【発明が解決しようとする課題】
【0004】
特許文献1には、ユーザーの電気活動を記録する1つのセンサと基準電極を持つ脳波計測装置が開示されている。この脳波計測装置では、前頭前野からの電気活動をユーザーの額に装着した電極とユーザーの耳に装着した基準電極とで記録するようにしている。
また、特許文献2には、ユーザーの前頭葉に対応する第1の電極とユーザーの後頭葉に対応する第2の電極とユーザーの耳の下部に装着する基準電極の3つの電極を持つ脳波計測装置が開示されている。
脳波は時間に伴って変化する脳の自発的電気活動を頭皮上の電極から記録されたものである。2つの電極の電位差を記録することにより、同相信号(交流雑音)を低減し、位相信号(脳波)を検出する。この電位差は数十マイクロボルトの小さいものであるため、差動増幅器で数万倍に増幅して記録する必要がある。電位差を算出する際、電極を耳朶等に装着して基準電極とし、頭皮上の電極との電位差を記録するのが、基準電極導出、頭皮上の2つの電極間の電位差を記録するのが双極導出である。上記特許文献1及び特許文献2では基準電極導出となっている。
脳波は生きている限り絶え間なく自発的に出現している自発脳波と、光や音などの外的刺激もしくは刺激に対する注意等の内的刺激により誘発される誘発脳波がある。自発脳波は、睡眠のステージ判定やてんかんの発作に伴う突発波など診断等に用いられている。しかし、自発脳波の判読は訓練された専門家でないと難しいだけでなく、産業上の活用という観点では得られる情報が限られている。近年の研究で自発脳波の中にも有用な脳からの情報が含まれていることが報告されつつあるものの、通常、自発脳波の波形から何を意味するのかを判読することは難しい。そのため、脳波を産業上で利用していくためには、脳波を何らかの手段によって意味づけ、ラベル化することが必要になる。また、脳活動に伴う電流の変化を磁場の変化として計測する脳磁界(脳磁場)においても、計測した脳磁界を何らかの手段によって意味づけ、ラベル化することが必要である。
誘発脳波は、脳波を意味づけ、ラベル化して解釈するための有力な手段である。誘発脳波は自発脳波に比べて著しく小さく、自発脳波に重畳して記録されるため、記録した脳波波形そのものから誘発脳波を判読することは難しい。そこで、誘発脳波の記録では、誘発脳波と自発脳波が重畳している脳波波形から、誘発脳波を計算的に取り出すということが行われ、代表的方法として例えば加算平均法がある。加算平均法では、外的刺激又は内的刺激を何度も被験者に提示し、例えば刺激開始タイミングを脳波の記録と同期させて記録し、その刺激開始タイミングの前後ある一定区間の脳波波形を切り出し、ベースライン処理等を行ったのち、平均波形を算出する。このような平均化処理の結果、刺激開始タイミングと同期していない自発脳波は、平均化により消失し、刺激開始タイミングと同期する脳活動、すなわち誘発脳波が記録される。誘発脳磁界についても、誘発脳波と同様の手法で記録することが可能である。
誘発脳波(脳磁界)は、ある程度の数(数万個)の平行に並んだニューロンの電気的活動が一斉に起こった場合に記録できるとされている。ほぼ同じ位置に並んだ2つのニューロンで逆向きの電気的活動が起きた場合には、頭皮上の電極では相殺されて記録されない。頭皮上の電極で記録されるのは、逆向きとなる活動が電気的に相殺された上で、残された、ある方向を向いて平行に並んだある程度の数のニューロン集合の電気的活動である。頭皮上の電極で脳波として記録されるこの電気的活動は、等価電流双極子(equivalent current dipole)という概念でモデル化することでよく説明することができる。等価電流双極子は、複数の神経活動が集合的に形成した電場を最もよく説明(近似)する電流の流れを、電気的活動の発生する位置、電流の方向、電流の強さで説明するものである。これらは、ある方向を向いて平行に並んだある程度の数のニューロン集合の位置、方向、活動の大きさにそれぞれ対応する。ある脳活動を単一の等価電流双極子で説明するのが単信号源解析、複数の等価電流双極子で説明するのが多信号源解析である。
