効率で蒸気を発生できるため、安価に蒸気を供給できる。
【0027】
ガス化反応器141は、調整タンク100にて含水性バイオマスに水や非金属系触媒を加えて混合し調製したスラリー体、または破砕機110で破砕したバイオマスに非金属系触媒を加えて混合し調整したスラリー体を、超臨界水ガス化処理してスラリー体中のバイオマスをガス化する装置である。その条件は、超臨界状態(つまり、374℃以上および22.1MPa以上の条件下)が好ましいが、タールやチャーの生成を抑制すると共に炭素ガス化率を高めることができる温度および圧力下(600℃以上、25〜35MPaの範囲内)がより好ましい。このように、バイオマスを超臨界水でガス化処理することでバイオマスを分解し、メタン・水素ガス・一酸化炭素・エタン・エチレン等の燃料ガスを生成できる。
【0028】
また、ガス化反応器141は、その内部流体温度および外部燃焼ガス温度を測定する温度測定装置と、ガス化反応器141の内部流体圧力および入口出口差圧を測定するための圧力測定装置と(共に図示せず)、を備えることが好ましい。
【0029】
本実施形態の場合、ガス化反応器141は反応器用バーナ142を備えており、不図示のコイル状の配管を反応器用バーナ142で加温する。このような管状反応器を用いた場合、配管の径や長さを調整することで、反応時間を一定時間確保できる利点がある。なお、ガス化反応器としては、これに限定されず、この他、触媒層反応器・流動層反応器・噴流床反応器等を広く適用できる。また、前述の条件下でバイオマスを含むスラリー体を水熱処理できる装置であれば特に制限されない。
【0030】
二重管式熱交換器として構成される第一熱交換器130は、ドラム型ボイラ140から供給される蒸気(この場合、538℃〜566℃程度、および15MPa〜20MPa程度の蒸気)の熱を利用して、ガス化反応器141で超臨界水ガス化処理される含水性バイオマスに非金属系触媒を懸濁したスラリー体を所定の温度(この場合、600℃近辺)まで予熱する装置である。
【0031】
ここで、従来のスラリー体と処理後流体を熱交換する二重管式熱交換器では、水の物性の関係から、その中間部分で温度差が小さくなる。すなわち、スラリー体圧力が、処理後流体圧力より高いため、擬臨界点温度は処理後流体よりスラリー体の方が高くなり、水の定圧比熱は擬臨界点で最大となることから、熱交換器内の大きな範囲で処理後流体とスラリー体の温度差が小さくなる。このため、単位伝熱面積当たりの交換熱量が減少し、熱交換が非効率になる虞があった。なお、擬臨界点温度近傍で密度が大きく変化することも、温度差が小さくなることの原因となっている。
【0032】
また、従来の二重管式熱交換器では、交換熱量を増大するべく全長が長く形成されていたことから温度上昇に時間が掛かる。中温部・高温部ではタールやチャーが生成されるが、温度上昇に時間が掛かると、ここでのタールやチャーの生成時間が長くなるため生成量が増大し、ひいては熱交換器内やその出口で配管が閉塞する虞があった。
【0033】
そこで、本システムでは、第一熱交換器130で、ドラム型ボイラ140から供給される蒸気(この場合、538℃〜566℃程度、および15MPa〜20MPa程度の蒸気)を利用して、上記スラリー体を予熱するようにした。すなわち、第一熱交換器130は、ガス化反応器141に供給されるスラリー体を、当該ガス化反応器141で超臨界水によりガス化処理される前に、より600℃に近づくよう予熱できる。
【0034】
具体的には、図示省略するが、第一熱交換器130における二重管は既存の二重管式熱交換器と同様に、外管と内管とから構成されており、供給ポンプ120によって送給されるスラリー体が内管内の流路を流れ、ドラム型ボイラ140から供給される蒸気が外管と内管との間の流路を流れる。すなわち、第一熱交換器130では、内管内の流路にスラリー体が流れてガス化反応器141に供給され、外管と内管との間の流路に対して、スラリー体が流れる方向とは逆方向に、蒸気が流れて第二熱交換器131に供給される。
【0035】
