特許第6702268号(P6702268)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越半導体株式会社の特許一覧

<>
  • 特許6702268-エピタキシャルウェーハの製造方法 図000002
  • 特許6702268-エピタキシャルウェーハの製造方法 図000003
  • 特許6702268-エピタキシャルウェーハの製造方法 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6702268
(24)【登録日】2020年5月11日
(45)【発行日】2020年5月27日
(54)【発明の名称】エピタキシャルウェーハの製造方法
(51)【国際特許分類】
   H01L 21/205 20060101AFI20200518BHJP
   C23C 16/44 20060101ALI20200518BHJP
   C30B 29/06 20060101ALI20200518BHJP
   C30B 25/18 20060101ALI20200518BHJP
【FI】
   H01L21/205
   C23C16/44 A
   C30B29/06 504A
   C30B25/18
【請求項の数】6
【全頁数】13
(21)【出願番号】特願2017-117752(P2017-117752)
(22)【出願日】2017年6月15日
(65)【公開番号】特開2019-4050(P2019-4050A)
(43)【公開日】2019年1月10日
【審査請求日】2019年5月16日
(73)【特許権者】
【識別番号】000190149
【氏名又は名称】信越半導体株式会社
(74)【代理人】
【識別番号】100102532
【弁理士】
【氏名又は名称】好宮 幹夫
(74)【代理人】
【識別番号】100194881
【弁理士】
【氏名又は名称】小林 俊弘
(72)【発明者】
【氏名】大槻 剛
(72)【発明者】
【氏名】水澤 康
(72)【発明者】
【氏名】鈴木 克佳
(72)【発明者】
【氏名】石崎 順也
【審査官】 鈴木 智之
(56)【参考文献】
【文献】 特開2002−083781(JP,A)
【文献】 特開平05−326418(JP,A)
【文献】 特開平09−278597(JP,A)
【文献】 特開昭63−291897(JP,A)
【文献】 特開平01−234394(JP,A)
【文献】 特開平10−297998(JP,A)
【文献】 特開2004−259738(JP,A)
【文献】 特開2014−165494(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/205
C23C 16/44
C30B 25/18
C30B 29/06
(57)【特許請求の範囲】
【請求項1】
シリコン基板上にエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、
前記エピタキシャル層中に、酸素、炭素、窒素及びズからなる群から選ばれる1種の元素の原子からなり、厚さが5nm以下である原子層を形成する工程を有し、
前記原子層に接するエピタキシャル層の形成を、SiHガスを用いて行うことを特徴とするエピタキシャルウェーハの製造方法。
【請求項2】
前記原子層を、1原子層として形成することを特徴とする請求項1に記載のエピタキシャルウェーハの製造方法。
【請求項3】
前記エピタキシャル層の領域のうち、前記原子層に接し、少なくとも該原子層から5nmまでの領域を、SiHガスを用いて形成することを特徴とする請求項1又は請求項2に記載のエピタキシャルウェーハの製造方法。
【請求項4】
前記原子層を、前記エピタキシャル層中に複数層形成することを特徴とする請求項1から請求項3のいずれか1項に記載のエピタキシャルウェーハの製造方法。
【請求項5】
前記エピタキシャル層の領域のうち、前記SiHガスを用いて形成する領域以外の領域を、SiHClガス又はSiHClガスを用いて形成することを特徴とする請求項1から請求項4のいずれか1項に記載のエピタキシャルウェーハの製造方法。
【請求項6】
前記原子層の形成を、
酸素原子層を形成する場合は酸素ガスを、
炭素原子層を形成する場合はCHガスを、
窒素原子層を形成する場合はNHガスを
ズ原子層を形成する場合はSnを含む有機金属ガスを
