【課題を解決するための手段】
【0010】
本発明の目的は、酸素および少なくとも1つのn型ドーパントを備える単結晶シリコンの半導体ウェハを製造するための方法であって、
n型ドーパントを備えるシリコンの融液を石英るつぼ内に供給することを備え、融液は、その内部で初期高さhMを有し、上記方法は、さらに、
初期高さhmを有する融液の上方部分に選択的に熱を供給することによって、融液を側方から加熱することを備え、高さhmは、高さhMよりも小さく、上記方法は、さらに、
シリコンの単結晶を融液からCZ法によって引き上げ速度Vで引き上げることと、
成長している単結晶と融液との間の相境界の領域内で、融液を上方から加熱することと、
融液の表面の領域内で、融液を上方から加熱することと、
融液を磁場にさらすことと、
融液をp型ドーパントでカウンタードーピングすることと、
単結晶シリコンの半導体ウェハを単結晶から分離することと、を備える方法によって達成される。
【0011】
本発明は、酸素、サーマルドナーおよび少なくとも1つのn型ドーパントを備え、300mm以上の直径を有する、単結晶シリコンの半導体ウェハをさらに提供する。半導体ウェハの酸素濃度は、2.2×10
17原子/cm
3よりも少なく、好ましくは、2.0×10
17原子/cm
3よりも少なく、径方向において平均値から5%以下だけ逸脱する。半導体ウェハ内のサーマルドナーの密度は、3×10
13/cm
3以下である。
【0012】
130mm〜150mmの径方向の位置を構成するエッジ領域内において平均値から酸素濃度が逸脱する場合は、10%以下であることが好ましい。
【0013】
発明者は、目的を達成するために測定範囲が考慮されなければならないことを見いだした。融液内のフロー状態および温度場が生成され、これが、るつぼ材料から酸素の溶出を妨げ、融液からの融液の表面を介するSiOの脱気を促進し、そして、成長している単結晶内で単結晶の中心からエッジへと均質な分布で酸素が吸収されることを容易にする。さらに、単結晶の引き上げ中に、単結晶の引き上げ速度および冷却速度は、単結晶内のサーマルドナーの濃度を低く維持するように制御される。
【0014】
n型ドーパントを備えるシリコンの融液は、好ましくは、多結晶シリコンおよびn型ドーパント、たとえばリンを、石英るつぼ内で溶融することによって供給される。
【0015】
単結晶の引き上げの間に、熱は、融液に少なくとも3つの場所から供給される。上方から成長している単結晶と融液との間の相境界の領域内と、上方から融液の表面の領域内と、側方から選択的に融液の半分より上と、である。さらに、融液は、たとえば総加熱出力が維持された状態で、少なくとも3つの場所のうちの少なくとも1つにおいて加熱出力を緩和するために、追加的に下方から加熱されてもよい。たとえば、石英るつぼを保護し、るつぼ壁部の上方部分がその形状を失い融液へと入り込むことを防ぐために、側方からの熱の供給を削減することが有利であり得る。
【0016】
融液への熱の供給は、好ましくは、総加熱出力の割合としての加熱出力が、相境界の領域内で融液を上方から加熱する場合に5%以上かつ15%以下であり、表面の領域内で融液を上方から加熱する場合に5%以上かつ15%以下であるように実現される。融液が追加的に下方から加熱される場合、そのため費やされる加熱出力は、融液を側方から加熱するために費やされる加熱出力の割合として、好ましくは、5%以下である。
【0017】
側方からの熱の供給は、選択的に融液の上方部分に向かって配向されなければならない。換言すると、融液の下方部分の側方からの意図的な加熱は、結晶成長過程の始まりで、好ましくは、融液の初期容積の70%が単結晶の構成成分になるまで起こらない。融液内の所望のフロー状態および所望の温度場は、そうでなければ生成されることができない。方法は、したがって、初期高さhmを有する融液の上方部分に選択的に熱を供給することを備え、高さhmは、融液の初期高さhMよりも小さい。hm:hMの比は、好ましくは、0.75以下である。単結晶の結晶化によって引き起こされる融液の低下は、石英るつぼの持ち上げによって補償される。