また、ドラム型ボイラ140と第一熱交換器130との間を結ぶ流路150には、ドラム型ボイラ140から供給される蒸気の流量を制御する流量調整部としての流量調整弁160が設けられている。この流量調整弁160は、ドラム型ボイラ140から供給される蒸気(スラリー体を予熱するための蒸気)の流量を制御することで、当該蒸気(538℃〜566℃程度、および15MPa〜20MPa程度の蒸気)の温度(換言すれば、スラリー体の予熱温度)を600℃近辺(好ましくは、538℃〜566℃程度)で維持する。このとき、第一熱交換器130における供給ポンプ120からのスラリー体が流通する配管の出口側に温度計(図示省略)を設け、流量調整弁160を調整することが好ましい。さらに、流量調整弁160は、ドラム型ボイラ140から供給される蒸気の流量を制御することで、当該蒸気を15MPa〜20MPa程度に維持しても良い。この場合、スラリー体の予熱温度より蒸気の圧力維持の方が優先される。
【0036】
このように、第一熱交換器130で、ドラム型ボイラ140からの供給蒸気を利用した上記スラリー体の予熱により、第一熱交換器130を大幅にコンパクト化できる。また、スラリー体の昇温速度向上により、タールやチャーの生成を抑制して第一熱交換器130の配管閉塞を回避し、且つ、含水性バイオマスからメタン・水素・一酸化炭素等の燃料ガスをより効率的に生成できる。しかも、かかる蒸気は流路150を介して後述する第二熱交換器131・給水ポンプ180を駆動するための駆動タービン181・蒸気タービン190等に送出され、各々の用途に再利用されることで、システム全体の燃料消費を最小にできる。
【0037】
冷却器として機能する第二熱交換器131は、第一熱交換器130を介してガス化反応器141から供給される排出物を冷却すると共に熱回収するための装置である。この第二熱交換器131では、第一熱交換器130から排出されたスラリー体を予熱した後の蒸気と上記排出物(ガス化反応器141によって生成される生成物)を熱交換することで、当該排出物を600℃から150℃〜200℃まで冷却すると共に熱を回収して有効利用する。
【0038】
また、第二熱交換器131と同様に冷却器として機能する第三熱交換器132は、第二熱交換器131から供給される排出物を冷却すると共に熱を火力発電システム側へ回収するための装置である。この第三熱交換器132では、給水ポンプ180から供給される水と上記排出物を熱交換することで、当該排出物を150℃〜200℃から100℃〜150℃まで冷却する。その後、第四熱交換器133で、復水ポンプ193から供給される水と上記排出物を熱交換することで、当該排出物を100℃〜150℃からほぼ常温まで冷却する。また、排出物を冷却した後の水は、脱気器200・給水ポンプ180および第三熱交換器132を介して水冷壁143へと供給された後、加熱されて蒸気の状態で過熱器144へ送られる。
【0039】
減圧装置134は、第四熱交換器133と気液分離器170との間に配設され、ガス化反応器141から第二熱交換器131・第三熱交換器132および第四熱交換器133を介して排出される排出物を、この場合、25MPaから消費場所への送ガスや容器への蓄圧が可能な圧力まで減圧する。本システムでは、ガス化反応器141から排出される排出物には、可燃性の高い燃料ガス(例えば、メタン・水素・一酸化炭素・エタン・エチレン)や水蒸気等が含まれているため、減圧装置134が上記排出物を冷却し減圧することで、火災等の危険性を低減させたり、水蒸気を水に変換させて気液分離し易くさせたりする役目を果たす。
【0040】
なお、本実施形態では、ガス化反応器141から排出された排出物を冷却すると共に熱回収する装置として第二熱交換器131・第三熱交換器132・第四熱交換器133を例に挙げて説明したが、かかる冷却器としては、これらに限らず、ガス化反応器141から排出された排出物を冷却できる装置であれば、どのような装置を用いても良い。また、減圧器としても同様に、減圧装置134に限らない。
【0041】
また、前述の熱交換器も向流式に限らず、例えば、並流式でも良い。さらに、二重管式熱交換器に限らず、例えば、スパイラル式やプレート式の熱交換器でも良い。
【0042】