いて行うことを特徴とする請求項1から請求項5のいずれか1項に記載のエピタキシャルウェーハの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エピタキシャルウェーハの製造方法に関する。
【背景技術】
【0002】
固体撮像素子やその他のトランジスタをはじめとした半導体素子を形成するシリコン基板には、重金属をはじめとした素子特性を狂わせる元素をゲッタリングする機能を持つことが求められる。ゲッタリングにはシリコン基板裏面に多結晶シリコン(Poly−Si)層を持たせたり、ブラスト加工によりダメージを持たせた層を形成する方法や、シリコン基板の高濃度ボロンを利用したり、析出物を形成させたりとさまざまな手法が提案、実用化されている。酸素析出によるゲッタリングは電気陰性度が大きい酸素に対して、イオン化傾向が大きい(電気陰性度が小さい)金属を取り込むことでゲッタリングする。
【0003】
また素子の活性領域近傍にゲッタリング層を形成する、いわゆる近接ゲッタリングも提案されている。例えば、炭素をイオン注入した基板の上にシリコンをエピタキシャル成長させた基板などがある。ゲッタリングは、ゲッタリングサイト(金属が単元素で存在するよりもサイトで結合やクラスタリングすることで系全体のエネルギーが低下する)まで元素が拡散する必要がある。シリコン中に含まれる金属元素の拡散係数は元素により異なり、また近年のプロセス低温化によりゲッタリングサイトまで金属が拡散することが出来なくなることを考慮して近接ゲッタリングの手法が提案されている。
【0004】
近接ゲッタリングに酸素を用いることが出来れば、非常に有力なゲッタリング層をもったシリコン基板となると考えられる。特に、エピタキシャル層の途中に酸素原子層を有するエピタキシャルウェーハであれば、近年の低温プロセスにおいても確実に金属不純物をゲッタリングすることができる。
【0005】
以上、金属不純物をゲッタリングすることを中心に述べてきたが、例えば、酸素の効果としては、CVD酸化膜を裏面に形成することでエピタキシャル成長時のオートドープを防ぐ効果が知られている。
【0006】
さらに酸素以外では、シリコンと同じIV族(14族)の炭素においては、炭素によるゲッタリング効果、Geではシリコン酸化膜との組み合わせによる光デバイスへの応用、SnはGe等をシリコン上に成長する際の、表面改質の効果、IV族以外では、窒素では析出促進による強度の向上など、シリコンと他元素の組み合わせによるいろいろな効果が期待され応用されている。
【0007】
先行技術について言及する。特許文献1は、構造としてはシリコンの上に酸素の薄い層を形成しさらにシリコンを成長させる方法である。この方法は、ALD(「Atomic layer deposition」、「原子層堆積法」)をベースとした技術である。ALDは対象原子を含む分子を吸着させ、その後分子中の不要な原子(分子)を乖離・脱離させる方法であり、表面結合を利用し非常に精度よくまた、反応制御性が良好であり幅広く用いられているが、不要分子を脱離させることで、原子層形成に不要かつ意図しない挙動を示す不純物を生成するという弱点がある。実際に、ALD法では、酸素層を形成するために炭素を含む分子を利用するので、炭素(不要な炭素)の影響が懸念される。
【0008】
特許文献2は、特許文献1と同様の基板を実現するためのリアクタに関する技術であるが、こちらは原料ガス・手法としてMOVPE(有機金属気相成長法)を想定している。MOVPEであるために有機金属を利用する。反応制御は容易であるが、酸素原子層を形成する際に不要な不純物金属の懸念がある。特にシリコン基板そのものへの適用には金属汚染が懸念される。
【0009】
以上のように、これら特許文献1、2の技術はALDないしは、MOVPEというそれぞれの技術に基づいて行われている。
【0010】
特許文献3、4は、シリコン基板に酸素原子層を複数導入することで、デバイス特性の改善(移動度)向上が可能になることを示しているが、具体的な成長方法には言及していない。
【0011】
酸素以外の原子層をシリコン基板に導入する先行技術としては、たとえば特許文献5に記載のように、シリコンの表面に急峻なビスマスのプロファイルを作りこむ方法が開示されている。特許文献5ではデルタドープと記載されており、線状にドーパントを埋め込む基礎技術として開示されているが、ウェーハ全面に展開することは困難であると考えられる。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2014−165494号公報
