(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0021】
以下、本発明の静電紡糸用スピナレットの複数の実施形態を図示しながら詳細に説明するが、本発明の静電紡糸用スピナレットの具体的な構成は、ここに図示するものに限定されない。
【0022】
図1は、方光体突起5(突起5)を有する静電紡糸用スピナレットの斜視図である。
【0023】
本実施形態の静電紡糸用スピナレット1は、導電性金属材料で構成された構造体である。該構造体は、X方向(長軸方向ともいう。)と、Y方向(厚み方向ともいう。)と、Z方向(短軸方向ともいう。)で形成される本体部20で構成される。
該構造体において、その厚み方向(Y方向)を構成する前記金属材料の一部が短軸方向(Z方向)に沿って突起5を形成するように延びている。言い換えると、構造体の本体部20の第一の面(一面)22と対向する逆側の第二の面(他の一面)21(本体部20の一側面を構成する)において、複数の突起5が短軸方向(Z方向)に沿って伸びるように形成されている。ここで本体部20は、静電紡糸用スピナレット1を構成する構造体から突起5を除いた部分を意味する。
【0024】
当該突起5は、頂部(突起頂部)2と側面部3とを有し、各頂部2に原料流体を吐出する吐出孔4が1孔ずつ設けられている。静電紡糸用スピナレット1を高電圧で帯電させることで、吐出孔4付近に原料流体からなるテイラーコーン7を形成し、テイラーコーン7の先端からナノファイバ8を紡出する。
【0025】
本実施形態の静電紡糸用スピナレット1は、吐出孔4が設けられた突起5を有するため、高電圧で帯電した静電紡糸用スピナレット1の突起5に電荷が集中し、突起5の周辺に強力な電界が発生する。この強力な電界によって、テイラーコーン7に与えられる捕集電極表面へと向かう力が増大し、テイラーコーン7の拡大および隣接するテイラーコーン同士の接触を抑制する。また、静電紡糸用スピナレット1は、突起5と谷部6が長軸方向(X方向)に沿って交互に配される構成を有するため、テイラーコーン7は側面部3と谷部6に沿って、隣接する突起5まで拡大しにくく、隣接するテイラーコーン7同士の接触が抑制される。
【0026】
静電紡糸用スピナレット1は、導電性の金属材料で構成されていればよく、鉄、アルミニウム、ステンレス剛、真鍮など任意の導電性の金属材料で構わない。また、これら複数の金属材料の組み合わせや合金から構成されていてもよい。
【0027】
静電紡糸用スピナレット1の長軸方向、厚み方向、および短軸方向の各長さは、任意に選択することができる。例えば、スピナレットの長軸方向は1500mm以下、スピナレットの厚み方向は100mm以下、スピナレットの短軸方向は150mm以下の範囲が挙げられる。静電紡糸用スピナレット1の寸法を前記長さの範囲内にすることにより、静電紡糸装置へのスピナレットの着脱作業や紡糸後のスピナレットのメンテナンス作業を容易に行うことができる。
【0028】
本明細書では、上記の通り、長軸方向、単軸方向と言い分けてはいるが、スピナレットの幅方向と高さ方向の長さが互いに同じものも、本発明から排除するものではない。また、本明細書では、「Z方向を、「短軸方向」と言い、スピナレットの高さ方向を示す」、と説明し、突起5がスピナレットの下面に突出した構造のもののみ図示したが、これらスピナレットは、突起5が構造体の一側面から捕集電極表面に向いていればよく、突起5が地面に向かって突出する向きで使用されてもよいし、突起5が地面に対して水平方向や上向きになるように使用されてもよい。
【0029】
本実施形態の静電紡糸用スピナレット1が有する突起5の数は特に限定されるものではないが、1000個以下が好ましい。突起5の数を1000個以下にすることにより、テイラーコーン7や紡出されて帯電したナノファイバ8同士での静電反発が発生しにくく、ナノファイバ8の紡出が均一となる。
【0030】
図2は、隣り合う突起同士で突起5の頂部2の高さが異なる静電紡糸用スピナレット1の斜視図である。本実施形態の静電紡糸用スピナレット1は、トッププレート30と、ノズル51の二つの部品を接合することにより得られる。リード孔16は、原料流体を吐出孔に導くために吐出孔と対で設けられ、一般的にスピナレット製作上、機能上の理由から大きい孔径を有している。
【0031】
図3は、本静電紡糸用スピナレットが有する方光体突起5(突起5)の断面図である。
図3は特に
図1の静電紡糸用スピナレットの突起5を拡大したものを示し、左右に線対称な形状を有する。
図2の静電紡糸用スピナレットの突起5は左右に線対称でない点を除いて、
図3に示したものと同様な構成を有する。
【0032】