ところで、ある外的刺激又は内的刺激を与え、その刺激に対応する脳活動、つまり所定の刺激に対するターゲットとする脳活動を得た場合に、単一の脳活動であっても、個人により微妙に異なった脳活動の位置と電流方向で記録されることがある。これは、個人により脳の形状(左右半球の大きさの個人差)や、溝の向き(例えば視覚では鳥距溝の向き)が異なること等に由来する。MRI(核磁気共鳴画像:magnetic resonance imaging)などを計測して脳の構造画像を得ることにより、脳の形状、溝の位置、溝の方向が分かれば、等価電流双極子をMRI画像に重ねることである程度の精度で計測された脳活動 についての個人差の解釈を行う事ができる。しかし、産業上の応用を目的とした簡易的装置での脳計測時には、被験者の脳の形状、溝の位置、溝の向きがどのようになっているかは、計測者からは分からない。計測目的とする脳活動部位に対して、本当に正しい位置に電極を配置できたかどうかは分からず、通常は、電極位置には、装着誤差が含まれてしまう。例えば、特許文献1の脳波計測装置では、前頭前野の活動を計測するためにユーザーの額に電極を装着して使われるが、電極の装着位置が計測対象である前頭前野の活動に対して正しい位置に装着されたかどうかは不明である。特許文献2でも、ユーザーの前頭葉に対応する第1の電極とユーザーの後頭葉に対応する第2の電極を装着するが、第1の電極が計測対象とする前頭葉の活動を記録するための正しい位置に、第2の電極が計測対象とする後頭葉の活動を記録するための正しい位置に装着されたかどうかは不明である。そのため、特許文献1〜2では、ある計測結果が得られたとしても、どの程度正しく計測された結果であるのかが不明であるという問題がある。
さらに、記録された脳活動は、重畳する僅かな背景脳活動により見かけ上異なった活動に計測されることもある。重畳する脳活動を解析するためには、通常、多数の電極で脳活動を記録し複数の脳活動に分離する多信号源解析等が有効であるが、簡易的な装置構成(少ない電極数)の脳波計で記録されたデータを多信号源解析等で解析することは困難である。例えば、特許文献1〜2の記載の脳波計測装置で記録した結果にはどの程度計測対象とする脳活動以外の活動が重畳した計測結果になっているのか不明である。
以上のように産業上の応用を目的とした簡易的な脳活動計測装置 には、装着時の電極の装着誤差による問題、重畳する脳活動による問題がある。どちらの問題も、本来計測目標とする脳活動の活動位置に対して頭皮上の電極が相対的にずれた位置になるため、頭皮上の電極で記録された脳波は、本来あるべき測定結果からずれることになる。産業上の応用を目的とする場合、ある計測結果が信頼性の高い計測結果なのか、誤差の多い計測結果なのかということが重要であるが、計測結果から計測値の信頼性に関する情報が取得できていない。産業的に成り立つコストの範囲内でどのような構成の装置で計測し、どのように解析するかという課題となるが、必要とされる解決手段は明確になっていない。また、産業上、脳活動を活用するためには、被験者個人の特性を算出することが重要になるが、簡易的な装置構成でどのようにして有用な被験者の個人特性を計測するのかという課題がある。
本発明はこのような従来技術の問題に着目してなされたものである。その目的は、所定の外的刺激又は内的刺激により誘発される脳活動を評価し、また、その評価結果を使用して脳活動の解析し、かつ個人特性を評価し個人の見え方を評価することである。
【課題を解決するための手段】
【0005】