【特許文献2】特開2013−197291号公報
【特許文献3】米国特許第7,153,763号明細書
【特許文献4】米国特許第7,265,002号明細書
【特許文献5】特開2000−003877号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
上述の問題点に鑑み、本発明は、酸素等の原子層をエピタキシャル層に安定的に導入することができるエピタキシャルウェーハの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
上記目的を達成するために、本発明は、シリコン基板上にエピタキシャル層を形成するエピタキシャルウェーハの製造方法であって、前記エピタキシャル層中に、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンからなる群から選ばれる1種の元素の原子からなり、厚さが5nm以下である原子層を形成する工程を有し、前記原子層に接するエピタキシャル層の形成を、SiHガスを用いて行うことを特徴とするエピタキシャルウェーハの製造方法を提供する。
【0015】
このようなエピタキシャルウェーハの製造方法であれば、エピタキシャル層中に、酸素等の元素の原子からなる原子層を安定的に形成することができる。特に、酸素等の元素の原子からなる原子層に接するエピタキシャル層の形成を、分子中に塩素原子を有しないSiHガスを用いて行うため、酸素等の原子層のエッチングを防止できる。
【0016】
本発明のエピタキシャルウェーハの製造方法では、この場合、前記原子層を、1原子層として形成することができる。
【0017】
本発明では、このように、酸素等の原子層を1原子層として形成することもできる。また、そのような1原子層を形成する場合でも、本発明の方法であれば、安定して1原子層を形成することができる。
【0018】
また、前記エピタキシャル層の領域のうち、前記原子層に接し、少なくとも該原子層から5nmまでの領域を、SiHガスを用いて形成することが好ましい。
【0019】
このように、エピタキシャル層の領域のうち、酸素等の原子層から5nmまでの領域を、塩素を含まないSiHガスを用いて形成することにより、酸素等の原子層をより安定して形成することができる。
【0020】
また、前記原子層を、前記エピタキシャル層中に複数層形成することができる。
【0021】
本発明では、酸素等の原子層をエピタキシャル層中に複数層形成することもできる。また、このような構成を安定して形成することができる。
【0022】
また、前記エピタキシャル層の領域のうち、前記SiHガスを用いて形成する領域以外の領域を、SiHClガス又はSiHClガスを用いて形成することが好ましい。
【0023】
このように、エピタキシャル層のうち、SiHガスを用いて形成する領域以外をSiHClガス又はSiHClガスを用いて形成することにより、酸素等の原子層から離れた領域においてエピタキシャル層を厚く形成することができる。その結果、より短時間にエピタキシャル層全体を形成することができるので、生産性及びコストに資する。
【0024】
また、前記原子層の形成を、酸素原子層を形成する場合は酸素ガスを、炭素原子層を形成する場合はCHガスを、窒素原子層を形成する場合はNHガスを、ゲルマニウム原子層を形成する場合はGeを含む有機金属ガスを、スズ原子層を形成する場合はSnを含む有機金属ガスを、ホウ素原子層を形成する場合はBガスを、リン原子層を形成する場合はPHガスを、用いて行うことができる。
【0025】
これらのガスを使用することにより、酸素等の原子層を形成することができる。
【発明の効果】
【0026】
本発明により、先端デバイスで採用されるシリコンエピタキシャルウェーハにおいて、酸素等の原子層をエピタキシャル層に安定的に導入することができる。また、酸素原子層による近接ゲッタリング効果を有する近接ゲッタリング基板や、IV族元素及び窒素、ドーパント等を用いた複合機能を有する機能性基板を製造することが可能となる。
【図面の簡単な説明】
【0027】
図1】本発明によって製造することができる、酸素等の原子層を有するエピタキシャルウェーハの一例を示す模式的な断面図である。
図2】本発明によって製造することができる、酸素等の原子層を複数有するエピタキシャルウェーハの一例を示す模式的な断面図である。
図3】本発明のエピタキシャルウェーハを製造する成長レシピの概念図である。
