【実施例1】
【0032】
図1は、本発明の一実施例に係る実施例1の微細構造転写装置の概略構成を示す側面図であり、
図2は、
図1に示す微細構造転写装置の平面図である。
図1及び
図2に示す白抜き矢印は、シート状体(フィルム)4の搬送方向(供給方向)を示している。
【0033】
(微細構造転写装置の構成)
【0034】
図1に示すように、微細構造転写装置1は、上流側より、巻出しフィルム(シート状体)を捲回する巻出機5、巻出機5より送り出されるシート状体(フィルム)4を搬送するガイドロール3、シート状体(フィルム)4に空気を当ててフィルム表面に付着する塵埃を除去するドライクリーナ9、シート状体(フィルム)4を鉛直方向下方へと搬送する2つのガイドロール3、詳細後述するインプリントロール2に硬化光照射器8を介して上流側に配される上流側ガイドロール(第1ガイドロール)3a、硬化光照射器8、インプリントロール2、及びインプリントロール2に隣接しその下流側に配される下流側ガイドロール(第2ガイドロール)3bを備える。なおここで、硬化光照射器8は、硬化光として、例えば紫外線(紫外光)を照射する。
【0035】
また、微細構造転写装置1は、下流側ガイドロール(第2ガイドロール)3bを通過するシート状体(フィルム)4を鉛直方向上方へと案内するガイドロール3、当該ガイドロール3よりシート状体(フィルム)4は水平に下流側へと搬送すると共に鉛直方向下方へとシート状体(フィルム)4を案内するガイドロール3、当該ガイドロール3をシート状体(フィルム)4が通過する際にモールド(金型)に形成された微細パターン領域の始端及び終端に相当する位置にマーカを付加するためレーザを照射するレーザーマーカ10、シート状体(フィルム)4に空気を当ててフィルム表面に付着する塵埃を除去するドライクリーナ9、ドライクリーナ9よりも下方に配される2つのガイドロール3、ダンサーロール7、クリーニングロール12、2つのガイドロール3、及びシート状体(フィルム)4を巻き取る巻取機6を備える。
【0036】
クリーニングロール12は、対をなすクリーニングロールの表面(外周面)には、予め糊等が塗布されており、シート状体(フィルム)4が対をなすクリーニングロール12に挟まれ接触しつつ通過することにより、フィルム表面に付着する塵埃などを除去する。この際、詳細後述するレプリカは硬化されており、且つ、シート状体(フィルム)4に強固に固着されているため、対をなすクリーニングロール12を通過する際に、シート状体(フィルム)4からレプリカが離脱又は剥離することは無い。なお、本実施例では、微細構造転写装置1がクリーニングロール12を有する構成を示すが、クリーニングロール12の設置は任意で良い。すなわち、クリーニングロール12を有しない構成としても良い。
【0037】
シート状体(フィルム)4は、可撓性であり、且つ、光を透過する性質を有する。ダンサーロール7は、
図1において左右、すなわち、水平面内において前後に変位することにより、搬送されるシート状体(フィルム)4に対し所定の張力を付与する。例えば、各ガイドロールの直径の相違に基づき、仮に、巻出機5から所定の送り量(速度)にて、シート状体(フィルム)4が送り出された場合であっても、フィルムに撓みが生じ得る。しかしながら、ダンサーロール7が前後に変位しシート状体(フィルム)4の張力を調整することで、上述の撓みを防止することができる。
【0038】
図1及び
図2に示すように、微細構造転写装置1は、モールド(金型)14を載置し、水平面内においてX−Y方向に移動可能であると共に、回転方向(θ)に変位可能なステージ11を備える。モールド(金型)14の表面に形成された微細凹凸パターンに、予め光硬化性樹脂であるレジンが塗布されており、図示しないロボットアーム等の搬送機構により、ステージ11への搬入(ロード)及びステージ11からの搬出(アンロード)が行われる(
図2の矢印)。なお、ステージ11には、例えば、真空チャックが設けられており、載置されるモールド(金型)14を、真空チャックによりステージ11上に固定する。
【0039】
また、