以上のように、本システムに第一〜第四熱交換器130〜133を備えることにより、エネルギーを有効に利用できるので、低エネルギー・低コストで含水性バイオマスから燃料ガスを生成できる。また、第一熱交換器130により昇温速度が大幅に向上されるので、ガス化反応器141において燃料ガスへ効率的に変換できる。従って、少なくとも第一熱交換器130を備えた本システムは(第二熱交換器131・第三熱交換器132および第四熱交換器133を含んだ場合は更に)、経済性に優れている。
【0043】
気液分離器170は、ガス化反応器141・第二〜第四熱交換器131〜133を順次介して供給された排出物を、燃料ガス等を含む生成ガス(気体成分)と、水または水に灰分および非金属系触媒が懸濁された液体成分とに分離する装置である。この気液分離器170としては、セパレーター等の既存の気液分離器を用いることができる。
【0044】
ガスタンク171は、気液分離器170によって分離された気体成分(生成ガス)を貯える容器(好ましくは耐圧容器)である。減圧装置134で減圧され、気液分離器170へと移送された排出物は、燃料ガスを含む生成ガス(気体成分)と、水と灰分と非金属系触媒等の混合液(液体成分)とに分離され、生成ガスはガスタンク171に貯えられる。なお、混合液に非金属系触媒が含まれる場合は、触媒回収器172によって灰分・非金属系触媒・水にそれぞれ分離し、非金属系触媒を回収しても良い。これにより、非金属系触媒の再利用が可能となる。
【0045】
ドラム型ボイラ140内に配置された過熱器144は、復水ポンプ193から第四熱交換器133・脱気器200・給水ポンプ180および第三熱交換器132を介して送られ水冷壁143で加熱された蒸気の温度を、ガスタンク171に貯えられた生成ガスの一部または燃料ガス(LNGやLPG等)における大気等の酸素を含むガス中での燃焼熱を使って更に上昇させるための熱交換用の配管群である。また、ドラム型ボイラ140は、ガスタンク171に貯えられた生成ガスの一部または燃料ガス(LNGやLPG等)における大気等の酸素を含むガス中での燃焼熱を使って加熱された前述の蒸気によって第一熱交換器130を加熱することで、含水性バイオマスに非金属系触媒を懸濁したスラリー体を所定の温度(この場合、600℃近辺)まで予熱する装置である。なお、ドラム型ボイラ140の燃料は、ガス燃料に限らず、石炭や木質バイオマス等の固体燃料または重油や軽油等の液体燃料でも良い。その際も生成ガスを併用して良い。その上、このドラム型ボイラ140は、水冷壁143とドラム145を結ぶ流路と、当該ドラム145との間でドラム145内の水を循環しながら生成される蒸気を、過熱器144を通して温度を上げて蒸気タービン190へ移送する。
【0046】
供給ポンプ120は、調整タンク100で調製したスラリー体または破砕機110でバイオマスを破砕したスラリー体を第一熱交換器130に供給する装置である。スラリー体は、第一熱交換器130(二重管の内管内の流路)を介してガス化反応器141に供給される。供給ポンプ120は、例えば、プランジャーポンプ・高圧ピストンポンプ・ダイアフラムポンプ等を用いることができる。
【0047】
蒸気タービン190は、例えば、不図示の火力発電所に配設され、本システム(具体的には、ドラム型ボイラ140内の過熱器144)と伝熱管を介して接続されている。そして、ドラム型ボイラ140の蒸気と第二熱交換器131から排出される蒸気とを利用することで、蒸気タービン190を回転させて同軸に接続される発電機191で発電し、その後、蒸気は復水器192にて復水される。
【0048】
なお、本実施形態では図示省略しているが、本システムに、ガスタンク171に貯えられた生成ガスを燃料として利用することで発電する発電装置を備えてもよい。この場合、発電装置は、例えば、ガスエンジン・ガスタービン・スターリングエンジン・燃料電池等の既存の装置を広く適用できる。
【0049】
また、本システムに予め含水性バイオマスを水熱処理する前処理装置を備えることで、バイオマスつまり高分子の集合体を個別に分解できるので、流動性が高まると共に、ガス化反応器141で処理されるバイオマスと水や非金属系触媒との接触効率を高め、タールやチャーの生成の更なる抑制が可能となると共に、バイオマスからメタン・水素・一酸化炭素等の燃料ガスを効率よく生成可能になる。