上記課題を解決するために第1の手段では、所定の外的刺激又は内的刺激により誘発される脳活動を解析するための脳活動検出システムであって、複数の電極よりなる第1の電極群と、複数の電極よりなる第2の電極群の、少なくとも2つの電極群を備え、前記第1及び前記第2の電極群の少なくともいずれか一方は3以上の電極が直列に配置されている電極列よりなるようにした。
この構成は、解析対象とする所定の外的刺激又は内的刺激により誘発される脳活動を複数の電極よりなる第1の電極群と、複数の電極よりなる第2の電極群の、少なくとも2つの電極群により記録し解析するものである。
本発明を説明するために、まず、脳波の特性について記載する。脳波は、2つの電極の電位差を記録するものである。脳波の計測結果は等価電流双極子による脳活動の位置と電流方向で良く説明することができる。仮に解析対象とする脳活動の位置と電流方向が正確に分かっているとすると、脳活動位置を通る電流方向の直線上に第1の電極と第2の電極を配置した場合にその電位差が大きく記録される。2つの電極は、脳活動位置を挟んで配置した場合に極性が反転し電位差は大きくなるが、頭皮上に当接させるという電極の特性上、必ずしも解析対象とする脳活動の位置を2つの電極で挟めるとは限らず、その場合には第1の電極を脳活動付近に、第2の電極をできるだけ遠くの位置に当接することにより大きな電位差として脳波を記録する。
ここで、仮に解析対象とする脳活動の位置と電流方向が正確に分かっている場合には、その計測は第1の電極と第2の電極による1つの電極ペアで行うことができる。しかしながら実際には、被験者によって脳の形状(左右半球の大きさの個人差)や、溝の向き(例えば視覚では鳥距溝の向き)が異なっている。脳活動検出システムの電極を被験者に当接する際には、その被験者における脳活動の位置が正確にどの位置になるのかが分からないため、解析対象とする脳活動は2つの電極では正確に計測することができない。また、計測した結果が正しいものであるかどうかは分からない。そこで、本発明では、解析対象とする脳活動を複数の電極よりなる第1の電極群と、複数の電極よりなる第2の電極群の、少なくとも2つの電極群により記録する構成としている。解析対象とする脳活動を2つの電極ではなく、2つの電極群で計測するようにすることで、解析対象とする脳活動の活動位置が正確に分からなくても、ある程度の位置精度で2つの電極群のいずれかの電極1つずつを、解析対象とする脳活動の位置に対してある程度の位置精度で頭皮上に当接することができる。これにより、解析対象とする脳活動の活動位置が正確に分からなくても、より正しい計測結果を得ることができるようになる。更に、本発明では、前記第1及び第2の電極群の少なくともいずれか一方の電極群は3以上の電極が直列に配置されている電極列よりなるようにしている。3以上の電極を直列に配置した電極列とすることにより、解析対象とする脳活動の位置に対して、電極群の中で最も近い距離の電極、中間の距離の電極、遠い距離の電極が生まれることとなるため、電極群(電極列)に対して脳活動の位置がどの辺りにあるのかが検出できるようになる。また、直列とすることにより方向性の検出も有利になる。
【0006】
ここに、「直列」とは、方向性を持って並んでいることを意味し、厳密に直線状でなくても、方向性を持っていれば直列に含める。また、一直線状の場合だけでなく頭部形状に沿って湾曲して配列される場合も含める。尚、2つの電極であれば単に隣接するだけであるが、電極の並びに方向性が生まれるためここでは直列の概念に含める。
ここに、「外的刺激」とは五感(視覚、聴覚、触覚、味覚、臭覚)を通じて感得できる刺激であればよく、これらは単独でも異なる五感のうちから2以上を複合的に与えるものであってもよい。視覚刺激としては、例えば、写真、動画、図形の形状変化や色・輝度・コントラストの変化を単独あるいは複合的に含む画像等が挙げられる。より具体的には、例えば空間周波数を変化させた刺激画像を被験者に目視させること等が挙げられる。刺激提示のタイミングは、記録する脳活動(脳波等) と同期を得ることが好ましく、モニター画面に画像等が提示されたタイミングを脳波計等のアンプ又は、脳波等の記録プログラムに入力するなどすることが好ましい。