図2に示すように、微細構造転写装置1は、上流側ガイドロール(第1ガイドロール)3aと硬化光照射器8の間に、両端がガントリー13に移動可能に支持される撮像部支持部18の2箇所、シート状体(フィルム)4の幅方向に沿って相互に離間し保持される2つの上流側撮像部17aを備える。また、インプリントロール2と下流側ガイドロール(第2ガイドロール)3bの間に、両端がガントリー13に移動可能に支持される撮像部支持部18の2箇所、シート状体(フィルム)4の幅方向に沿って相互に離間し保持される2つの下流側撮像部17bを備える。これら、上流側撮像部17a及び下流側撮像部17bとして、例えば、CCD等が用いられる。上流側撮像部17a及び下流側撮像部17bは、後述するシート状体(フィルム)4の位置決め時において、レーザーマーカ10により付加されたシート状体(フィルム)4上の4箇所のマーカ検出に用いられる。下流側ガイドロール(第2ガイドロール)3bとステージ11の間に、フィルムクランプ16が設けられている。
【0040】
(レプリカ形成時における微細構造転写装置の動作)
【0041】
図3A乃至
図3Eはレプリカ形成時における各工程を示している。
図3Aに示す撮像部による位置合わせ工程では、下流側ガイドロール(第2ガイドロール)3bは、ステージ11に載置されるモールド(金型)14の表面と所定の間隔を維持しつつ下流側へと、ステージ11の端部を超える位置まで移動する。また、上流側撮像部17a及び下流側撮像部17bは、それぞれ、シート状体(フィルム)4の鉛直方向上方であって、モールド(金型)14の表面の微細パターン領域の始端(シート状体(フィルム)4の搬送方向における上流側の端部)及び微細パターン領域の終端(シート状体(フィルム)4の搬送方向における下流側の端部)に相当する位置まで移動する。そして、上流側撮像部17a及び下流側撮像部17bは、搬送されるシート状体(フィルム)4に付加されたマーカを検出すると、巻取機6はシート状体(フィルム)4の巻取動作を停止する。
【0042】
次に、
図3Bに示すフィルムクランプ及びインプリントロール押圧工程では、先ず、フィルムクランプ16が下降しシート状体(フィルム)4をクランプする。これにより、シート状体(フィルム)4は固定される。また、インプリントロール2が下降しシート状体(フィルム)4を押圧する。この状態で下流側ガイドロール(第2ガイドロール)3bは、鉛直方向上方に配されるガイドロール3と共に上流側へと移動し、インプリントロール2と所定の距離となる位置で停止する。
【0043】
図3Cに示すナノインプリント動作工程では、インプリントロール2がシート状体(フィルム)4を押圧しつつ、且つ、下流側ガイドロール(第2ガイドロール)3bと等速にて下流側へと移動する。このとき、
図4Cに示す例では、硬化光照射器8は、インプリントロール2及び下流側ガイドロール(第2ガイドロール)3b及びその鉛直方向上方に配されるガイドロール3に追従するよう移動する。インプリントロール2が下流側ガイドロール(第2ガイドロール)3bと等速にて下流側へと移動することにより、これらの位置関係、すなわち、距離は一定に保たれるため、シート状体(フィルム)4のパス長さは変化することが無く、インプリントロール2がシート状体(フィルム)4を押圧しつつ移動しても、シート状体(フィルム)4に付与される張力は変動しない。
【0044】
図3Dに示す硬化光照射工程では、上述のように、硬化光照射器8は、インプリントロール2に追従するよう下流側へ移動するため、紫外線(硬化光)を照射しつつ下流側へと移動し、微細パターン領域を有するモールド(金型)14の表面に予め塗布された光硬化性樹脂は、インプリントロール2による押圧力と協働し、シート状体(フィルム)4に固着する。これにより、シート状体(フィルム)4に、モールド(金型)14の表面に形成された微細な凹凸パターンが反転転写される。従って、本実施例では、ナノインプリント動作工程と硬化光照射工程とが同時に実行される。
【0045】
次に、
図3Eに示す剥離工程では、インプリントロール2は、下流側ガイドロール(第2ガイドロール)3b及びその鉛直方向上方に配されるガイドロール3と等速にて上流側へと移動することにより、シート状体(フィルム)4に固着されたレプリカが均一な状態にて、モールド(金型)14の表面より剥離される。すなわち、シート状体(フィルム)4に固着されたレプリカ及びモールド(金型)14に損傷を与えることなく剥離することが可能となる。
【0046】
以上のように、本実施例の微細構造転写装置1によれば、インプリントロール2が下流側ガイドロール(第2ガイドロール)3b及びその鉛直方向上方に配されるガイドロール3と等速にて、下流側及び上流側へと往復移動することで、容易にレプリカを形成することが可能となる。