本発明において静電紡糸用スピナレット1が有する突起5における、突起5の高さH(H方向の長さ)は特に限定されるものではないが、0.1mm以上であることが好ましい。電荷は尖った箇所に集中しやすいため、突起5の先端に電荷が集中しやすい。その結果、突起5周辺に発生する電界は、同じ印加電圧であっても、突起5のないスピナレットと比べて、より強力な電界となり、テイラーコーン7の挙動は安定する。突起5の高さを0.1mm以上にすることにより、突起5の周辺に強力な電界を発生させ、テイラーコーン7が捕集電極表面へ引き寄せられる力を強めることができる。突起5の高さはより好ましくは、1mm以上である。
【0033】
本実施形態の静電紡糸用スピナレット1が有する突起5の配し方は特に限定されるものではなく、静電紡糸用スピナレット1の形状や大きさによって、一次元的に配してもよいし、捕集電極表面に対して平行になるように、二次元的に配しても構わない。突起5を一次元的に配する場合、
図1に例示するように隣接する突起5同士で高さが同じになるように配してもよいし、
図2に例示するように隣接する突起5同士で高さが異なるように配しても構わない。この例示のように、ノズル51の長軸方向の中心から左右対称とし、ノズル51の長軸方向の中心から離れて配される突起5であるほど突起5の頂部2の高さ(第一の面22から頂部2までの距離)が低くなるように配することで、各々の突起5に均一な電界を発生させ、均質なナノファイバ8を得ることができるため、好ましい。なお、隣り合う突起同士の頂部の高さが同じ場合が含まれていてもよい。
【0034】
本静電紡糸用スピナレットが有する突起5の頂部2となる面の面方向は特に限定されるものではないが、全ての突起5の頂部2となる面が同一の面方向を向いていることが好ましい。
【0035】
本実施形態の静電紡糸用スピナレット1の突起5の形状は特に限定されるものではないが、テイラーコーン7の安定性や、スピナレットの加工のしやすさや加工費などを考慮すると方光体の形状であることが好ましい。また、突起5は、方光体の形状に限定して解釈されるものではなく、多面体、半球、錐体、多角柱、かまぼこ形などその要旨を逸脱しない範囲内において、種々の実施形態を適用することができる。複数の突起5は略同一形状を有するのが好ましい。
【0036】
本発明の静電紡糸用スピナレットを用いて静電紡糸をする場合、突起を捕集面に対して垂直方向になるようにスピナレットを設置し、垂直方向に原料流体を紡出し、ナノファイバを捕集することができるだけでなく、突起を捕集面に対して水平方向になるようにスピナレットを設置し、水平方向に原料流体を紡出し、ナノファイバを捕集することができる。
【0037】
本実施形態の静電紡糸用スピナレット1が有する吐出孔4の形状は、特に限定されるものではなく、円形、多角形、星型、Y型、C型などのいずれも選択できるが、スピナレットの加工の容易性を考慮すると円形がより好ましい。また、複数の吐出孔4は略同一形状を有することが好ましい。
【0038】
また、
図1、2に示す各吐出孔4の隣り合う吐出孔間の距離であるピッチPは、1mmを越えるように設定され、このようなピッチPを確保するように複数の突起5は、構造体の長軸方向(X方向)に沿って並ぶように形成される。1mmを越えるピッチPを確保することにより、隣接する吐出孔4から吐出される原料流体のテイラーコーン7の接触が抑制される。
【0039】
本実施形態の静電紡糸用スピナレット1が有する突起5における頂部2の面積(吐出孔を含む面積)は特に限定されるものではないが、0.1〜100mm
2の範囲であることが好ましい。頂部2の面積を0.1mm
2以上にすることにより、テイラーコーン7を確実に保持し、テイラーコーン7の周囲への拡大および隣接するテイラーコーン7同士の接触を抑制することができる。頂部2の面積を100mm
2以下にすることにより、ピッチPを小さくでき、十分なナノファイバ8の生産性を維持することができる。より好ましい頂部2の面積は、1〜50mm
2の範囲である。
【0040】
本実施形態の吐出孔4の孔径は限定されるものではないが、0.1mm〜1.0mmとすることが好ましい。吐出孔4の孔径を0.1mm以上にすることにより、静電紡糸用スピナレットの洗浄性が向上するため好ましい。また、吐出孔4の孔径を1.0mm以下にすることにより、低粘度の原料流体や低吐出量の場合において、テイラーコーン7が安定な挙動を示し、ナノファイバ8の紡出が均一となるため好ましい。
【0041】
本実施形態の静電紡糸用スピナレット1が有する頂部2に配される吐出孔4の位置は、特に限定されるものではなく、頂部2に配されていればよく、頂部2の面の中心や外周などが例示できるが、頂部2の中心に配されることが好ましい。吐出孔4を中心として、頂部2の面に沿ってテイラーコーン7が形成されるため、テイラーコーン7が安定な挙動を示し、均一なナノファイバ8を得ることができる。
【0042】
図4は、内部に原料流体を溜めるための内部空間を有する静電紡糸用スピナレットの断面図である。
図4に示すように、本実施形態の静電紡糸用スピナレット1は、トッププレート30と、ノズル40の二つの部品を接合することにより得られる。しかしながら、静電紡糸用スピナレット1を構成する部品はこのような形態には限定されない。
【0043】