ここに、「内的刺激」とは、刺激に対する注意や想起等の内的な刺激のことである。
ここに、「誘発される脳活動」とは、外的刺激又は内的刺激により生じる脳活動のことである。より具体的には誘発電位、定常状態誘発電位、誘発磁界、定常状態誘発磁界等であり、P300、N400、LPP(後期陽性電位)等の事象関連電位(磁界)も含む。また、脳活動の大きさやリズム(周波数)の変化など、変化も誘発される脳活動に含まれる。ここで、電極の種類、構造は計測対象とする脳活動により選択することが可能である。電極として電位を計測する素子を選択した場合には脳波(脳電図)が記録でき、磁界を計測する素子を選択した場合には脳磁図が記録できる。脳波を記録するための電極には、接触抵抗を下げる必要があるパッシブ電極と、接触抵抗がある程度高くても計測可能なアクティブ電極等があり、導電性を得るために導電性のペーストを用いる方式と、生理食塩水などを含むゲルやフェルト、導電性高分子等を用いるペーストレス方式の場合等がある。本発明では、電極の種類については、装置構成に合わせて適宜選択することが可能である。
ここに、「解析」とは、計測された脳活動(脳波等)の波形を数値化して、所定の外的刺激又は内的刺激に対応する評価値を算出することである。また、脳活動の位置情報の推定、電流方向の推定等をしたりすることである。数値化は、刺激提示のタイミングから解析対象とする脳活動の生じる時間(潜時)や、脳活動の大きさ、周波数解析等により算出するパワー値や位相、複数の電極間で記録された波形の相関係数などにより算出されることが好ましい。
【0007】
また、第2の手段として第1の手段に加え、前記第1の電極群と前記第2の電極群は、両群ともに3以上の電極が直列に配置された電極列よりなるようにした。
このような構成では、解析対象とする脳活動の位置と方向を、2つの直列に配置された電極列により記録できることとなり、解析対象とする脳活動の活動位置や電流方向が正確に分からなくても、より正しい計測結果を得ることができる脳活動検出システムとなる。
また、第3の手段として第1〜第2のいずれかの手段に加え、前記電極列の電極は、前記電極列の全長の中心位置において線対称となる位置に配置されているようにした。
このような構成では、電極列の電極が中心位置から線対称になっていることにより、解析対象とする脳活動の位置や方向のずれを解析しやすい脳活動検出システムとなる。この時、電極列の電極の中心位置は、標準的な被験者における解析対象とする脳活動の位置を通る電流方向の直線上に重なるように、計測対象の被験者の頭皮上に当接されることが好ましい。例えば実施の形態1や実施の形態2では電極列はこのように配置されている。
また、第4の手段として第3の手段に加え、前記電極列の全長の中心位置から同中心位置にはない最も近い電極までの距離をSとした場合に、前記各電極は前記中心位置から前記S間隔で順に配置されているようにした。
このような構成では、電極列の各電極は前記中心位置から前記S間隔で順に配置されていることにより、解析対象とする脳活動の位置に対して、電極列の各電極の位置のずれが等しい確率で発生することとなり、解析対象とする脳活動の位置や方向のずれを解析しやすい脳活動検出システムとなる。例えば実施の形態1や実施の形態2では電極列はこのように配置されている。
また、第5の手段として第1〜第4のいずれかの手段に加え、前記電極列の電極間の距離は2〜4cmであるようにした。
このような構成では、電極列が近接して配置されていることになるため、解析対象とする脳活動の僅かな位置のずれや変化、僅かな電流方向のずれや変化を解析することができる脳活動検出システムとなる。