【0047】
続いて、
図4A乃至
図4Kを用いて、上流側ガイドロール(第1ガイドロール)3a、インプリントロール2及び下流側ガイドロール(第2ガイドロール)3bの動作について詳細に説明する。
図4Aに示すように、下流側ガイドロール(第2ガイドロール)3bは下流側へと移動し、モールド(金型)14の下流側端部を超える位置にて停止する。このとき、上流側ガイドロール(第1ガイドロール)3aと下流側ガイドロール(第2ガイドロール)3bの軸心間の距離L1は、例えば4000mmである。また、モールド(金型)14の表面に形成された微細凹凸パターンの存在領域である微細パターン領域の長さL2は、例えば65inch等である。上流側ガイドロール(第1ガイドロール)3a、インプリントロール2及び下流側ガイドロール(第2ガイドロール)3bの間を搬送されるシート状体(フィルム)4の鉛直方向上方には、2つの上流側撮像部17a及び2つの下流側撮像部17bが位置付けられており、レーザーマーカ10により予めシート状体(フィルム)4に付加された、微細パターン領域の始端及び終端に対応する位置のマーカを検出する。なお、シート状体(フィルム)4の搬送は、一つのセルに相当する長さ分、巻取機6の駆動によりピッチ送りされている。
【0048】
図4Bに示すように、4箇所のマーカが、上流側撮像部17a及び下流側撮像部17bにより検出されると、当該検出された4箇所のマーカを基準として、モールド(金型)14を載置するステージ11が、例えば、回転方向(θ)に回転し、4箇所のマーカと微細パターン領域の始端及び終端が重なるよう位置決めされる。位置決めの確認についても、上流側撮像部17a及び下流側撮像部17bによる撮像画像に基づき実行される。
【0049】
位置決めが完了すると、
図4Cに示すように縦断面が略L字状のフィルムクランプ16がシート状体(フィルム)4をモールド(金型)14の表面に押圧しクランプする。また、上流側ガイドロール(第1ガイドロール)3aもクランプする。
【0050】
次に、
図4Dに示すように、インプリントロール2が下降し、
図4Eに示すように、それまで、モールド(金型)14の下流側端部を超える位置にて停止していた下流側ガイドロール(第2ガイドロール)3bは、インプリントロール2と所定の位置関係となるよう、上流側へと移動する。このとき、下流側ガイドロール(第2ガイドロール)3bは、インプリントロール2よりも鉛直方向上方に位置し、上流側ガイドロール(第1ガイドロール)3aよりも上流側に位置する。従って、インプリントロール2により押圧される位置から下流側ガイドロール(第2ガイドロール)3bにかかるシート状体(フィルム)4は、モールド(金型)14の表面と所定の角度をなすことになる。
【0051】
図4Fに示すように、インプリントロール2は、シート状体(フィルム)4を押圧しつつ、下流側ガイドロール(第2ガイドロール)3bと等速にて、モールド(金型)14の下流側端部を超える位置まで移動する。インプリントロール2と下流側ガイドロール(第2ガイドロール)3bとが等速にて移動することにより、これらの位置関係は一定のまま下流側へと移動することにより、シート状体(フィルム)4に付与される張力の変動は生じない。ここで、例えば、インプリントロール2及び下流側ガイドロール(第2ガイドロール)3bの移動速度は、150mm/sである。
【0052】
続いて、
図4Gに示すように、硬化光照射器8が、フィルムクランプ16の真上まで下降する。そして、硬化光照射器8は、モールド(金型)14の表面の微細パターン領域に予め塗布され、インプリントロール2による押圧力によりシート状体(フィルム)4に圧着された光硬化性樹脂に、シート状体(フィルム)4の上方より紫外線(硬化光)を照射しつつ、モールド(金型)14の下流側端部を超える位置に位置するインプリントロール2の近傍まで移動する。これにより、光硬化性樹脂は硬化し、シート状体(フィルム)4にモールド(金型)14の表面に形成された微細凹凸パターンが反転転写される。
【0053】
図4Iに示すように、次に、フィルムクランプ16は上昇し、モールド(金型)14より退避する。そして、インプリントロール2は、下流側ガイドロール(第2ガイドロール)3bと共に、等速にて上流へと移動を開始する。