【発明を実施するための形態】
【0028】
以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
【0029】
本発明は、シリコン基板上にエピタキシャル層を形成するエピタキシャルウェーハの製造方法であり、エピタキシャル層中に、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンからなる群から選ばれる1種の元素の原子からなり、厚さが5nm以下である原子層を形成する工程を有する。本発明においては、さらに、上記の原子層に接するエピタキシャル層の形成を、SiHガスを用いて行う。以降の説明では、エピタキシャル層中に形成する、酸素、炭素、窒素、ゲルマニウム、スズ、ホウ素及びリンのうち1種類の元素の原子からなる原子層を単に「原子層」と称する。
【0030】
[エピタキシャル層中に酸素原子層を導入する場合]
まず、シリコン基板上のエピタキシャル層中に酸素原子層を導入する場合について説明する。
【0031】
図1に本発明のエピタキシャルウェーハの製造方法によって製造することができる、酸素原子層を有するエピタキシャルウェーハ100の模式的な断面図を示す。エピタキシャルウェーハ100は、シリコン基板10の上にエピタキシャル層50が形成されており、エピタキシャル層50中に、酸素原子からなり、厚さが5nm以下である原子層(酸素原子層)31が形成される。シリコン基板10と酸素原子層31の間には、シリコンからなるシリコンエピタキシャル層21が形成される。シリコンエピタキシャル層21の上に酸素原子層31が形成され、酸素原子層31の上にシリコンエピタキシャル層22が形成される。図1の例では、シリコンエピタキシャル層21、酸素原子層31、シリコンエピタキシャル層22からなるエピタキシャル層50が形成される。
【0032】
上記のように、酸素原子層31を形成する場合の製造方法としては、以下の通りである。シリコン基板10上にエピタキシャル成長を行って、まず、シリコンエピタキシャル層21を形成する。そのシリコンエピタキシャル層21の上に酸素原子層31を成長させる。さらに酸素原子層31の上にシリコンをエピタキシャル成長してシリコンエピタキシャル層22を形成する。これにより、酸素原子層31を有するエピタキシャル層50全体を形成し、エピタキシャルウェーハ100を形成する。
【0033】
図1では酸素原子層は1層であるが、酸素原子層、シリコンエピタキシャル成長を繰り返し、酸素原子層を複数形成することも可能である。エピタキシャル層中に酸素原子層を複数形成したエピタキシャルウェーハを図2に示した。すなわち、図2に示したエピタキシャルウェーハ200を製造する場合には、以下のようにして製造することができる。まず、シリコン基板10の上にシリコンエピタキシャル層21を形成する。シリコンエピタキシャル層21の上に、酸素原子層31を形成する。さらに、酸素原子層31の上に、シリコンエピタキシャル層22を形成する。ここまでは図1の態様と同様であるが、図2の態様では、さらに、酸素原子層32、シリコンエピタキシャル層23、酸素原子層33、シリコンエピタキシャル層24、酸素原子層34、シリコンエピタキシャル層25、酸素原子層35、シリコンエピタキシャル層26と形成していく。これにより、シリコンエピタキシャル層と酸素原子層の組が5組繰り返された構造40が形成された、エピタキシャル層60を形成することができる。このように、酸素原子層を複数形成することにより、より優れたゲッタリング効果を有するエピタキシャルウェーハが得られる。このとき、酸素原子層は最大でも10層あれば十分である。
【0034】
本発明では、原子層に接するエピタキシャル層を形成するときのシリコンエピタキシャル成長の原料に、塩素原子を含まないSiHガスを利用する。エピタキシャル成長用ガスに塩素原子が含まれることで、酸素原子層を形成しても塩素によりエッチングされてしまうからである。
【0035】
また酸素原子層は、5nm以下とすることが必要であり、また、できるだけ薄い方が好ましく、単原子吸着する程度の量を導入することが好ましい。酸素原子層が5nmより厚すぎるとシリコン層が酸化されてしまい、酸素原子層の上に第2のシリコンエピタキシャル層を堆積することが出来なくなる。正確には、そのような酸素原子層上にシリコンエピタキシャル成長を行おうとしても、エピタキシャル成長でなくアモルファスシリコンとなってしまったり、多結晶化(ポリ化)してしまう。