【0018】
さらに融液を上方から加熱することは、特に成長している単結晶と融液との間の相境界の領域内と、融液の表面の領域内と、より具体的には、成長している単結晶を囲む熱シールドと石英るつぼの壁部との間の融液の表面の領域内と、の両方で起こる。両方の領域を加熱することは、熱シールドが2つの加熱手段のうちの1つによるそれぞれの他の領域の追加的加熱を遮断するために、仮想的には互いによって影響されない2つの加熱手段を使用することで実現する。
【0019】
成長している単結晶と融液との間の相境界の領域内での融液の上方からの加熱は、特に成長している単結晶と融液との間の相境界の領域内で軸上温度勾配Gを制御することに役立つ。引き上げ速度Vおよび軸上温度勾配Gの割合V/Gは、内部点欠陥(シリコン格子間原子および空孔)およびその凝集物の形成の際に決定的影響を有することが既知である。軸上温度勾配Gは、シミュレーションによっておおよそ計算され得、成長している単結晶の直接の環境の構造であるホットゾーンを通して、実質的に影響され得る。シリコンの単結晶は、CZ法によって引き上げ速度Vで、好ましくは、成長している単結晶シリコン格子間原子内で凝集物が形成されず、その存在がサーマルドナーの形成を容易にする自由空孔の濃度を可能な限り低く、好ましくは、3×10
14/cm
3以下となるようなV/Gを課す引き上げ速度Vで引き上げられる。したがって、単結晶空孔が中心からエッジまでCOP欠陥(結晶由来粒子)として検出可能な凝集物を形成することなく支配し、および/または、単結晶シリコン格子間原子が中心からエッジまでLピット欠陥(大きなエッチピット)として検出可能な凝集物を形成することなく支配するように、割合V/Gを制御することが特に好ましい。
【0020】
融液の表面の領域内での融液の上方からの加熱は、シリコンの単結晶内の酸素濃度を2.2×10
17原子/cm
3よりも少なく制限するために必要な、融液内のフロー状態および温度場の生成に寄与する。
【0021】
さらに磁場、好ましくは、CUSP場、すなわち、石英るつぼの回転軸の周りに軸対称的である磁力線構造を有する磁場は、融液に印加される。磁場は、好ましくは、700〜1300ガウスの最大フラックス密度を有する。最も低い磁気的フラックス密度を有する磁場の平面は、好ましくは、80mm〜160mmだけ融液の表面上方に離れているか、120mm〜220mmだけ融液の表面下方に離れている。
【0022】
サーマルドナーの形成のさらなる縮小のために、方法は、好ましくは、成長しているシリコンの単結晶を500°C〜400°Cの範囲の温度において、0.15°C/分以上かつ0.6°C/分以下の、好ましくは、0.25°C/分以下の冷却速度において冷却することを備える。サーマルドナーの濃度は、冷却速度の増加とともに減少するということが見いだされた。しかし、0.6°C/分よりも大きい冷却速度は、これが径方向の空孔の濃度の均質性に有害であるため、求められるべきではない。したがって、冷却速度が例示的に引き上げ速度の増加とともに増加するという事実に着目するべきである。
【0023】
単結晶シリコンの半導体ウェハへとさらに加工される単結晶の一部分における電気比抵抗の変動の縮小のために、融液は、p型ドーパントで、好ましくは、p型ドーパントを備える気体、たとえばジボランおよびアルゴンの混合物を融液の表面に通過させることによって、カウンタードーピングされる。この気体は、そして融液上方で、好ましくは、5mm〜50mmだけ融液の表面から離れて雰囲気内へと導入される。
【0024】