図4Jに示すように、下流側ガイドロール(第2ガイドロール)3bと共に、等速にてインプリントロール2が上流側へと移動することにより、シート状体(フィルム)4に固着されたレプリカは均一の状態にて、モールド(金型)14の表面に形成された微細凹凸パターンより剥離される。インプリントロール2がモールド(金型)14の上流側端部近傍に達するまで、上流側ガイドロール(第1ガイドロール)3aはクランプされ続ける。最後に、
図4Kに示されるように、インプリントロール2がモールド(金型)14の上流側端部近傍に達すると、上流側ガイドロール(第1ガイドロール)3aはクランプから開放され、インプリントロール2及び下流側ガイドロール(第2ガイドロール)3bは上昇し、シート状体(フィルム)4に固着された1セル分のレプリカが得られる。
【0054】
図示しないが、その後、巻取機6は、少なくとも1セル分の長さ(ピッチ)のシート状体(フィルム)4を巻き取ることで、巻出機5は、シート状体(フィルム)4をピッチ送りする。その後、
図4A乃至
図4Kに示す動作を繰り返す(ステップ・アンド・リピート)ことにより、シート状体(フィルム)4に、同一のモールド(金型)14より転写された複数のレプリカを固着する。
【0055】
なお、上述の
図3A乃至
図3Eにおいては、ナノインプリント動作工程と硬化光照射工程とを同時に実行する場合を示したが、
図4A乃至
図4Kにおいては、ナノインプリント動作工程完了後に硬化光照射工程を実行する構成としている点が異なる。このように、ナノインプリント動作工程と硬化光照射工程とを同時に実行しても、或は、ナノインプリント動作工程完了後に硬化光照射工程を実行してもどちらでも良い。また、硬化光照射工程に係わるタクトは、光硬化性樹脂の光硬化特性、樹脂の塗布量、フィルムおよび基板材料との固着特性等による照射プロセス特性(照射速度・照射エネルギー等)に依存し、図示されない硬化光照射器制御機構により、照射開始タイミング、硬化光照射器移動速度および照射時間を任意にコントロールできる。
【0056】
図5は、レプリカ形成時のプロセスの概要を示す図であって、(A)はフィルム位置合わせ、(B)は押圧(インプリント)、(C)は硬化光照射、(D)は剥離、及び(E)はレプリカ形成完了時を示す図である。
図5(A)では表面に微細凹凸パターンが形成されたモールド(金型)14に予め光硬化性樹脂であるレジン19が塗布された状態で、シート状体(フィルム)4を位置合わせする。その後、
図5(B)ではインプリントロール2によりシート状体(フィルム)4をレジン19に押圧しつつ下流側へと移動する。
図5(C)では、レジン19に圧着されたシート状体(フィルム)4に、硬化光照射器8より紫外線(硬化光)を照射しつつ、硬化光照射器8は下流側へと移動する。
図5(D)では、インプリントロール2が上流側へと移動することにより、硬化後のレジンが固着されたシート状体(フィルム)4がモールド(金型)14より剥離される。
図5(E)では、完全にモールド(金型)14より剥離することにより、シート状体(フィルム)4に固着されたレプリカ20が形成される。
【0057】
(ガラス基板へのパターン形成時における微細構造転写装置の動作)
【0058】
以下に、微細構造転写装置1により、ガラス基板へレプリカによる微細凹凸パターンを形成(転写)する動作について説明する。
図6は、
図1に示す微細構造転写装置の概略構成を示す側面図であって、ガラス基板へレプリカによる微細凹凸パターン転写時の側面図であり、
図7は、
図6に示す微細構造転写装置の平面図である。上述の
図1及び
図2と異なる点は、ステージ11に、モールド(金型)14が載置される構成に代えて、ガラス基板15を載置する構成としたことにある。よって、ここでは、
図6及び
図7についての説明を省略する。
【0059】
上述の
図3A乃至
図3Eに示した各工程において、ステージ11に、予め光硬化性樹脂が塗布されたガラス基板15が載置され、シート状体(フィルム)4に固着された微細凹凸パターンを表面に有するレプリカを、インプリントロール2によりガラス基板15の光硬化性樹脂へ押圧しつつ、下流側ガイドロール(第2ガイドロール)3bと等速にて下流側に移動する。また、インプリントロール2に追従するよう、紫外線(硬化光)を照射しつつ下流側へ移動する硬化光照射器8により、ガラス基板15の光硬化性樹脂が硬化され、