本実施形態の静電紡糸用スピナレット1は、第一の面22に設けられた流入口10より紡糸用の原料流体が供給される。流入口10より供給された原料流体は、スピナレット内部の内部空間9に溜められ、内部空間9の底面に穿孔されるとともに突起5内を貫通する吐出孔4より吐出される。高粘度の原料流体を用いる場合、内部空間9がバッファとして機能するため、各々の吐出孔から均一に原料流体が吐出される。また、スピナレット構造が単純なため、紡糸後の洗浄工程やメンテナンスを容易に行うことができる。
【0044】
本実施形態の静電紡糸用スピナレット1への原料流体の供給方法は、特に限定されるものではないが、ギアポンプ、シリンジポンプ、溶液への加圧による供給などが例示できる。ギアポンプは、分解洗浄に時間を要するなどメンテナンス性に難があるが、連続的に原料流体を供給できる利点がある。また、シリンジポンプはバッチ式であり、一度に原料流体を供給可能な量に限りがあるが、ギアポンプよりも広い範囲の粘度の原料流体を供給することが可能である。使用する原料流体や生産量、メンテナンス性に応じて、適宜選択することができる。
【0045】
図5は、内部に原料流体を溜めるための内部空間を有する静電紡糸用スピナレットの内部空間を可視化した斜視図である。
【0046】
本実施形態の静電紡糸用スピナレット1に有する内部空間9の体積と、吐出孔4の面積と長さは、内部空間9のスピナレットの長軸方向に対して垂直方向の断面積をA、内部空間9のスピナレットの長軸方向の長さをB、吐出孔4の断面積をa、吐出孔4の長さ(内部空間9から吐出孔の出口までのノズルを貫通する長さ)をb、1つの内部空間9の底面に穿孔された吐出孔4の数をnとした場合、下記の式(1)の関係を満たすことが好ましい。該式(1)を満たす範囲にすることにより、原料流体を各々の吐出孔4に供給する際、吐出孔4の長さ方向への原料流体の流動性が、内部空間9の長軸方向への原料流体の流動性を上回り、静電紡糸用スピナレット1内部の背圧が上がり、各々の吐出孔4に均一に原料流体が供給されやすく、ナノファイバ8の紡出が均一となりやすい。
【0048】
図6は、内部に原料流体の流路を有する静電紡糸用スピナレットおよびその構成部品の断面図の一例である。
【0049】
本実施形態の静電紡糸用スピナレット1は、原料流体を流入口10より複数の吐出孔4へ供給することができる。流入口10から各々の吐出孔4へ分配するために、内部に内部空間9を有していてもよいが、流体を分配するために分岐した複数の流路11を有していることが好ましい。極めて低粘度の原料流体を、内部空間9を有するスピナレットに流入させると、内部空間9に原料流体を充填する過程で原料流体の方が空気よりも比重が大きいため、内部空間9に空気を抱き込みながら充填され、原料流体を各々の吐出孔4に均一に供給することが困難である。また、内部空間9に空気を抱き込むことなく原料流体を充填させたとしても、流入口10から各々の吐出孔までの距離が異なり、各々の吐出孔4へ原料流体を均一に供給することが困難である。
静電紡糸用スピナレット1の内部に流路11を形成することで、空気と原料流体の比重の差の影響を受けにくくすることができる。これにより、スピナレット内部に空気を抱き込むことなく原料流体を内部空間9に充填することができ、さらに流入口から各々の吐出孔までの距離が略等距離であることから、原料流体を各々の吐出孔4に均一に供給することができ、均一なナノファイバ8を得ることができる。
【0050】
本実施形態の流入口10から各々の吐出孔4までの距離の差、すなわち、各流路11の距離の差は各々の吐出孔4に原料流体を均一に供給することができるという点で、10%以内であることが好ましい。流入口10から各々の吐出孔4までの距離の差を10%以内にすることにより、各々の吐出孔4にかかる背圧の差が小さく、各々の吐出孔4からの原料流体の吐出量の差がナノファイバ8に与える影響を抑制することができる。
【0051】
本実施形態の流路11の形状は、特に限定されないが、流路11の形状と原料流体の流れの関係を解析した結果、効率よく各々の吐出孔4に原料流体を均一に供給することができるという点で、
図6に例示するような枝分かれ図の形状であることが好ましい。また、
図6の下半分に示すように、本実施形態の静電紡糸用スピナレット1は、トッププレート30、ノズル40に加え、二枚の分配板12、15の合計四つの部品を接合することにより得られる。各部品の内部および接合面には流路11が形成されており、容易に流路11を形成することができる。
【0052】
図7は、静電紡糸用スピナレット1の内部に原料流体の流路を有するための分配板12、15の斜視図である。
【0053】
本実施形態の静電紡糸用スピナレット1では、内部に流路11を形成するために、
図6、