【0050】
このように、本システムに、第二〜第四熱交換器131〜133・気液分離器170等を備えることで、ガス化反応器141から排出される排出物から燃料ガスを含む生成ガスを安全に回収できる。
【0051】
また、本システムに、バイオマスを破砕する破砕機110を備えることで、バイオマスを予め破砕できるので、バイオマスのスラリー化やガス化の効率を高めることができる。
【0052】
さらに、本システムで得られた燃料ガスを用いて、ガスエンジンによる発電を行うことで、電力と排熱を得ることができるので、石炭・石油等の化石燃料の省資源化を図ることが可能になる。
【0053】
さらに、本システムでは、ドラム型ボイラ140から排出される前記蒸気の熱を利用して、第一熱交換器130にてガス化反応器141へと移送されるスラリー体を予熱することで、ガス化反応器141に対してスラリー体を確実にドラム型ボイラ140から送出される蒸気温度近辺の状態で移送できるので、当該スラリー体の昇温不足等の状態を回避できる。このため、従来のシステムにおいて第一熱交換器130とガス化反応器141との間に設けられていた加熱器を排除できる。
【0054】
以上、説明したように、本システムは、含水性バイオマスを含むスラリー体を超臨界水ガス化処理するガス化反応器141と、ガス化反応器141で処理される前に前記スラリー体を予熱する第一熱交換器130と、加熱部としてのドラム型ボイラ140と、蒸気の流量を制御するための流量調整弁160と、を備えている。このとき、流量調整弁160は、第一熱交換器130とドラム型ボイラ140との間を連結する流路150に配設されている。そして、第一熱交換器130は、内管を流れるスラリー体の加温に、ドラム型ボイラ140の蒸気(この場合、538℃〜566℃程度,15MPa〜20MPa程度の主蒸気)を利用することで、燃料費用を抑えると共にスラリー体より多量の蒸気を必要に応じて投入可能となり、もってスラリー体の昇温速度を向上し、スラリー体から生成されるタールやチャーの生成を抑制して第一熱交換器130の内管の閉塞を防止できる。
このとき、多量の蒸気を投入することは多量の熱量を投入することになるため、第一熱交換器130をコンパクト化できる。
【0055】
また、タールやチャーへの変換を抑制された含水性バイオマスからメタン・水素・一酸化炭素等を生成できるので、より効率的に燃料ガスを生成でき、ガス化効率を向上できる。
さらに、スラリー体加熱後の蒸気によって、ガス化反応器141の生成物を第二熱交換器131にて冷却すると共に熱回収することで、燃料費用を最低限に抑える更なる効果も期待できる。
【0056】
なお、加熱部としてのドラム型ボイラ140は、上述した実施形態に限らず、例えば、ガス化反応器141を含んで構成され、当該ドラム型ボイラ140の燃焼を利用してガス化反応器141を加熱することとしても良い。この場合、ガス化反応器141を加熱する加熱手段(例えば、反応器用バーナ142)を別体で設ける必要がなく、システム全体としての構成を簡略化できる。
【0057】
また、加熱部としてのドラム型ボイラ140は、当該ドラム型ボイラ140から排出される前述の蒸気の熱を利用して、ガス化反応器141を加熱することとしても良い。このとき、ガス化反応器141には、ドラム型ボイラ140から蒸気を供給されるコイル状の加熱用配管等を、当該ガス化反応器141のコイル(不図示)の外部(外周面)または内部(内周面)に配設して二重管とすることが好ましい。この場合、ドラム型ボイラ140から排出される蒸気を熱源として有効利用できるので、ガス化反応器141でスラリー体を効率よく加熱できる。
【0058】
また、蒸気タービン190の駆動源としては、ドラム型ボイラ140から排出される前記蒸気に限らない。例えば、図1に示すように、ドラム型ボイラ140から排出される前記蒸気に加えて、第一熱交換器130および第二熱交換器131を順次介して供給される前記蒸気等を利用し、蒸気タービン190を駆動しても良い。
【0059】
