【実施例】
【0042】
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0043】
実施例1:FGF−2によるサイトグロビン(CYGB)の発現増強効果の確認(1)
60mmプレートに、ヒト肝星細胞株(HHSteC)細胞を5×10
5cells/well播種し、Supplement(SteCGS, Cat. No. 5352)、2%ウシ胎児血清(FBS)、ペニシリン、及びストレプトマイシンを添加したSteCM培地(ScienCell,Cat.No.5300)にて、約24時間培養した。
【0044】
培養後、Supplement無添加SteCM培地に交換し、Supplement(x100)(SteCGS, Cat. No. 5352)及びFGF−2中和抗体の無添加、Supplement(x100)(SteCGS, Cat. No. 5352)のみ添加、又はSupplement(x100)(SteCGS, Cat. No. 5352)とFGF2中和抗体(Anti-FGF2/basic FGF (neutralizing), clone bFM-1 (Monoclonal antibody, Cat. NO.05-117, Millipore)(2μg/ml)の添加の条件で培養を行った。
【0045】
培養72時間後に細胞の形態観察を行った。また、培養72時間後の細胞を回収し、RIPA(Radio−Immunoprecipitation Assay)バッファーを用いて細胞溶解液100μlを調製した。調製された細胞溶解液(20μg相当のタンパク質含有)に5×ローディングBuffer(2−メルカプトエタノール含有)を添加し、95℃で5分間熱処理後、SDS−PAGEを行った。一次抗体として、マウス抗ヒトαSMA抗体(Clone 1A4、DAKO製、1/100 in PBS)とウサギ抗ヒトCYGB抗体(Rabbit Polyclonal、in house)を使用して反応させ、次いで、二次抗体として、其々POD(peroxydase)標識ウサギ抗マウスIgG抗体(1:200、Dako製)とPOD標識ヤギ抗ウサギIgG抗体(1:200、Dako製)で反応させた後、化学発光基質ECL(GE Healthcare、Buckinghamshire)で処理し、高感度CCDイメージアナライザー(LAS 1000 device、富士フィルム製)を用いて検出した。なお、タンパク質のローディングコントロールとしてGAPDHを使用した。
【0046】
得られた結果を
図1に示す。
図1の左図において、「S−」はSupplement及びFGF2中和抗体の無添加、「S+」はSupplementのみ添加、「2μg/ml Ant-FGF2 + Supplement」は、SupplementとFGF−2の添加の条件で培養した場合の形態観察の結果である。形態観察の結果、Supplement添加によるヒト肝星細胞の形態変化はFGF−2中和抗体により阻害され、Supplement無添加と同様の形態を示した。ウエスタンブロッティングの結果から、Supplementで誘導されるヒト肝星細胞におけるサイトグロビンの発現増強が、FGF−2中和抗体で抑制されることが分かった。また、サイトグロビンの発現増強に伴って、肝星細胞の活性化マーカーであるα平滑筋アクチン(αSMA)の減少も確認され、サイトグロビンの発現量の増加は、肝星細胞の活性化抑制をもたらしていると考えられた。
【0047】
実施例2:FGF−2によるサイトグロビン(CYGB)の発現増強効果の確認(2)
60mmプレートに、ヒト肝星細胞株(HHSteC)細胞を5×10
5cells/well播種し、Supplement(SteCGS, Cat. No. 5352)、2%ウシ胎児血清(FBS)、ペニシリン、及びストレプトマイシンを添加したSteCM培地(ScienCell,Cat.No.5300)にて、約24時間培養した。
【0048】
培養後、Supplement無添加SteCM培地に交換し、Supplement(x100)、又は以下に示す条件でヒトFGF−2(配列番号3)を添加して細胞の処理を行った。時間依存性試験(
図2の左図)のために、FGF−2の添加濃度を4ng/mlにして、0、8、24、48、及び72時間、細胞を処理した後に、細胞を回収した。濃度依存性試験(
図2の右図)のために、FGF−2の添加濃度を0.5、1、2、及び4ng/mlを処理し72時間後に細胞を回収した。回収した各細胞について、前記実施例1と同様の方法でSDS−PAGEを行い、サイトグロビン、αSMA、及びGAPDH(ローディングコントロール)の発現量の測定を行った。
【0049】
得られた結果を
図2に示す。
図2の右図において「S+」は、Supplement添加且つFGF−2未添加の場合の条件を指す。この結果から、FGF−2の添加によって、ヒト肝星細胞におけるサイトグロビンの発現量が経時的及び濃度依存的に増加しており、FGF−2にはサイトグロビンの発現を増強させる作用があることが明らかとなった。また、肝星細胞の活性化マーカーであるα平滑筋アクチン(αSMA)は、サイトグロビンの発現量が増加するのに伴って、その発現量が低下しており、サイトグロビンの発現量の増強は、肝星細胞の活性化抑制をもたらし得ることも明らかとなった。
【0050】
実施例3:FGF−2によるサイトグロビン(CYGB)の発現増強効果の確認(3)
35mmプレートに、ヒト肝星細胞株(HHSteC)細胞を5×10
5cells/well播種し、Supplement(SteCGS, Cat. No. 5352)、2%ウシ胎児血清(FBS)、ペニシリン、及びストレプトマイシンを添加したSteCM培地(ScienCell,Cat.No.5300)にて、約24時間培養した。