図7に例示するような取り外し可能な分配板12、15が設置される。分配板12は、表面(接合面)を掘削されて形成される溝13と、当該溝に分配板12の厚み方向を貫通する孔14を有しており、製作とスピナレット洗浄が容易になるために用いられる。分配板12の設置によって流路11を形成させることができ、紡糸後にノズル40と分配板12、15とに分解することで、スピナレットの洗浄工程を簡便かつ効果的に行うことができる。また、分配板12の溝およびの孔の形状が異なる分配板(たとえば分配板15)を複数作製しておくことで、随時、原料流体の粘度に適した分配板12に取り替えることができ、更に幅広い粘度の原料流体に対応することができる。
【0054】
分配板の溝の体積と、溝を貫通する孔の面積および長さは、原料流体が流れる方向に対して垂直方向の分配板の溝13の断面積をD、分配板の溝を貫通する孔14の面積をdとした場合、流路11の形状と原料流体の流れの関係を解析した結果、効率よく各々の吐出孔4に原料流体を均一に供給することができるという点で、Dは0.1〜5mm
2、dは0.1〜1mm
2の範囲にすることが好ましい。前記範囲を満たすと、粘度10〜5000cPの原料流体を分配する際、低粘度の原料流体の場合は空気を抱きこむことなく、高粘度の原料流体は背圧が上がりすぎることもなく、各々の吐出孔4に均一に原料流体が供給されやすく、ナノファイバ8の紡出が均一となりやすい。
【0055】
分配板15は、表面を掘削されて形成される二つの溝13a、13bを有する。溝13aに分配板15の厚み方向を貫通する孔14a、14bが設けられ、溝13bに孔14c、14dが設けられる。分配板15の溝13a、13b各々においても、分配板12におけるD、L、d、lと同様の前記の理由から前記範囲を満たすことが好ましい。
【0056】
図8は、流路を有したトッププレート31を使用した静電紡糸用スピナレット1の斜視図である。本実施形態の静電紡糸用スピナレット1は、トッププレート30と、ノズル52の二つの部品を接合することにより得られる。
【0057】
本実施形態の静電紡糸用スピナレット1の内部に流路11を形成するために、
図8に例示するような流路を有するトッププレート31を使用してもよい。流路11を有するトッププレート31を使用した場合、分配板を使用した場合よりも部品数を少なくすることができ、紡糸後の洗浄工程やメンテナンスを容易に行うことができる。
【0058】
本実施形態の静電紡糸用スピナレット1を用いて静電紡糸をする際、原料流体に含まれる材料は特に限定されるものではなく、適宜選択することができる。この様な材料としては、ポリエステル、ナイロン、ポリウレタン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリビニルアルコール、ポリスチレン、ポリメタクリル酸メチルなどの高分子材料の他、アルミナや酸化チタンなどの無機材料などを例示できる。ナノファイバ化した際に発現する効果を考慮し、適宜選択することができる。また、これらポリマーは、単独で使用してもよく、2種類以上のポリマーを混合して使用してもよい。更には、これらポリマーは他の機能性材料と複合されていてもよく、そのような機能性材料としては、難燃剤、消臭剤、酸化防止剤、帯電防止剤、顔料などの機能付与材の他、金ナノ粒子や二酸化チタンナノ粒子、ハイドロキシアパタイトナノ粒子、カーボンナノチューブやグラフィンなどのナノ材料を例示できる。
【0059】
本実施形態の静電紡糸用スピナレット1を用いて静電紡糸をする際、原料流体に含まれる溶媒は特に限定されるものではなく、ポリマーを室温もしくは加熱下で溶解可能な溶媒を、適宜選択することができる。この様な溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラヒドロフラン、テトラメチルユリア、トリメチルフォスフェート、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、ヘキサフルオロ酢酸、メチルエチルケトン、ジメチルスルホキシド、アセトン、ブチルアセテート、シクロヘキサン、ブチロラクトン、テトラエチルユリア、イソホロン、トリエチルフォスフェート、カルビトールアセテート、プロピレンカーボネートなどが例示でき、溶媒のポリマーに対する溶解性や揮発性、誘電率、粘度、表面張力などを考慮して、適宜選択することができる。また、これら溶媒は、単独で使用してもよく、2種類以上の溶媒を混合して使用してもよい。2種類以上の溶媒を混合して使用する場合には、揮発性の高い溶媒と揮発性の低い溶媒を混合することで、電界紡糸過程におけるポリマー溶液の揮発性を制御することができるので、より好ましい。この様な組み合わせとしては、N,N−ジメチルホルムアミドとアセトン、N,N−ジメチルアセトアミドとアセトン、N−メチル−2−ピロリドンとアセトンなどを例示することができる。2種類以上の溶媒を混合して使用する場合の混合比率は、特に限定されるものではなく、求めるポリマー溶液の物性、例えば濃度や粘度、揮発性、導電性、表面張力などを考慮して、適宜調整することができる。これによって、得られるナノファイバ8の繊維径や繊維形態を容易に制御可能となったり、また静電紡糸時の溶液吐出量の調整が容易となり、例えば吐出量を増大させてナノファイバ8の生産性を向上させることができたりする。