また、第6の手段として第1〜第5のいずれかの手段に加え、前記電極列は、前記所定の外的刺激又は内的刺激により誘発される脳活動の電流方向に交差するように配置されるようにした。
このような構成では、第1の電極群と第2の電極群とをそれぞれ離間させて電極先端が頭部に当接するように頭部の第1の位置と第2の位置に装着し、その際に第1の電極群の電極列を電流方向と交差するように配置して脳に所定の外的刺激を与え、脳活動として発現するその外的刺激又は内的刺激に応じた電流方向を解析することとなる。このようにすれば、電流方向と電極列が交差していることで、解析対象とする脳活動の電流方向のずれや変化をより鋭敏に解析することができる脳活動検出システムとなり、被験者固有の電流方向をより正確に推定することができる。
また、第7の手段として第1〜第6のいずれかの手段に加え、前記電極列は、前記所定の外的刺激又は内的刺激により誘発される脳活動の電流方向に直交するように配置されるようにした。
このような構成では、電極群の電極列を解析対象とする脳活動の電流方向に直交に配置することで、電極列の各電極間で大きな変化が計測されるようになり、このようにすれば、電流方向と電極列が交差していることで、解析対象とする脳活動の電流方向のずれや変化を最も鋭敏に解析することができる脳活動検出システムとなる。
ここで、「直交方向」とは電極列を配置した際に直交と認められる方向であるため、上記のように電極列が直線状でなくともよいことから考えても厳密に90度である必要はない。
また、第8の手段として第1〜第7のいずれかの手段に加え、前記第1の電極群と前記第2の電極群の中心は、被験者の頭部に沿って15cm以上離間させて被験者に装着されるようにした。
このような構成では、第1の電極群と第2の電極群とで大きな脳活動の差 を計測できるようになるため、効率的に解析対象の脳活動を解析できる脳波検出システムとすることができる。ここで、一般的な大人の場合、鼻根点から後頭結節までの頭部に沿った距離は36〜40cm程度である。頭部に沿って15cm以上離間させるということは、鼻根点から後頭結節までのおおよそ40%程度離間させることを意味する。2つの電極群の中心は、あまりに離れていても解析対象とする脳活動以外が含まれやすくなってしまうため、鼻根点から後頭結節までのおおよそ40〜60%程度の距離、すなわち、15cm〜24cm程度離れていることが最も好ましい。
また、第9の手段として第1〜第8のいずれかの手段に加え、前記所定の外的刺激は視覚刺激であり、当該の視覚刺激の刺激開始時又は刺激提示時の時間を脳活動と同期して記録するようにした。
このような構成では、脳活動が視覚刺激により誘発され、その脳活動の解析をすることとなる。視覚刺激の刺激開始時又は視覚刺激時の時間を脳活動と同期して記録することにより、脳活動の時系列データの加算平均波形等を算出することができ、自発脳活動を低減し、誘発脳活動を取得することができる。そのため脳活動の意味づけ、ラベル化が容易になる。
【0008】
また、第10の手段として第1〜第9のいずれかの手段に加え、前記第1の電極群のいずれかの電極の第1の電位と前記第2の電極群のいずれかの電極の第2の電位の電位差、前記第1の電極群のいずれか2つの電極の第1の電位及び第2の電位の電位差、前記第2の電極群のいずれか2つの電極の第1の電位及び第2の電位の電位差、の少なくともいずれか1つの電位差に基づいて脳活動を解析するようにした。
このような構成では、少なくともいずれか1つの電位差に基づいて脳活動を解析するようにしたことにより、第1の電位を記録した電極と第2の電位を記録した電極の座標の差分(ベクトル情報)が、電位差の情報と合わせて得られるため、解析対象の脳活動の位置や電流方向のずれや変化の解析が容易になる。また、第1の電位と第2の電位に共通して混入したノイズを取り除くことができる。