単結晶シリコンの半導体ウェハの歩留まりを強化するために、半導体ウェハを製造するのに適した単結晶の一部分の、少なくとも20%、特に好ましくは、少なくとも30%のみ、一度にカウンタードーピングを開始することが、その均一の直径が結晶化されるので有利でありこのため好ましい。カウンタードーピングがまだ開始されていなければ、単結晶内の転位の形成の場合には、材料を再溶融される際まで結晶化し、新しい結晶の成長を試みるために再溶融された材料をともに用いることが可能であるが、これは、その後に得られる融液が結晶成長工程の状態において元々用いられた融液と同じ組成を有するためである。再溶融される材料が既に両方の種類のドーパントを含有するならば、このことは、もはや当てはまらない。転位の形成の相対的頻度は、結晶成長工程の始まりで最大であり、したがってカウンタードーピング前に可能な限り待機することが有利である。
【0025】
本発明また単結晶シリコンの半導体ウェハをCZ法によって製造するための装置を提供し、装置は、
シリコンの融液を受けるための石英るつぼであって、その内部で融液が初期高さhMを有する石英るつぼと、
融液を磁場にさらすためのデバイスと、
成長しているシリコンの単結晶をシールドするための熱シールドと、
融液の初期高さhMよりも小さい距離hsだけ融液の表面から離れている下方境界を有する、融液を側方から加熱するための第1の加熱手段と、
成長している単結晶と融液との間の相境界の領域内で、融液を上方から加熱するための第2の加熱手段と、
るつぼの壁部と熱シールドとの間で熱シールドの周りに配置される、融液を上方から加熱するための第3の加熱手段と、を備える。
【0026】
融液を磁場にさらすためのデバイスは、好ましくは、融液をカスプ型磁場にさらすためのデバイスである。
【0027】
融液の高さhMは、融液の最大の初期高さを意味する。石英るつぼが凸状の下向きに曲がった底部を有するならば、融液の初期高さhMは、石英るつぼの中間における融液の初期高さを意味する。
【0028】
融液を側方から加熱するための第1の加熱手段は、好ましくは、抵抗加熱手段であり、下方境界を有する。第1の加熱手段の下方境界と融液の表面との間の初期距離hsは、融液の上方部分の初期高さhm長さとおおよそ等しく、融液の初期高さhMよりも小さい。hs:hMの比は、好ましくは、0.75以下である。
【0029】
融液を上方から加熱するための第2の加熱手段および第3の加熱手段は、好ましくは、環状形状にされる加熱素子を有する抵抗加熱手段を備える。第3の加熱手段の場合、環状部は、最大割合の熱を融液の表面に与えることを可能とするために、好ましくは、0.3以下の断面アスペクト比(幅対高さ)を有する。第3の加熱手段の環状部と石英るつぼの壁部との間の距離および熱シールドからの上記環状部の距離は、各々好ましくは、10mm以上である。第3の加熱手段は、好ましくは、その上方に配置された断熱カバーによって上方から断熱されてもよい。
【0030】
好ましくは、本発明に係る装置の構成要素は、融液の表面に向かって配向され、その下端部が5mm〜50mmだけ融液の表面から離れているガラス管である。カウンタードーピング中に、p型ドーパントを備える気体は、ガラス管を通過させられる。
【0031】
本発明に係る装置は、成長している単結晶を囲む冷却装置をさらに備えてもよい。
本発明に係る方法の上述の実施形態に関する特性は、本発明に係る装置に対応するように適用されてもよい。逆に、本発明に係る装置の上述の実施形態に関する特性は、本発明に係る方法に対応するように適用されてもよい。本発明による実施形態のこれらのおよび他の特性は、図面および特許請求の範囲の説明において説明される。個々の特性は、本発明の実施形態として別々にまたは組み合わせて実現されてもよい。上記特性は、それ自体の保護のために適格である有利な実施態様をさらに説明し得る。
【0032】
本発明は、図面を参照して以下により詳細に説明される。