【0060】
本実施形態の静電紡糸用スピナレット1を用いて静電紡糸をする際、原料流体の特性を調整する目的で、添加剤を添加することができる。添加剤の種類は特に限定されるものではなく、有機もしくは無機の塩などを、適宜選択することができる。例えば、イオン性の界面活性剤を添加した場合には、原料流体の表面張力が低下し、また電気伝導率が向上するので、イオン性の界面活性剤が添加されていない原料流体を静電紡糸した場合に比べて、球状粒子(ビーズ)の発現が少なく、平均繊維径が小さいナノファイバ8が得られるので好ましい。添加剤の添加量についても特に限定されるものではなく、求める原料流体の特性調整効果に応じて適宜選択することができるが、好ましい範囲としては、原料流体中に0.005〜0.5質量%、更に好ましい範囲としては、原料流体中に0.01〜0.3質量%を例示できる。
【0061】
本実施形態の静電紡糸用スピナレット1を用いて静電紡糸をする際、原料流体のポリマー濃度は特に限定されるものではなく、原料流体の粘度、そして静電紡糸して得られるナノファイバ8の平均繊維径や繊維形態、そして生産性などを考慮して、適宜調整することができるが、好ましい濃度範囲としては3〜30質量%、より好ましい範囲としては4〜25質量%を例示することができる。ポリマーの濃度が3質量%以上であれば、ビーズ構造があまり見られない、十分に小さい平均繊維径のナノファイバ8が、満足できる生産性で得られるので好ましく、4質量%以上であれば、ビーズ構造がほぼ見られない、満足できる平均繊維径のナノファイバ8が、十分な生産性で得られるのでより好ましい。また、ポリマーの濃度が30質量%以下であれば、静電紡糸に適した粘度となり、安定した紡糸性でナノファイバ8が得られるので好ましく、25質量%以下であれば、さらに安定した紡糸性となるのでより好ましい。
【0062】
本実施形態の静電紡糸用スピナレット1を用いて静電紡糸をする際、原料流体の粘度は特に限定されるものではなく、10〜5000cPの範囲であることが好ましく、30〜3000cPの範囲であることがより好ましい。原料流体の粘度を10cP以上にすることにより、曳糸性がよく、ビーズが発現しにくい。原料流体の粘度を5000cP以下にすることにより、粘性が低いため、原料流体を静電紡糸用スピナレット1の各々の吐出孔4まで供給することが容易である。本実施形態の静電紡糸用スピナレット1は、突起5に吐出孔4を有する構成であるために、突起5周辺に発生する強力な電界によって、テイラーコーン7は安定な挙動を示し、特に、粘度が10〜200cPであるような低粘度の原料流体を用いて、均一で細い繊維径のナノファイバ8を製造することができる。
【実施例】
【0063】
以下、実施例によって本発明を詳細に説明するが、本発明は、下記実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。なお、実施例中に示したナノファイバの平均繊維径の測定方法を以下に示す。
【0064】
(原料流体の粘度)
気温25℃および湿度30%の条件でBROOKFIELD社製の粘度計RVDV−IPrimeと、コーンスピンドルCPE−41を使用して、後述する原料流体の粘度を測定した。
【0065】
(平均繊維径)
株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡SU8020を使用して、ナノファイバを観察し、画像解析ソフトを用いてナノファイバ50ヶ所の直径を測定した。ナノファイバ50ヶ所の繊維径の平均値を平均繊維径とした。
【0066】
(紡糸安定性)
静電紡糸を開始して、隣接するテイラーコーン同士が接触することなく2時間以上経過し、テイラーコーンからのナノファイバの紡出が連続的であった場合を「◎」、隣接するテイラーコーン同士が接触することなく2時間以上経過したが、テイラーコーンからのナノファイバの紡出が断続的であった場合を「○」、隣接するテイラーコーン同士が接触するまでに要した時間が10分〜2時間の範囲であり、テイラーコーンからのナノファイバの紡出が連続的または断続的であった場合を「△」、隣接するテイラーコーン同士が接触するまでに要した時間が10分以下であり、テイラーコーンからのナノファイバの紡出が連続的または断続的であった場合を「×」として紡糸安定性を評価した。
【0067】
<実施例1>
Solvay製のポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVDF−HFP)樹脂であるSolef 21216を、N,N−ジメチルホルムアミドに8質量%の濃度で溶解し、添加剤としてラウリル硫酸ナトリウムを0.1質量%となるように添加し、原料流体を調製した。この原料流体の粘度は461cPであった。次に、捕集電極の上に置いたアルミシートを基材として、この上に前記原料流体を、