図3Eに示すように、硬化された光硬化性樹脂を有するガラス基板15よりレプリカを剥離することで、ガラス基板15の表面に、微細凹凸パターンが形成される。
【0060】
また、上述の
図4A乃至
図4Kに示した、上流側ガイドロール(第1ガイドロール)3a、インプリントロール2、及び下流側ガイドロール(第2ガイドロール)3bの動作についても、予め光硬化性樹脂が塗布されたモールド(金型)14に代えて、予め光硬化性樹脂が塗布されたガラス基板15とし、上述の上流側ガイドロール(第1ガイドロール)3a、インプリントロール2、及び下流側ガイドロール(第2ガイドロール)3bの動作により、シート状体(フィルム)4に固着されたレプリカの微細凹凸パターンをガラス基板15上に形成(転写)するものである。なお、レプリカを使用限界数、例えば、数百回に達した時点で、巻取機6は、少なくとも1セル分の長さ(ピッチ)のシート状体(フィルム)4を巻き取ることで、巻出機5は、シート状体(フィルム)4をピッチ送りする。これにより、新たなレプリカにより、再度、
図4A乃至
図4Kの動作を繰り返し、複数のガラス基板15上にレプリカの微細凹凸パターンを転写しパターン形成するものである。
【0061】
このように、シート状体(フィルム)4をピッチ送りすることのみで、新たなレプリカへの交換が可能となるため、レプリカ交換と段取り作業におけるコストを低減できる。
【0062】
また、同一の微細構造転写装置1にてレプリカを連続的に複数シート状体(フィルム)に固着でき、且つその後、ガラス基板へレプリカを用いてパターン形成することが可能となるため。スループットの向上を図ることが可能となる。
【0063】
図8は、ガラス基板へのパターン形成時のプロセスの概要を示す図であって、(A)はレプリカ位置合わせ、(B)は押圧(インプリント)、(C)は硬化光照射、(D)は剥離、及び(E)はガラス基板へのパターン形成完了時を示す図である。
図8(A)では予め表面に光硬化性樹脂であるレジン19が塗布されたガラス基板15に、シート状体(フィルム)4に固着されたレプリカ20を位置合わせする。その後、
図8(B)ではインプリントロール2によりシート状体(フィルム)4に固着されたレプリカ20を、レジン19が塗布されたガラス基板15に押圧しつつ下流側へと移動する。
図8(C)では、ガラス基板15上のレジン19へ、シート状体(フィルム)4に固着されるレプリカ20を透過して、硬化光照射器8より紫外線(紫外光)を照射しつつ、硬化光照射器8は下流側へと移動する。
図8(D)では、インプリントロール2が上流側へと移動することにより、硬化後のレジン19を有するガラス基板15より、シート状体(フィルム)4に固着されるレプリカ20が剥離される。
図8(E)では、完全にガラス基板15よりシート状体(フィルム)4に固着されたレプリカ20を剥離することにより、ガラス基板15上にレプリカの微細凹凸パターンが形成される。
【0064】
なお、本実施例では、微細構造転写装置1にて、シート状体(フィルム)4に連続的に複数のレプリカ20を固着させた後、予め光硬化性樹脂が塗布されたガラス基板15にレプリカ20により、微細凹凸パターンを転写(形成)する構成としたが、必ずしもこれに限られるものでは無い。例えば、本実施例の微細構造転写装置1にて、シート状体(フィルム)4に連続的に複数のレプリカ20を固着させた後、当該レプリカを用いて他の装置にてガラス基板にレプリカの微細凹凸パターンを転写する構成としても良い。
【0065】
本実施例によれば、シート状体(フィルム)に連続的に複数のレプリカを固着し得る微細構造転写装置及び微細構造転写方法を提供することが可能となる。
【0066】
また、本実施例によれば、シート状体に連続的に複数のレプリカを固着し得ることから、レプリカ形成のスループットの向上が図られる。
【0067】
また、仮に、本実施例の微細構造転写装置にて、レプリカ形成とガラス基板上へのレプリカの微細凹凸パターンの転写によるパターン形成を行えば、シート状体に固着された複数のレプリカのうち、一のレプリカが使用限界に達した場合であっても、シート状体をピッチ送りすることのみで、次の新たなレプリカの使用が可能となることから、レプリカの交換と段取り作業におけるコストを低減できる。
【実施例3】
【0075】