【0036】
酸素原子層は、等温吸着の原理を用いて、1ラングミュアー層の堆積が出来ればよい。当業者であれば、1ラングミュアー層の堆積を行うことが可能である。炉のチャンバーサイズにもよるが、10L/分程度(例えば、5L/分以上15L/分以下)の酸素ガスを流すことで解決できる。また、例えば、圧力及び時間の条件は、1×10−8Torr(1.33×10−6Pa)程度、100秒程度とすることができるが、必ずしもこのような条件でなくともよく、1×10−6Torr以上1×10−9Torr以下、10〜500秒とすることができる。温度はエピタキシャル成長温度を超えない範囲とすることができる。成長レートは0.005nm/秒以下とすることが好ましい。
【0037】
図1の態様に基づいて、より具体的にエピタキシャルウェーハの製造方法を説明する。シリコン基板10に酸素原子層31を導入するために、シリコン基板10上にエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。好ましくは、酸素原子層31を形成する位置から少なくとも5nm離れた位置からは原料ガスとしてSiHガスを導入して塩素を含まないガスでシリコンエピタキシャル層21を成長させる。SiHガスをパージした後に酸素ガスを導入し、厚さ5nm以下の酸素原子層31を成長させる。次に、酸素ガスをパージした後にSiHガスを原料として所望の厚さまでエピタキシャル成長を行う。好ましくは、酸素原子層31を形成した位置から少なくとも5nm離れた位置まで原料ガスとしてSiHガスを導入して塩素を含まないガスでシリコンエピタキシャル層22を成長させる。図3に各ガスの供給イメージを示す。
【0038】
上記のように、酸素原子層は、1原子層として形成することが好ましい。酸素の導入は酸素が1原子層吸着になるように1Langmuir(等温単原子吸着)量を導入するように条件を設定することで、酸素を単原子成長可能となる(デルタドープ)。
【0039】
酸素原子層に接するエピタキシャル層を形成する際に、塩素(塩素原子)を含むガス(例えば、SiHClガス又はSiHClガス等のクロロシラン類)を使用すると、塩素によるエッチング効果にてシリコン中に堆積した酸素層が無くなってしまう。そのため、酸素原子層31に接するエピタキシャル層の形成を、SiHガスを用いて行うことが必要である。特に、エピタキシャル層50の領域のうち、酸素原子層31に接し、少なくとも酸素原子層31から5nmまでの領域(シリコンエピタキシャル層21、22のうち、酸素原子層31から5nmまでの領域)を、SiHガスを用いて形成することが好ましい。酸素原子層31に塩素を含むガスが直接触れないことで、酸素原子層31が塩素ガスによりエッチングされることを防ぐことが出来る。
【0040】
すなわち、図1の酸素原子層31のエッチングを防止するためには、酸素原子層31に接するエピタキシャル層の形成を、SiHガスを用いて行えばよく、反対に、エピタキシャル層の領域のうち、SiHガスを用いて形成する領域以外の領域を、SiHClガス又はSiHClガスを用いて形成することができる。特に、少なくとも酸素原子層31から5nmまでSiHガスを用いて形成すれば、酸素原子層31がSiHで完全にカバーされるので、酸素原子層から5nmを超えて離れた領域のエピタキシャル層の形成では塩素ガスが含まれないSiHに限定されず、SiHClやSiHClを用いてもよい。酸素原子層から離れた領域においてエピタキシャル層を厚く形成する場合には、SiHClやSiHClを用いることで、より短時間にエピタキシャル層を形成することができる。SiHガスを用いた場合の成長速度は遅いので、例えば厚さが100nm以上のエピタキシャル層を形成する場合は途中でSiHClやSiHClに切り替えることが好ましい。これにより、高生産性、低コストとすることができる。シリコンエピタキシャル層の成長温度は500℃以上800℃以下の範囲が好ましい。
【0041】
これは、図2の態様でも同様であり、酸素原子層31、32、33、34、35の全てで、酸素原子層31に接するエピタキシャル層の形成を、SiHガスを用いて行うことが必要であり、また、これら酸素原子層から5nmまでの領域を、SiHガスを用いたエピタキシャル成長とすることが好ましい。
【0042】
本発明の方法で製造された、酸素原子層を有するシリコンエピタキシャルウェーハであれば、近接ゲッタリング効果を期待でき、素子歩留まりの向上も期待できる。