図1に記載の突起を有する静電紡糸用スピナレットを用いて、静電紡糸をして、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、突起の高さは1.5mm、突起の形状は方光体、突起は一次元的に配され、吐出孔出口の形状は円形、吐出孔の出口の孔径は0.3mm、頂部の面積(吐出孔出口の面積を含む)は1mm
2、1つの突起につき1つの吐出孔を配し、スピナレットは4個の突起を有し、隣り合う吐出孔間の距離は8mm、流入口の孔径は2mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図4に例示するような内部空間を形成している。内部空間の長さは80mm、内部空間の厚さは10mm、内部空間の高さは35mm、吐出孔の長さは5mmであった。本実施例の紡糸条件は、1個の吐出孔(単孔)への原料流体の供給量は1.0mL/hr、印加電圧は45kV、紡糸距離は150mm、紡糸空間は気温25度Cおよび湿度30%であった。本実施例では、原料流体の粘度が高いため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能であったため、十分な操業性であった。また、テイラーコーンからのナノファイバの紡出が連続的であったため、十分な品質のPVDF−HFPナノファイバを得られた。得られたPVDF−HFPナノファイバの平均繊維径は、78±15nmであった。
【0068】
<実施例2>
Solvay製のPVDF−HFP樹脂であるSolef 21216を、N,N−ジメチルホルムアミドに6質量%の濃度で溶解し、添加剤としてラウリル硫酸ナトリウムを0.1質量%となるように添加し、原料流体を調製した。この原料流体の粘度は162cPであった。次に、アルミシートを基材として、この上に前記原料流体を、実施例1と同様の静電紡糸用スピナレットを用いて、実施例1と同様の紡糸条件で静電紡糸をして、PVDF−HFPナノファイバを作製した。本実施例では、原料流体の粘度が低いが、方光体の突起の周辺に強力な電界を発生させ、テイラーコーンが捕集電極表面へ引き寄せられる力を強めることができたため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能で十分な操業性であった。しかし、スピナレットの内部に原料流体を分配する流路を有しておらず、テイラーコーンからのナノファイバの紡出が断続的であったため、十分な品質のPVDF−HFPナノファイバを得られなかった。得られたPVDF−HFPナノファイバの平均繊維径は、62±25nmであった。
【0069】
<実施例3>
原料流体は実施例2と同様の条件で調製した。次に、捕集電極の上に置いたアルミシートを基材として、この上に前記原料流体を、
図1に記載の突起を有する静電紡糸用スピナレットを用いて、静電紡糸をして、PVDF−HFPナノファイバを作製した。スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、突起の高さは1.5mm、突起の形状は方光体、突起は一次元的に配され、吐出孔出口の形状は円形、吐出孔の出口の孔径は0.3mm、頂部の面積(吐出孔出口の面積を含む)は1mm
2、1つの突起につき1つの吐出孔を配し、スピナレットは4個の突起を有し、隣り合う吐出孔間の距離は8mm、流入口の孔径は2mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図6に例示するようなトーナメント状の流路を、
図7の斜視図に例示するような分配板を用いて形成した。原料流体が流れる方向に対して垂直方向の分配板の溝の断面積は2mm
2、原料流体が流れる方向の溝の長さは35mm、分配板の溝を貫通する孔の面積は0.5mm
2、分配板の溝を貫通する孔の長さは3mmであった。本実施例の紡糸条件は、実施例1と同様の紡糸条件であった。本実施例では、原料流体の粘度が低いが、方光体の突起の周辺に強力な電界を発生させ、テイラーコーンが捕集電極表面へ引き寄せられる力を強めることができたため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能で十分な操業性であった。また、スピナレットの内部に原料流体を分配する流路を有しており、テイラーコーンからのナノファイバの紡出が連続的であったため、十分な品質のPVDF−HFPナノファイバを得られた。得られたPVDF−HFPナノファイバの平均繊維径は、64±13nmであった。
【0070】
<実施例4>
原料流体は実施例2と同様の条件で調製した。この原料流体の粘度は162cPであった。次に、捕集電極の上に置いたアルミシートを基材として、この上に前記原料流体を、
図9に記載の突起を有する静電紡糸用スピナレットを用いて、静電紡糸をして、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、突起の高さは1.5mm、突起の形状は四角錘、突起は一次元的に配され、吐出孔出口の形状は円形、吐出孔の出口の孔径は0.3mm、頂部の面積(吐出孔出口の面積を含む)は1mm