また、調整タンク100でバイオマスと非金属系触媒と水を混合した混合物を調製する際の非金属系触媒とバイオマス(乾燥状態のバイオマス)との質量比としては、1:1〜20の範囲が好ましく、バイオマスのガス化効率が高い1:1〜5の範囲が特に好ましい。また、混合する水の量は、バイオマスの含水率が70〜99wt%となるように調整することが好ましい。これにより、バイオマスのガス化率を高めることができる。
【0060】
ガス化反応器141におけるバイオマスのスラリー体の水熱処理条件としては、超臨界水条件(374℃以上、且つ、22.1MPa以上)であれば特に制限されないが、タールやチャーの生成を抑制すると共にガス化率を高めることができる温度(500℃以上)および圧力(25〜35MPaの範囲)下で行うことが好ましく、ガス化率・機器コスト・劣化防止の観点から、600℃,25MPaの条件が特に好ましい。
【0061】
ガスタンク171に貯えられた生成ガスは、ドラム型ボイラ140・反応器用バーナ142に供給され燃焼させられる。ドラム型ボイラ140・反応器用バーナ142は、供給された生成ガスを燃料として、例えば、大気等の酸素を含むガス中で燃焼して、水冷壁143および/または過熱器144の蒸気や、ガス化反応器141内部のスラリー体を加熱する。
【0062】
また、ドラム型ボイラ140の燃焼ガスをガス化反応器141に供給して、スラリー体を加熱しても良い。
【0063】
第一熱交換器130で前述のスラリー体を予熱した後、第二熱交換器131に供給された蒸気は、ガス化反応器141にて生成された生成物から熱を吸収することで、当該生成物を冷却させた後、駆動タービン181や蒸気タービン190へと移送され、これら駆動タービン181や蒸気タービン190の駆動に利用される。なお、第二熱交換器131から排出される生成物を冷却させた後の高温高圧の蒸気の利用用途としては、給水ポンプ180を駆動するための駆動タービン181や蒸気タービン190(2段目以降)に限らず、給水加熱器・脱気器・小型タービン等の圧力や温度の条件が適切な蒸気利用先に広く適用できる。
【0064】
また、超臨界水ガス化システムとしては、前述した実施形態に限らず、例えば、図1との対応部分に同一符号を付した図2に示すように、第二熱交換器131(図1参照)を設けることなく、第一熱交換器130から排出されたスラリー体を予熱した後の蒸気を、第一熱交換器130の下流における流路150の温度より低く、且つ、流路150の圧力より低い箇所(例えば、脱気器200)へ回収するようにしても良い。なお、この回収箇所としては、この他、復水ポンプ193の出口や、不図示の給水加熱器等も適用可能である。また、回収箇所を第一熱交換器130の下流の流路150における温度・圧力の条件により、切り替えても良い。
【0065】
本実施形態において用いられる非金属系触媒としては、例えば、活性炭・ゼオライト・これらの混合物等を挙げることができる。また、触媒としては、金属系触媒やアルカリ触媒を利用できる。
【符号の説明】
【0066】
100…調整タンク 110…破砕機
120…供給ポンプ 130…第一熱交換器(熱交換器)
131…第二熱交換器 132…第三熱交換器
133…第四熱交換器 134…減圧装置
140…ドラム型ボイラ(加熱部) 141…ガス化反応器
142…反応器用バーナ 143…水冷壁
144…過熱器 145…ドラム
150…流路 160…流量調整弁(流量調整部)
170…気液分離器 171…ガスタンク
172…触媒回収器 180…給水ポンプ
181…駆動タービン 190…蒸気タービン
191…発電機 192…復水器
193…復水ポンプ
【要約】
本発明では、第一熱交換器130が、含水性バイオマスを含むスラリー体を、ドラム型ボイラ140からの蒸気を利用して予熱することで、燃料費用を最低限に抑えると共に、第一熱交換器130をコンパクト化して、タールやチャーの生成を抑制し、第一熱交換器130の配管が閉塞されることを回避でき、且つ、燃料ガスをより効率的に生成できる。また、予熱する際に、流量調整弁160が、蒸気の流量を調整して第一熱交換器130出口におけるスラリー体温度を制御することで、第一熱交換器130出口のスラリー体の昇温不足を回避できる。このため、従来システムで第一熱交換器130とガス化反応器141との間に設けられていた加熱器を排除できる。
図1
図2