また、第11の手段として第1〜第10のいずれかの手段に加え、前記第1の電極群の各電極毎の第1の電位と、前記第2の電極群の各電極毎の第2の電位との差をそれぞれ算出する算出手段と、を備えるようにした。
このような構成では、第1の電極群と第2の電極群とをそれぞれ離間させて電極先端が頭部に当接するように頭部の第1の位置と第2の位置(異なる位置)に装着する。そして少なくとも第1の位置で複数の第1の電位(この段階では第1の電位の候補と考えることができる)を取得し、それらの数値と第2の位置で得られた第2の電位の電位差を算出する手段を備える脳活動検出システムとなる。つまり、頭部の2カ所にそれぞれ配置した電極群の電極と、他方の電極群の電極との間でいくつもの電位差を取ることができるため、それらのデータから脳活動を解析できるということである。第1の電位を記録した電極と第2の電位を記録した電極の座標の差分(ベクトル情報)が、電位差の情報と合わせて得られるため、解析対象の脳活動の位置や電流方向のずれや変化の解析が容易になり、解析対象の脳活動の位置や電流方向をより正確に解析できる脳活動検出システムとなる。
また、第12の手段として第10〜第11のいずれかの手段に加え、前記算出手段によって算出した電位差を表示する表示手段を備えるようにした。
このような構成では、目視によって算出結果を確認できるため、容易に解析をすることができる。
また、第13の手段として第1〜第12のいずれかの手段に加え、前記第1の電極群の中心は後頭結節の2cm下〜後頭結節の5cm上のいずれかの位置に配置され、前記第2の電極群の中心は頭頂〜頭頂の9cm前方のいずれかの位置に配置されるようにした。
このような構成では、第1の電極群の中心を後頭葉の視覚野付近の正中線上に、第2の電極群の中心を、頭頂〜頭頂よりやや前頭部の正中線上に配置することにより、視覚野〜頭頂における脳活動の解析に適した電極配置となる。また、脳の左右半球の活動のバランス等の解析も行うことができるようになる。ここで、第1の電極群の中心を後頭結節の2cm下〜後頭結節の5cm上のいずれかの位置に配置することは、第1の電極群の中心が1次視覚野近傍になり視覚情報の解析をするために好ましい。また、第2の電極群の中心を頭頂〜頭頂の9cm前方のいずれかの位置に配置されるようにすることは、視覚情報の解析をする第2の電極群の位置として好ましい。頭頂よりも後ろの場合には、第1の電極群の電極との間で十分に大きな電位差が得られにくく、頭頂の9cm前方よりも前の場合には、前頭筋や表情筋等の筋電位や、瞬きによるノイズが混入しやすいためである。
【0009】
また、第14の手段として第1〜第13のいずれかの手段に加え、前記第1の電極群を備える第1の装着部を備えるようにした。
このような構成では、第1の電極群が1つの装着部にまとまっていることにより、電極群を被験者の頭皮上に当接する際の操作が簡易化できることになる。また、電極群を装着部に備えるようにすることにより、脳活動検出システムのヘッドセットの部品点数を減らすことができるため好ましい。
また、第15の手段として第14の手段に加え、前記第2の電極群を備える第2の装着部を備えるようにした。
このような構成では、第2の電極群が1つの装着部にまとまっていることにより、電極群を被験者の頭皮上に当接する際の操作が簡易化できることになる。また、電極群を装着部に備えるようにすることにより、脳活動検出システムのヘッドセットの部品点数を減らすことができるため好ましい。
また、第16の手段として第15の手段に加え、前記第1の装着部と第2の装着部との間は少なくとも1つのアーム構造により連結されているようにした。
このような構成では、第1の装着部と第2の装着部を一体化した脳波検出システムとすることができる。この時、第1の装着部又は、第2の装着部の少なくともいずれか一方には、各電極の電位を増幅したデータを結合する回路部と、結合したデータをPC等に送信する無線部を含むことが好ましい。その際に、第1の装着部と第2の装着部の情報を結合するために、アーム構造には、データ伝達のための伝達手段、例えば配線があることが好ましい。