【0043】
[エピタキシャル層中に炭素原子層を導入する場合]
次に、シリコン基板上のエピタキシャル層中に炭素原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
【0044】
エピタキシャルウェーハ100に炭素原子層を導入する場合も、原子層31として酸素原子層の代わりに炭素原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。
【0045】
この方法は、シリコン基板10に炭素原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まず炭素原子を含むガスを導入し、厚さ5nm以下の炭素原子層31を成長させる。このガスとしては特にCHガス(メタンガス)が好ましい。以下の説明ではCHガスを用いる場合を説明する。次に、CHガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間CHガスを導入する、すなわちデルタドープを行うことになる。
【0046】
本発明の方法で製造された炭素原子層を有するシリコンエピタキシャルウェーハであれば、近接ゲッタリング効果を期待でき、素子歩留まりの向上も期待できる。さらに、炭素はシリコンと比較して原子半径が小さいために、炭素原子層の上に成長されたシリコン層を歪ませる効果があり、デバイスのキャリア移動度向上も期待できる。
【0047】
[エピタキシャル層中に窒素原子層を導入する場合]
次に、シリコン基板上のエピタキシャル層中に窒素原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
【0048】
エピタキシャルウェーハ100に窒素原子層を導入する場合も、原子層31として酸素原子層の代わりに窒素原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。
【0049】
この方法は、シリコン基板10に窒素原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まず窒素原子を含むガスを導入し、厚さ5nm以下の窒素原子層31を成長させる。このガスとしては特にNHガス(アンモニアガス)が好ましい。以下の説明ではNHガスを用いる場合を説明する。次に、NHガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間NHガスを導入する、すなわちデルタドープを行うことになる。
【0050】
これにより、窒素による酸素析出が促進されシリコン基板強度が向上したエピタキシャルウェーハが得られる。このとき、窒素原子層は最大でも10層あれば十分である。窒素原子層により、前記原子層の上に成長されたシリコン層のスリップを止める効果も期待できる。
【0051】
[エピタキシャル層中にゲルマニウム原子層を導入する場合]
次に、シリコン基板上のエピタキシャル層中にゲルマニウム原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
【0052】
エピタキシャルウェーハ100にゲルマニウム原子層を導入する場合も、原子層31として酸素原子層の代わりにゲルマニウム原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。
【0053】
この方法は、シリコン基板10にゲルマニウム原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まずゲルマニウム原子を含むガスを導入し、厚さ5nm以下のゲルマニウム原子層31を成長させる。このガスとしては特にゲルマニウムを含む有機金属ガス(テトラメチルゲルマニウム等)が好ましい。以下の説明ではテトラメチルゲルマニウムガスを用いる場合を説明する。次に、テトラメチルゲルマニウムガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間テトラメチルゲルマニウムガスを導入する、すなわちデルタドープを行うことになる。
【0054】
これにより、Geとシリコンを相互に積層した基板を得ることが出来る。こののち酸化雰囲気に基板をさらすことで、シリコンがGeに比べて酸化されやすいことから、Ge/SiO/Ge/SiOの積層構造を形成することが可能になり、光デバイスへの応用が期待される基板を得ることが可能になる。
