【実施例1】
【0020】
本発明の第1の形態を、
図1乃至3を用いて説明する。
図1は、本実施例に係るプラズマ処理装置の例として、ECR(Electron Cyclotron Resonance:電子サイクロトロン共鳴)方式のマイクロ波プラズマエッチング装置(以下、エッチング装置と記載する)100の縦断面の概略の構成を示す図である。
【0021】
本実施例に係るエッチング装置100は、真空容器101、プラズマ生成用高周波電源である電磁波発生用電源103、導波管104、磁場発生コイル105、試料載置用電極107、高周波バイアス電力印加回路部120、及び全体を制御する制御部150を備えている。
【0022】
真空容器101の上部には誘電体窓108が設置されて、内部を密封することにより処理室102を形成している。処理室102には試料であるウェハ10のエッチング処理に用いるエッチングガスを流すためのガス供給装置(図示省略)が接続される。また、真空容器101には排気用開閉バルブ109を介し真空排気装置(図示省略)が接続されている。
【0023】
処理室102内は排気用開閉バルブ109を開とし、真空排気装置を駆動することで減圧され真空状態となる。エッチングガスは、図示していないガス供給装置から処理室102内に導入され、図示していない真空排気装置によって排気される。
【0024】
試料台である試料載置用電極107は、処理室102の内部で、誘電体窓108に対向して真空容器101の下部に設けられている。
【0025】
プラズマ生成用高周波電源である電磁波発生用電源103で発振された電磁波は、導波管104へ伝送される。導波管104は、電磁波を真空容器101の上部に形成した開口部106から真空容器101の内部に伝送する。真空容器101の内部に伝送された電磁波は、誘電体窓108を透過して処理室102の内部に供給される。尚、本実施例の効果は、電磁波の周波数に特に限定されないが、本実施例では2.45GHzのマイクロ波を使用する。
【0026】
磁場発生コイル105は、真空容器101の処理室102の上部で誘電体窓108の近傍に、開口部106から伝送された電磁波に対してECR条件が成立するような強度の磁場を形成する。
【0027】
電磁波発生用電源103より発振された電磁波は、磁場発生コイル105により誘電体窓108の近傍に形成されたECR条件を満たすような強度の磁場との相互作用により、処理室102内に高密度プラズマを生成する。この生成した高密度プラズマにより、試料載置用電極107上に配置された試料であるウェハ10にエッチング処理が施される。
【0028】
試料載置用電極107、磁場発生コイル105、排気用開閉バルブ109及び試料載置用電極107に載置されたウェハ10は、処理室102の中心軸上に対して同軸に配置されているため、エッチングガスの流れやプラズマにより生成されたラジカル及びイオン、更にはエッチングにより生成された反応生成物は、ウェハ10に対し同軸に導入、排気される。この同軸配置はエッチングレート、エッチング形状のウェハ面内均一性を軸対称に近づけ、ウェハ処理均一性を向上させる効果がある。
【0029】
試料載置用電極107には、誘電体膜(図示省略)の内部で中心側に配置された膜状の電極である中心側電極114と、その外周側に配置されリング状に形成された膜状の電極である外周側電極115とを有している。これら高周波電力が印加された中心側電極114と外周側電極115とは、試料載置用電極107に載置されたウェハ10と電気的に接続される。
【0030】
中心側電極114は、高周波バイアス電力印加回路部120の第一の高周波バイアス電源121が、第一のマッチング回路122を介して接続されている。第一のマッチング回路122を介して第一の高周波バイアス電源121から中心側電極114に高周波電力を印加することにより、試料載置用電極107に載置されたウェハ10の中心部へイオンを引き込むための電界が形成される。
【0031】
外周側電極115には、高周波バイアス電力印加回路部120の第二の高周波バイアス電源123が、第二のマッチング回路124を介して接続されている。第二のマッチング回路124を介して第二の高周波バイアス電源123から外周側電極115に高周波電力を印加することにより、試料載置用電極107に載置されたウェハ10の外周部へイオンを引き込むための電界が形成される。
【0032】
また、高周波電力が印加された中心側電極114と外周側電極115との間は、電極間回路130で接続されている。この電極間回路130により、中心側電極114と外周側電極115との間に電流が流れ、中心側電極114と外周側電極115との間に電位差が発生する。本実施例では、この電極間回路130として、コイルを用い、高周波電力に対してインダクタンスを形成するようにした。
【0033】
本実施例では、このように、電極間回路130を設けることにより内側電極と外側電極との間に流れる電流を規定し、内側電極と外側電極とにそれぞれ印加される高周波電力の位相差を制御することでV
PP差を制御できるように構成した。
【0034】
なお、本実施例の効果は、第一の高周波バイアス電源121及び第二の高周波バイアス電源123から出力される高周波バイアス電力の周波数に特に限定されないが、本実施例では400kHzの高周波電力を使用する。
【0035】
図2を用いて、本実施例の試料載置用電極107に接続される高周波バイアス電力印加回路部120の回路構成について、より詳細に説明する。
【0036】
中心側電極114と第一のマッチング回路122の間には第一の直流カット用フィルタ回路125が接続され、この第一の直流カット用フィルタ回路125と中心側電極114の間には、第一の高周波カットフィルタ1251を介して第一の直流電源1252が接続されている。第一の直流カット用フィルタ回路125は第一の高周波バイアス電源121および第一のマッチング回路122に直流電圧が印加され破損しないように設けられる。第一の高周波カットフィルタ1251は、バイアス電力である高周波電力が第一の直流電源1252に印加され破損しないように設けられる。
【0037】