また、第17の手段として第14〜第16のいずれかの手段に加え、前記第1又は第2の装着部の少なくとも一方は、被験者の装用する眼鏡を支持体として頭部に装着させるようにした。
眼鏡は耳と鼻で支持させる人の頭部にしっかりと支持されるものであるので、支持体として流用するのに便利である。また、特に眼鏡のレンズを通して外的刺激を与える場合においては、視覚的な刺激を与えると同時に併せて第1又は第2の装着部の少なくとも一方を支持させることとなるため、頭部への第1又は(及び)第2の装着部の装着に便利である。特に、第1又は第2の装着部のいずれかを後頭葉に位置させる場合には、眼鏡の耳かけ部を支持体とできるため好ましい。
また、第18の手段として第14〜第17のいずれかの手段に加え、前記第1又は第2の装着部はそれぞれ別々に頭部に装着されるようにした。
これによって、2つの装着部が互いに大きく規制されることなく自由に頭部に装着されることとなるため装着可能パターンが多くなる。
また、第19の手段として第14〜第18のいずれかの手段に加え、前記第1及び第2の装着部の少なくともいずれかは柔軟な素材により構成され、基準電極及びグラウンド電極を備えるようにした。
このような構成では、装着部を柔軟な素材で構成することにより、頭部形状の異なる被験者に対しても装着しやすいヘッドセットの脳活動検出システムとなる。また、基準電極及びグラウンド電極を備えることにより、装着部に備えられている電極と基準電極との間の電位差を差動増幅器で増幅することにより、それぞれの電極の電位のノイズを低減して記録できる。基準電極及びグラウンド電極を装着部に備えることにより、装置構成を簡易化し、ヘッドセットの部品点数を減らすことが可能となる。この時、直流成分や低周波数をカットするアナログフィルター等のフィルター、AD 変換も装着部の少なくともいずれかに備えることが好ましい。ここで、柔軟な素材とは、シリコン、ゴム、布、柔らかい樹脂素材等を用いることが好ましいが、素材がこれらに限定されることはない。
【0010】
また、第20の手段として第1〜第19のいずれかの手段の脳活動検出システムを使用した個人の感覚特性の評価方法であって、前記外的刺激を複数の異なる刺激とし、それら複数の異なる刺激によって得られる脳活動を解析するようにした。
ある単一の刺激を与えて得られる脳活動では個人差があることから例えば、反応が小さい場合に、本当に反応が小さいのか、それとも、脳波記録上の理由(解析対象の脳活動の信号源位置に対して電極位置がずれている、たまたま脳形状が記録されにくい溝の向きであった等)であるのかが分からないという問題がある。そのため、このように単一の刺激ではなく、複数の異なる刺激を同一個人に与えることで、その刺激間での脳反応の傾向を解析することで個人の感覚特性を記録することができることとなる。ここで、複数の異なる刺激とは、ある外的刺激を段階的に変化させてものであることが好ましい。例えば、視覚刺激であれば、刺激画像の輝度、大きさ、色、コントラスト、動きなどを段階的に変化させた複数の視覚刺激を提示するなどが好ましい。例えば、聴覚刺激であれば、刺激音の大きさ、高さ、長さ、音の変化量などを段階的に変化させた複数の聴覚刺激を提示するなどが好ましい。例えば、体性感覚刺激であれば、刺激強度や刺激持続時間、刺激部位などを段階的に変化させた複数の刺激を提示するなどが好ましい。同一の刺激であっても、刺激提示の周波数を変化させることで異なる刺激とすることができるため好ましい。例えば、10Hz、30Hz、50Hz、100Hzで刺激を点滅させるなどすることにより同一種類の刺激で異なる刺激とすることができる。ここで、刺激は、単一のモダリティー(視覚、聴覚、体性感覚、味覚等)での提示に限定される必要はなく、複数のモダリティーを組み合わせることも含む。