2、1つの突起につき1つの吐出孔を配し、スピナレットは4個の突起を有し、隣り合う吐出孔間の距離は8mm、流入口の孔径は2mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図4に例示するような内部空間を形成している。内部空間の長さは80mm、内部空間の厚さは10mm、内部空間の高さは35mm、吐出孔の長さは5mmであった。本実施例の紡糸条件は、本実施例1と同様の紡糸条件であった。本実施例では、原料流体の粘度が低いが、方光体の突起の周辺に強力な電界を発生させ、テイラーコーンが捕集電極表面へ引き寄せられる力を強めることができたため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能で十分な操業性であった。しかし、スピナレットの内部に原料流体を分配する流路を有しておらず、テイラーコーンからのナノファイバの紡出が断続的であったため、十分な品質のPVDF−HFPナノファイバを得られなかった。得られたPVDF−HFPナノファイバの平均繊維径は、58±26nmであった。
【0071】
<実施例5>
原料流体は実施例2と同様の条件で調製した。この原料流体の粘度は162cPであった。次に、アルミシートを基材として、この上に前記原料流体を、
図9に記載の突起を有する静電紡糸用スピナレットを用いて、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、突起の高さは1.5mm、突起の形状は四角錘、突起は一次元的に配され、吐出孔出口の形状は円形、吐出孔の出口の孔径0.3mm、1つの突起につき1つの吐出孔を配し、スピナレットは4個の突起を有し、隣り合う吐出孔間の距離は8mm、流入口の孔径2mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図6に例示するようなトーナメント形状の流路を、
図7の斜視図に例示するような分配板を用いて形成した。原料流体が流れる方向に対して垂直方向の分配板の溝の断面積は2mm
2、原料流体が流れる方向の溝の長さは35mm、分配板の溝を貫通する孔の面積は0.5mm
2、分配板の溝を貫通する孔の長さは3mmであった。本実施例の紡糸条件は、実施例1と同様の紡糸条件であった。本実施例の紡糸条件は、実施例1と同様の紡糸条件であった。本実施例では、原料流体の粘度が低いが、方光体の突起の周辺に強力な電界を発生させ、テイラーコーンが捕集電極表面へ引き寄せられる力を強めることができたため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能で十分な操業性であった。また、スピナレットの内部に原料流体を分配する流路を有しており、テイラーコーンからのナノファイバの紡出が連続的であったため、十分な品質のPVDF−HFPナノファイバを得られた。得られたPVDF−HFPナノファイバの平均繊維径は、56±17nmであった。
【0072】
<実施例6>
原料流体は実施例2と同様の条件で調製した。この原料流体の粘度は162cPであった。次に、アルミシートを基材として、この上に前記原料流体を、
図10に記載の突起を有する静電紡糸用スピナレットを用いて、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、突起の高さは1.5mm、突起の形状は四角柱、突起は一次元的に配され、吐出孔出口の形状は円形、吐出孔の出口の孔径0.3mm、1つの突起につき1つの吐出孔を配し、スピナレットは4個の突起を有し、隣り合う吐出孔間の距離は8mm、流入口の孔径2mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図4に例示するような内部空間を形成している。内部空間の長さは80mm、内部空間の厚さは10mm、内部空間の高さは35mm、吐出孔の長さは5mmであった。本実施例の紡糸条件は、実施例1と同様の紡糸条件であった。本実施例では、原料流体の粘度が低いが、方光体の突起の周辺に強力な電界を発生させ、テイラーコーンが捕集電極表面へ引き寄せられる力を強めることができたため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能で十分な操業性であった。しかし、スピナレットの内部に原料流体を分配する流路を有しておらず、テイラーコーンからのナノファイバの紡出が断続的であったため、十分な品質のPVDF−HFPナノファイバを得られなかった。得られたPVDF−HFPナノファイバの平均繊維径は、65±28nmであった。
【0073】
<実施例7>
原料流体は実施例2と同様の条件で調製した。この原料流体の粘度は162cPであった。次に、アルミシートを基材として、この上に前記原料流体を、