図10は、本発明の他の実施例に係る実施例3の微細構造転写装置の平面図である。本実施例では、微細構造転写装置がレプリカ用光硬化性樹脂塗布機構及びガラス基板用光硬化性樹脂塗布機構を備える点が実施例1及び実施例2と異なる。実施例1及び実施例2と同様の構成要素に同一符号を付し、以下では重複する説明を省略する。
【0076】
図10に示すように、微細構造転写装置1aは、ガントリー13を挟んでその両側にそれぞれ、レプリカ用光硬化性樹脂塗布機構22a及びガラス基板用光硬化性樹脂塗布機構22bを備える。ここで、
図10において、微細構造転写装置1aの長さ方向をX方向、微細構造転写装置1aの幅方向をY方向と定義する。ステージ11に載置されガントリー13内に搬入されるモールド(金型)14が位置する側に配されるレプリカ用光硬化性樹脂塗布機構22aは、Y方向に往復移動可能であって、ステージ11に載置されガントリー13内に搬入されるモールド(金型)14に光硬化性樹脂を塗布するよう構成されている。また、ステージ11に載置されガントリー13内に搬入されるガラス基板15が位置する側に配されるガラス基板用光硬化性樹脂塗布機構22bは、Y方向に往復移動可能であって、ステージ11に載置されガントリー13内に搬入されるガラス基板15に光硬化性樹脂を塗布するよう構成されている。これら、レプリカ用光硬化性樹脂塗布機構22a及びガラス基板用光硬化性樹脂塗布機構22bとして、例えば、インクジェットプリンタ等が用いられる。
【0077】
次に、レプリカ形成プロセスにおける微細構造転写装置1aの動作について説明する。
図11Aは、レプリカ形成プロセスにおけるモールドのステージへのセット状態を示す図である。
図11Aに示すように、ステージ11にモールド(金型)14がセット(載置)される。このとき、レプリカ用光硬化性樹脂塗布機構22aは、初期位置に待機している。
図11Bは、レプリカ形成プロセスにおける光硬化性樹脂塗布及びモールド位置決め状態を示す図である。レプリカ用光硬化性樹脂塗布機構22aは、Y方向に移動し、ステージ11に載置されるモールド(金型)14がガントリー13内に搬入される位置に移動する。レプリカ用光硬化性樹脂塗布機構22aは、ステージ11に載置されるモールド(金型)14がガントリー13内に搬入される際に、モールド(金型)14の表面に光硬化性樹脂を塗布する。
図11Cは、レプリカ形成プロセスにおけるレプリカ連続形成状態を示す図である。
図11Cでは、上述の実施例1に示したように、図示しないシート状体(フィルム)に、モールド(金型)14の表面に形成された微細凹凸パターンが反転転写されたレプリカが形成される。
図11Dは、レプリカ形成プロセスにおけるモールド戻し状態を示す図である。レプリカ形成後、モールド(金型)14はステージ11に載置された状態にてガントリー外へと搬出される。
【0078】
次に、ガラス基板へのパターン形成プロセスにおける微細構造転写装置1aの動作について説明する。
図12Aは、ガラス基板へのパターン形成プロセスにおけるガラス基板のステージへのセット状態を示す図である。
図12Aに示すように、ステージ11にガラス基板15がセット(載置)される。このとき、ガラス基板用光硬化性樹脂塗布機構22bは、初期位置に待機している。
図12Bは、ガラス基板へのパターン形成プロセスにおける光硬化性樹脂塗布及びガラス基板位置決め状態を示す図である。
図12Bに示すように、ガラス基板用光硬化性樹脂塗布機構22bは、Y方向に移動し、ステージ11に載置されるガラス基板15のうちパターン形成が行わる領域であってガントリー13内に搬入される位置に移動する。ガラス基板用光硬化性樹脂塗布機構22bは、ステージ11に載置されるガラス基板15がガントリー13内に搬入される際に、ガラス基板15のうちパターン形成が行わる領域に光硬化性樹脂を塗布する。
図12Cは、ガラス基板へのパターン形成プロセスにおけるパターン連続形成状態を示す図である。ガントリー13内で、ステージ11にされるガラス基板15のうち、ガラス基板用光硬化性樹脂塗布機構22bにより光硬化性樹脂が塗布された領域に対しレプリカ20の微細凹凸パターンが形成(転写)される。
図12Dは、ガラス基板へのパターン形成プロセスにおけるガラス基板戻し状態を示す図である。ガラス基板15へのパターン形成後、ガラス基板15はステージ11に載置された状態にてガントリー外へと搬出される。
【0079】