【0055】
[エピタキシャル層中にスズ原子層を導入する場合]
次に、シリコン基板上のエピタキシャル層中にスズ原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
【0056】
エピタキシャルウェーハ100にスズ原子層を導入する場合も、原子層31として酸素原子層の代わりにスズ原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。
【0057】
この方法は、シリコン基板10にスズ原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まずスズ原子を含むガスを導入し、厚さ5nm以下のスズ原子層31を成長させる。このガスとしては特にスズを含む有機金属ガス(テトラメチルスズ等)が好ましい。以下の説明ではテトラメチルスズガスを用いる場合を説明する。次に、テトラメチルスズガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間テトラメチルスズガスを導入する、すなわちデルタドープを行うことになる。
【0058】
Snの実際的な使用方法としては、Geをはじめとする各種元素をシリコン上に成長させる際の表面改質としての利用が考えられる。この目的の場合であれば、Snを本法によって成長させたのち同じ方法にてGeを成長させることが可能である。
【0059】
[エピタキシャル層中にホウ素原子層又はリン原子層を導入する場合]
次に、シリコン基板上のエピタキシャル層中にホウ素原子層又はリン原子層を導入する場合について説明する。基本的には、上記の酸素原子層を導入する場合と同様であるため、重複する記載は省略する。
【0060】
エピタキシャルウェーハ100にホウ素原子層又はリン原子層を導入する場合も、原子層31として酸素原子層の代わりにホウ素原子層又はリン原子層が採用されること以外は、上記した酸素原子層を有するエピタキシャル層50を有するエピタキシャルウェーハ100と同じである。
【0061】
この方法は、シリコン基板10にホウ素原子層31又はリン原子層31を導入するために、シリコン基板10へエピタキシャル成長する際に、まず、原料ガスとして塩素を含まないSiHガスを用いたエピタキシャル成長を行い、シリコンエピタキシャル層21を形成する。SiHガスをパージした後に、塩素原子を含まずホウ素原子又はリン原子を含むガスを導入し、厚さ5nm以下のホウ素原子層31又はリン原子層31を成長させる。このガスとしては特にホウ素の場合はジボラン(B)、リンの場合はホスフィン(PH)ガスが好ましい。以下の説明ではこれらのドーパントガスを用いる場合を説明する。次に、これらのドーパントガスをパージした後にSiHガスを原料としたエピタキシャル成長を行う。各ガスの供給量(成長レシピ)は、酸素ガスの場合と同様である。すなわち、シリコンエピタキシャル層の成長の合間に、短時間ドーパントガスを導入する、すなわちデルタドープを行うことになる。
【0062】
本法によることで、特許文献5ではビスマスに限定されていたドーパントの種類を拡張することが可能になる。
【実施例】
【0063】
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0064】
(実施例1)
以下のようにして、図1に示す態様のエピタキシャルウェーハ100を製造した。抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板10を材料として、まず、第1のエピタキシャル成長を行った(シリコンエピタキシャル層21)。シリコン原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層21の厚さは10nmとした。次に酸素ガス10L/分を1×10−8Torrで360秒の時間だけリアクタに導入し、酸素原子層31をおよそ5nm成長させた。次に、また第1のシリコンエピタキシャル層21と同じ条件でシリコン原料ガスを導入し第2のシリコンエピタキシャル層22の一部を10nm形成した。
【0065】
こののち、温度を600℃に上げて成長速度を大きくして3μmのシリコンエピタキシャル層を成長させて、エピタキシャル層50中に酸素原子層31を有するエピタキシャルウェーハ100を製造した。
【0066】
(実施例2)