図10に記載の突起を有する静電紡糸用スピナレットを用いて、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、突起の高さは1.5mm、突起の形状は四角柱、突起は一次元的に配され、吐出孔の形状は円形、吐出孔の出口の孔径は0.3mm、1つの突起につき1つの吐出孔を配し、スピナレットは4個の突起を有し、頂部の面積(吐出孔出口の面積を含む)は1mm
2、隣り合う吐出孔間の距離は8mm、流入口の孔径は2mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図6に例示するようなトーナメント形状の流路を、
図7の斜視図に例示するような分配板を用いて形成した。原料流体が流れる方向に対して垂直方向の分配板の溝の断面積は2mm
2、原料流体が流れる方向の溝の長さは35mm、分配板の溝を貫通する孔の面積は0.5mm
2、分配板の溝を貫通する孔の長さは3mmであった。本実施例の紡糸条件は、実施例1と同様の紡糸条件であった。本実施例の紡糸条件は、実施例1と同様の紡糸条件であった。本実施例では、原料流体の粘度が低いが、方光体の突起の周辺に強力な電界を発生させ、テイラーコーンが捕集電極表面へ引き寄せられる力を強めることができたため、隣接するテイラーコーン同士が接触することなく2時間以上に亘って安定的な紡糸が可能で十分な操業性であった。また、スピナレットの内部に原料流体を分配する流路を有しており、テイラーコーンからのナノファイバの紡出が連続的であったため、十分な品質のPVDF−HFPナノファイバを得られた。得られたPVDF−HFPナノファイバの平均繊維径は、62±19nmであった。
【0074】
<比較例1>
原料流体は実施例2と同様の条件で調製した。この原料流体の粘度は162cPであった。次に、アルミシートを基材として準備し、この上に前記原料流体を、
図11に記載の突起を有していない静電紡糸用スピナレットを用いて、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、吐出孔は一次元的に配され、吐出孔の形状は円形、吐出孔の出口の孔径は0.3mm、スピナレットは4個の吐出孔を有し、隣り合う吐出孔間の距離は8mmであった。本比較例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図4に例示するような内部空間を形成している。内部空間の長さは80mm、内部空間の厚さは10mm、内部空間の高さは35mm、吐出孔の長さは5mmであった。本比較例の紡糸条件は、実施例1と同様の紡糸条件であった。本比較例では、原料流体の粘度が低く、突起を有していないスピナレットを用いており、テイラーコーンが捕集電極表面へ引き寄せられる力を十分に強めることができなかったため、静電紡糸を開始してから10分後に隣接するテイラーコーン同士が接触してしまい、十分な操業性を満足することができなかった。また、スピナレットの内部に原料流体を分配する流路を有しておらず、テイラーコーンからのナノファイバの紡出が連続的であったため、十分な品質のPVDF−HFPナノファイバを得られなかった。得られたPVDF−HFPナノファイバの平均繊維径は、65±33nmであった。
【0075】
<比較例2>
原料流体は実施例2と同様の条件で調製した。この原料流体の粘度は162cPであった。次に、アルミシートを基材として準備し、この上に前記原料流体を、
図11に記載の突起を有していない静電紡糸用スピナレットを用いて、PVDF−HFPナノファイバを作製した。なお、スピナレットの長さは100mm、スピナレットの厚さは20mm、スピナレットの高さは40mm、吐出孔は一次元的に配され、吐出孔の形状は円形、吐出孔の出口の孔径は0.3mm、スピナレットは4個の吐出孔を有し、隣り合う吐出孔間の距離は8mmであった。本実施例の静電紡糸用スピナレットは、その内部に、原料流体を流入口から各々の吐出孔へ分配するため、
図6に例示するようなトーナメント形状の流路を、
図7の斜視図に例示するような分配板を用いて形成した。原料流体が流れる方向に対して垂直方向の分配板の溝の断面積は2mm
2、原料流体が流れる方向の溝の長さは35mm、分配板の溝を貫通する孔の面積は0.5mm
2、分配板の溝を貫通する孔の長さは3mmであった。本比較例の紡糸条件は、実施例1と同様の紡糸条件であった。本比較例では、原料流体の粘度が低く、突起を有していないスピナレットを用いており、テイラーコーンが捕集電極表面へ引き寄せられる力を十分に強めることができなかったため、静電紡糸を開始してから10分後に隣接するテイラーコーン同士が接触してしまい、十分な操業性を満足することができなかった。しかし、スピナレットの内部に原料流体を分配する流路を有しており、テイラーコーンからのナノファイバの紡出が連続的であったため、十分な品質のPVDF−HFPナノファイバを得られた。得られたPVDF−HFPナノファイバの平均繊維径は、63±21nmであった。
【0076】
以上の実験の結果について、表1にまとめて示す。
【0077】
【表1】