本実施例によれば、レプリカ形成プロセス時及びガラス基板へのパターン形成プロセス時において、それぞれ独立に動作可能なレプリカ用光硬化性樹脂塗布機構22a及びガラス基板用光硬化性樹脂塗布機構22bを備えることにより、同一の微細構造転写装置1aにて、光硬化性樹脂の塗布から、レプリカ連続形成、更にはガラス基板15へのパターン形成までを行うことが可能となり、作業性が向上する。
【実施例4】
【0080】
図13は、本発明の他の実施例に係る実施例4の微細構造転写装置の正面図(
図1及び
図6におけるA方向矢視図)であり、
図14は、
図13におけるA方向矢視図である。本実施例では、インプリントロールの外周面にウレタンゴムライニングを有し、インプリントロールの直上にバックアップロール機構を設けた点が実施例1乃至実施例3と異なる。
【0081】
図13に示すように、本実施例の微細構造転写装置は、インプリントロール2の長手方向の両端部付近の上方にそれぞれ配される一対のZ軸駆動部51、及びそれぞれのZ軸駆動部51の下方に配され、荷重を監視するためのロードセル52を備える。また、
図14に示すように、インプリントロール2は、その外周面にウレタンゴムライニング56を有し、インプリントロール2の直上にバックアップロール機構55を備える。
図13に示すように、バックアップロール機構55は、インプリントロール2の長手方向に沿って、所定の間隔にて離間し複数設けられている。これら複数のバックアップロール機構により、高さ及び押圧力を個別に調整可能である。なお、
図13に示す例ではステージ11にモールド(金型)14が載置された状態、すなわち、シート状体(フィルム)4に連続的に複数のレプリカを固着する場合をしているが、ガラス基板15にレプリカを用いて微細凹凸パターンを転写する場合においては、ステージ11にガラス基板15が載置される。
【0082】
本実施例によれば、バックアップロール機構55によりインプリントロール2の高さ及び押圧力を個別に調整できることから、インプリントロール2自体の撓みを抑制することが可能となる。
【0083】
また、更に、バックアップロール機構55によりインプリントロール2の高さ及び押圧力を個別に調整できることから、インプリントロール2によりシート状体(フィルム)をモールド(金型)に対し柔軟に追従し均一な圧力でインプリントすることが可能となる。
【0084】
また、更に、バックアップロール機構55によりインプリントロール2の高さ及び押圧力を個別に調整できることから、複数のモールド(金型)使用時における、モールド(金型)間の相互段差を吸収し、柔軟に追従し均一な圧力でインプリントすることが可能となる。また、更に、高粘度な樹脂材料に対し、バックアップロール機構55により均一に圧力を伝達することで高精度なインプリントすることが可能となる。また、更に、インプリント完了し光硬化性樹脂の硬化後、剥離性の悪いフィルムや固着力が強い光硬化性樹脂に対し、バックアップロール機構55によりにより剥離時のローラ逃げを防止すると共に均一な剥離力(張力)により確実にフィルム剥離することが可能となる。
【0085】
なお、
図13では、バックアップロール機構55をインプリントロール2の長手方向に沿って、所定の間隔にて離間し複数設ける構成としたが、必ずしもこれに限られるものでは無く、インプリントロール2の長手方向の任意の一箇所に配する構成としても良い。また、バックアップロール機構55の設置数は、適宜必要に応じて設定すれば良い。
【0086】
また、バックアップロール機構55の設置時の配列は、図示された1列に限られるものでは無い。例えば、インプリントロール2の外周上に2列、3列等、複数列、バックアップロール機構55を配する構成としても良い。
【0087】
以上の実施例1〜4の記載を纏めると、実施例の微細構造転写装置は、次の特徴を有している。
(1)微細構造転写装置は、可撓性を有するシート状体を捲回し当該シート状体を巻き出す巻出機と、複数のガイドロールを介して搬送される前記シート状体を巻き取る巻取機と、前記巻出機と前記巻取機の間に配され、微細凹凸パターンが形成された表面に光硬化性樹脂が塗布されたモールドを載置するステージと、上方より前記シート状体を前記モールドに押圧しつつ、少なくとも前記モールドの両端部間を往復移動するインプリントロールと、前記モールドに押圧された前記シート状体に硬化光を照射する硬化光照射器と、を備え、前記シート状体に複数のレプリカを連続的に固着することを特徴とする。