以下のようにして、図2に示す態様のエピタキシャルウェーハ200を製造した。抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板10を材料として、まず、第1のエピタキシャル成長を行った(シリコンエピタキシャル層21)。シリコン原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層21の厚さは10nmとした。次に酸素ガス6L/分を1×10−8Torrで100秒の時間だけリアクタに導入し、酸素原子層を1原子層成長させた。また第1のエピタキシャル層と同じ条件でシリコン原料ガスを導入し第2のシリコンエピタキシャル層22を10nm形成した。
【0067】
さらに、第2のシリコンエピタキシャル層22の上に酸素原子層32を堆積し、さらに第3のシリコンエピタキシャル層を堆積した上に、同条件で酸素とシリコン層を交互に4回堆積することで、酸素/シリコンエピタキシャル層が5層の組40を有するエピタキシャル層60を含むエピタキシャルウェーハ200を製造した。
【0068】
最後の成長後に3μmのエピタキシャル層26の一部として、SiHClを原料として成長させた。実際のデバイスを作製する活性領域として素子の種類にもよるがたいてい1μm程度の拡散領域が形成されることがあるため、この厚さとした。
【0069】
(比較例1)
抵抗率10Ω・cmのボロンドープ、直径200mmシリコン基板を材料として、第1のエピタキシャル成長を行った。原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層の厚さは10nmとした。次に酸素10L/分を 1×10−8Torrで720秒の時間だけリアクタに導入し、酸素原子層を10nm成長させた。次に、また第1のエピタキシャル層と同じ条件でシリコン原料ガスを導入し第2のエピタキシャル層を形成しようとしたが、酸素層が厚くなっており、エピタキシャル成長が出来ず、多結晶シリコンとなった。このように酸素原子層が厚いと第2のシリコンエピタキシャル層が単結晶にならないことがわかる。
【0070】
(比較例2)
抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板を材料として、第1のエピタキシャル成長を行った。原料ガスはSiHClとして1100℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層の厚さは10nmとした。次に酸素10L/分を1×10−8Torrで100秒の時間だけリアクタに導入し、酸素原子層を1層成長させた。次に、また第1のエピタキシャル層と同じ条件でシリコン原料ガスを導入し第2のエピタキシャル層を形成しようとしたが、原料ガスに塩素が含まれており、酸素原子層がエッチングされて消失してしまった。
【0071】
(実施例3)
以下のようにして、図1に示す態様のエピタキシャルウェーハ100であって、原子層として炭素原子層31をエピタキシャル層中に有するものを製造した。抵抗率10Ω・cmのボロンドープ、直径200mmのシリコン基板10を材料として、まず、第1のエピタキシャル成長を行った(シリコンエピタキシャル層21)。シリコン原料ガスはSiHとして550℃で成長を行った。膜厚に応じてシリコン原料ガスを流す時間を設定するが、成長レートは遅い方がよいため、0.05nm/秒とし、シリコンエピタキシャル層21の厚さは10nmとした。次にCHガス10L/分を1×10−8Torrで360秒の時間だけリアクタに導入し、炭素原子層31をおよそ2nm成長させた。次に、また第1のシリコンエピタキシャル層21と同じ条件でシリコン原料ガスを導入し第2のシリコンエピタキシャル層22の一部を10nm形成した。
【0072】
こののち、温度を600℃に上げて成長速度を大きくして3μmのシリコンエピタキシャル層を成長させて、エピタキシャル層50中に炭素原子層31を有するエピタキシャルウェーハ100を製造した。
【0073】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【符号の説明】
【0074】
10…シリコン基板、
21、22、23、24、25、26…シリコンエピタキシャル層、
31、32、33、34、35…(酸素等の)原子層、
40…(酸素等の)原子層とシリコンエピタキシャル層の繰り返し5組、
50、60…(酸素等の)原子層を有するエピタキシャル層、
100、200…エピタキシャルウェーハ。
図1
図2
図3