【0051】
培養後、Supplement無添加SteCM培地に交換し、Supplement(x100)及びヒトFGF−2(配列番号3)(4ng/ml)を添加した。添加0、4、8、24、及び48時間後に、それぞれ、Trizol500μlに溶解し、direct-Zol RNA miniPrep(ZYMO RESEARCH)キットでRNA抽出を行った。抽出されたRNA、100ngをSuperscript III Reverse Transcriptase (Invitrogen)でcDNA合成し、Fast SYBR Green Master mixを用いてリアルタイム定量PCR(Applied Biosystems 7500 Fast Real-time PCR system)を行った。なお、本試験では、内在性コントロールとして18Sを使用した。
【0052】
得られた結果を
図3に示す。この結果から、FGF−2の添加によって、ヒト肝星細胞におけるサイトグロビンのmRNAの発現量が経時的に増加しており、FGF−2にはサイトグロビンの発現を増強させる作用があることが明らかとなった。また、サイトグロビンの発現量が増加するのに伴いαSMA発現量が低下しており、FGF−2によりサイトグロビンの転写が誘導され、肝星細胞の活性化が抑制された。
【0053】
実施例4:FGF−2によるサイトグロビン(CYGB)の発現増強効果の確認(4)
4wellチャンバースライドに、HHSteC細胞2×10
4cells/wellとなるように播種し、約24時間培養した。培養は、Supplement、2%FBS、ペニシリン、及びストレプトマイシンを添加したSteCM培地(ScienCell Research Laboratories製、Cat.No.5300)を用いて行った。
【0054】
その後、Supplement無添加SteCM培地に交換し、Supplement(×100)及びヒトFGF−2(配列番号3)(4ng/ml)を添加して培養を継続し、72時間後に4%パラフォルムアルデヒド/PBSTで細胞を固定した。次いで、固定化した細胞に対して、一次抗体として、マウス抗ヒトSMA抗体(Clone 1A4、DAKO製、1/100 in PBS)とウサギ抗ヒトCYGB抗体(Rabbit Polyclonal、in house)1時間反応させた後、PBST(Phsophate Buffered Saline with Tween 20)溶液で洗浄した。次いで、二次抗体として、AlexaFluor 488標識ヤギ抗マウスIgG抗体(Molecular Probes、ライフテクノロジーズ製)とAlexaFour 594標識ヤギ抗ウサギIgG抗体(Molecular Probes、ライフテクノロジーズ製)をそれぞれ使用し、反応させた。反応後、PBST溶液で洗浄した後、DAPI(di−aminおーphenyl−indole)で核染色し、蛍光顕微鏡(BZ−8000、キーエンス製)にて観察を行った。また、比較のために、Supplement及びヒトFGF−2を添加しない条件、及びSupplementのみを添加した条件でも、前記と同様に試験を行った。
【0055】
得られた結果を
図4に示す。
図4中、S(−)はSupplement及びヒトFGF−2を添加しなかった場合、S(+)はSupplementのみを添加した場合、FGF2はSupplement及びヒトFGF−2を添加した場合の結果である。
図4から明らかなように、ヒトFGF−2を添加した場合には、α−SMAが消失し、CYGBが強く発現されていた。即ち、本試験結果からも、FGF−2にはサイトグロビンの発現を増強させる作用があることが確認された。
【0056】
実施例5:FGF−1によるサイトグロビン(CYGB)の発現増強効果の確認(5)
60mmプレートに、ヒト肝星細胞株(HHSteC)細胞を5×10
5cells/well播種し、Supplement(SteCGS, Cat. No. 5352)、2%ウシ胎児血清(FBS)、ペニシリン、及びストレプトマイシンを添加したSteCM培地(ScienCell,Cat.No.5300)にて、約24時間培養した。
【0057】
培養後、Supplement無添加SteCM培地に交換し、Supplement(x100)、又は以下に示す条件でヒトFGF−1(配列番号1)を添加して細胞の処理を行った。時間依存性試験(
図5の上図)のために、FGF−1の添加濃度を4ng/mlにして、0、8、24、48、及び72時間、細胞を処理した後に、細胞を回収した。濃度依存性試験(
図5の下図)のために、FGF−1の添加濃度を0.5、1、2、及び4ng/mlを処理し72時間後に細胞を回収した。回収した各細胞について、前記実施例1と同様の方法でSDS−PAGEを行い、サイトグロビン、αSMA、及びGAPDH(ローディングコントロール)の発現量の測定を行った。
【0058】
得られた結果を
図5に示す。
図5の下図において、「S−」はSupplement未添加且つFGF−2未添加の場合の条件を指し、「S+」は、Supplement添加且つFGF−2未添加の場合の条件を指す。この結果から、FGF−1の添加によって、ヒト肝星細胞におけるサイトグロビンの発現量が、FGF−2の場合と同様に、経時的及び濃度依存的に増加しており、FGF−1にはサイトグロビンの発現を増強させる作用があることが明らかとなった。また、肝星細胞の活性化マーカーであるα平滑筋アクチン(αSMA)は、サイトグロビンの発現量が増加するのに伴って、その発現量が低下しており、サイトグロビンの発現量の増強は、肝星細胞の活性化抑制をもたらし得ることも明らかとなった。