(2)(1)の微細構造転写装置において、前記インプリントロールは、前記シート状体に固着された複数のレプリカのうち一のレプリカを、前記シート状体を介して、前記ステージに載置され表面に前記光硬化性樹脂が塗布された基板に押圧しつつ、少なくとも前記基板の両端部間を往復移動し、前記硬化光照射器は、前記光硬化性樹脂が塗布された基板に前記インプリントロールにより押圧された前記シート状体及び前記レプリカを介して硬化光を照射し、前記光硬化性樹脂が硬化後に前記インプリントロールにより前記シート状体を剥離することにより、前記レプリカの微細凹凸パターンを転写することを特徴とする。
(3)(1)または(2)の微細構造転写装置において、前記複数のガイドロールのうち、前記シート状体の搬送方向において前記インプリントロールに隣接し上流側に位置する第1ガイドロールと、前記シート状体の搬送方向において前記インプリントロールに隣接し下流側に位置する第2ガイドロールと、を備え、前記第2ガイドロールは、前記インプリントロールが前記シート状体を押圧しつつ移動する場合、前記インプリントロールより上方に位置し、前記インプリントロールと共に等速にて移動することを特徴とする。
(4)(3)の微細構造転写装置において、前記インプリントロールが前記シート状体を押圧しつつ移動する場合、前記モールド又は前記基板の端部のうち前記シート状体の搬送方向において上流側に位置する端部に前記シート状体をクランプするフィルムクランプを備えることを特徴とする。
(5)(4)の微細構造転写装置において、前記硬化光照射器は、前記インプリントロールと前記第1ガイドロールとの間に位置し、前記インプリントロールが前記シート状体を押圧しつつ移動する場合、硬化光を照射しつつ前記インプリントロール及び前記第2ガイドロールに追従するよう下流側に移動することを特徴とする。
(6)(4)の微細構造転写装置において、前記硬化光照射器は、前記インプリントロールと前記第1ガイドロールとの間に位置し、前記インプリントロールが前記シート状体を押圧しつつ前記第2ガイドロールと共に等速にて下流側に移動した後に、硬化光を照射しつつ下流側へと移動することを特徴とする。
(7)(5)または(6)の微細構造転写装置において、前記モールド及び/又は前記基板に前記光硬化性樹脂を塗布する光硬化性樹脂塗布機構を有することを特徴とする。
(8)(4)の微細構造転写装置において、前記インプリントロールの高さ及び押圧力を個別に調整し得るバックアップロール機構を備えることを特徴とする。
(9)(8)の微細構造転写装置において、前記バックアップロール機構は、前記インプリントロールの長手方向に沿って所定の間隔にて離間し複数備えることを特徴とする。
(10)(8)または(9)の微細構造転写装置において、前記バックアップロール機構は、前記インプリントロールの直上に前記インプリントロールの外周面と接触するよう配されるバックアップロールを有することを特徴とする。
(11)微細構造転写方法は、可撓性を有するシート状体を捲回し当該シート状体を巻き出す巻出機と、複数のガイドロールを介して搬送される前記シート状体を巻き取る巻取機と、前記巻出機と前記巻取機の間に配され、微細凹凸パターンが形成された表面に光硬化性樹脂が塗布されたモールドを載置するステージと、を備える微細構造転写装置を用いた微細構造転写方法であって、インプリントロールが上方より前記シート状体を前記モールドに押圧しつつ、少なくとも前記モールドの両端部間を往復移動する間にモールドに押圧された前記シート状体に硬化光を照射し、前記シート状体に複数のレプリカを連続的に固着することを特徴とする。
(12)(11)の微細構造転写方法において、前記インプリントロールが、前記シート状体に固着された複数のレプリカのうち一のレプリカを、前記シート状体を介して、前記ステージに載置され表面に前記光硬化性樹脂が塗布された基板に押圧しつつ、少なくとも前記基板の両端部間を往復移動する間に前記光硬化性樹脂が塗布された基板に前記インプリントロールにより押圧された前記シート状体及び前記レプリカを介して硬化光を照射し、前記レプリカの微細凹凸パターンを転写することを特徴とする。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。