また、第21の手段として第20の手段に加えた個人の見え方の評価方法であって、前記外的刺激は複数の異なる空間周波数であり、被験者固有の見え方の特性を異なる空間周波数に対する脳活動を解析することにより算出するようにした。
このような構成では、異なる空間周波数に対する脳活動の傾向を解析することで、特に被験者固有の見え方の特性を評価することができる。
【0011】
また、第22の手段として、第1〜第19のいずれかの手段の脳活動検出システムを使用した脳活動の解析方法であって、所定の外的刺激又は内的刺激により誘発される脳活動を、所定の2カ所の位置における第1の電位と第2の電位とを測定し、それらの電位差に基づいて与えた前記外的刺激又は内的刺激に応じた電流の流れる方向(以下、電流方向)として取得し、前記第1及び第2の電位と電流方向によって脳活動を解析するようにした。
このような構成では、頭皮上の2カ所の位置に当接した第1の電極と第2の電極における第1の電位と第2の電位の電位差から解析対象とする脳活動の電流方向を推定することで、より詳細な脳活動の解析を行うことができる。電位差から解析対象とする脳活動の電流方向の推定は、例えば、複数の電極ペアの電位差を、電極の位置情報の差(ベクトル情報)と合わせて算出しておき、各電極ペアの電位差の傾向とベクトル情報から、解析対象とする脳活動の電流方向を推定することができる。
また、第23の手段として、第22の手段に加え、前記取得した電流方向を解析することにより、前記所定の外的刺激又は内的刺激により誘発される脳活動の計測信頼度を算出するようにした。
解析対象とする脳活動に、解析対象とする脳活動以外の活動が重畳すると電流方向が変化することとなる。また、解析対象とする脳活動に、解析対象とする脳活動以外のノイズ等が重畳した場合にも、電流方向が変化することとなる。そのため、電流方向の変化を解析することにより、ある解析対象とする脳活動の計測結果がどの程度信頼できるのか、すなわち、別の脳活動がどの程度重畳しているのか、脳活動以外のノイズがどの程度重畳しているのか等の脳活動の計測信頼度を算出することができる。
また、第24の手段として、第1〜第19のいずれかの手段の脳活動検出システムを使用した脳活動の解析方法であって、前記第1の電極群の2以上の電極毎に得られた測定電位に基づいて前記第1の電極群の適正な位置を補正するようにした。
また、第25の手段として、第1〜第19のいずれかの手段の脳活動検出システムを使用した脳活動の解析方法であって、前記第2の電極群の2以上の電極毎に得られた測定電位に基づいて前記第2の電極群の適正な位置を補正するようにした。
このような構成であれば、解析の結果として実際に電極の配置された位置ではない箇所が最も電位が高くなると推定した場合に、第1の電極群又は第2の電極群の位置を適正に補正することにより、第1又は第2の位置としてより確からしい位置を推定することができる。その結果より正確に被験者固有の電流方向を推定することができる。
【0012】
また、第26の手段として、個人の感覚特性の評価方法であって、第22〜第25のいずれかの手段に加え、前記外的刺激を異なる複数の刺激とし、それら異なる複数の刺激によって得られる脳活動を解析するようにした。
このような構成では、第22〜第25のいずれかの手段を適用して個人の感覚特性を評価することにより、より個人の感覚特性を正確に評価し、個人の評価結果として産業上で利用できる。
また、第27の手段として、第26の手段に加え、前記外的刺激は複数の異なる空間周波数であり、被験者固有の見え方の特性を異なる空間周波数に対する脳活動を解析することにより算出するようにした。
このような構成では、被験者固有の見え方の特性をより正確に評価することができる。