同様に、外周側電極115と第二のマッチング回路124の間には第二の直流カット用フィルタ回路126が接続され、この第二の直流カット用フィルタ回路126と外周側電極115の間には、第二の高周波カットフィルタ1261を介して第二の直流電源1262が接続される。第二の直流カット用フィルタ回路126は第二の高周波バイアス電源123および第二のマッチング回路124に直流電圧が印加され破損しないように設けられる。第二の高周波カットフィルタ1261は、バイアス電力である高周波電力が第二の直流電源1262に印加され破損しないように設けられる。 この中心側電極114と外周側電極115とに、それぞれ第一の直流電源1252と第二の直流電源1262から極性の異なる直流電圧を印加することで、中心側電極114を覆う誘電体膜及び外周側電極115を覆う誘電体膜で誘電分極を発生させる。このように誘電分極を発生させることにより、中心側電極114を覆う誘電体膜内及び外周側電極115を覆う誘電体膜の上面に載置したウェハ10は、中心側電極114を覆う誘電体膜内及び外周側電極115を覆う誘電体膜の上面に静電気力によって吸着され(静電吸着)、試料載置用電極107上にウェハ10が保持される。
【0038】
第一のマッチング回路122と第一の直流カット用フィルタ回路125の間と、第二のマッチング回路124と第二の直流カット用フィルタ回路126の間とは、電極間回路130で接続されている。
【0039】
さらに、第一の高周波バイアス電源121および第二の高周波バイアス電源123には、位相調整器128が接続される。
【0040】
次に、本実施例においてウェハ10の中心側および外周側に印加される高周波電力のV
PPを制御する方法について
図3を用いて説明する。
【0041】
図3は、
図2に示した位相調整器128による位相制御を示す図である。当該位相調整器128には、基準クロック1281(例えば400kHzの矩形波)が制御部150から入力される。位相調整器128の内部の第1の位相信号発生部1282からは、この基準クロック1281と同期して、基準クロック1281と位相差のない信号1284が出力され、第一の高周波バイアス電源121に入力される。
【0042】
一方、位相調整器128の内部の第2の位相信号発生部1283からは、基準クロック1281と同期して、基準クロック1281に対して位相差がθ
RFある信号1285が出力され、第二の高周波バイアス電源123に入力される。
【0043】
第一の高周波バイアス電源121および第二の高周波バイアス電源123は、位相調整器128から入力された信号をもとに、中心側電極114および外周側電極115に出力する電力を発振するため、各々の出力の間にはθ
RFの位相差が生じる。
【0044】
本実施例の回路では、第一の高周波バイアス電源121に接続された中心側電極114により、ウェハ10の中心側に印加される電圧V
INは、式(数1)で示す形で表される。
【0045】
【数1】
【0046】
また、第二の高周波バイアス電源123に接続された外周側電極115により、ウェハ10の外周側に印加される電圧V
OUTは、式(数2)に示す形で表される。
【0047】
【数2】
【0048】
V
INおよびV
OUTのそれぞれにθ
RFがcosの中に含まれており、また各々のcos項のθ
αの符号が逆となっている。ここで、一般にθ
αの値は0ではないため、中心側のV
PP(=2V
IN)と外周側のV
PP(=2V
OUT)との間には差が生じる。
【0049】
回路シミュレータによって、試料載置用電極107に搭載したウェハ10の中心側と外周側との間のV
PPの差を求めたグラフを、
図4に示す。
図4のグラフ400には、第一の高周波バイアス電源121と第二の高周波バイアス電源123の出力電圧の差が0Vのときのデータ410、50Vのときのデータ420、90Vのときのデータ430を示している。
【0050】
図4に示した結果から、第一の高周波バイアス電源121と第二の高周波バイアス電源123の出力電圧の差が0Vのときのデータ410が、他のデータ420及び430と比べて、位相差の変化に対するV
PPの変化量が大きいことがわかる。また、第一の高周波バイアス電源121と第二の高周波バイアス電源123の出力電圧の差が0Vのときのデータ410において、位相差が0度の場合に比べ、位相差が135度の方がV
PPの差が大きくなっている。また電極間回路130の定数(本実施例の場合は、電極間回路130を構成するコイルのインダクタンス)は固定でなくともよく、定数が変更になった場合、ウェハに印加されるVpp差の分布が
図4に示した結果と異なるようになる。
【0051】
この結果から、
図2及び
図3に示したような、本実施例における高周波バイアス電力印加回路部120の構成においては、制御部150により、第一の高周波バイアス電源121と第二の高周波バイアス電源123の出力電力の差と、位相差とを適切な値に設定することにより、位相差をつけない場合と比較し、ウェハ10の中心側と外周側との間のV
PP差の調整幅を大きくできることがわかる。
【0052】
本実施例によれば、高周波電力印加回路間に電極間回路を形成した状態において、第一の高周波バイアス電源121と第二の高周波バイアス電源123の位相差を制御し、試料を載置する試料台を構成する内側電極と外側電極とに位相差のある高周波電力を印加することにより、内側電極と外側電極とにそれぞれ印加されるV
PPの差を制御することが出来るようになった。
【0053】
これにより、定格出力の大きな高周波電源を用いなくても、内側電極と外側電極とに印加する高周波電力の出力差及び位相差を確実に制御して内側電極と外側電極とのV
PPの差を確実に制御できるようになった。
【0054】
その結果、本実施例によれば、試料台に載置されたウェハの面内のV
PP分布を制御することを可能にし、定格出力が比較的小さい複数の高周波バイアス電源を用いてウェハの中心部から外周部でのエッチングレートの均一性を改善することができるようになった。
【0055】
これにより、ウェハの中心部から外周部に亘るエッチングレートの均一性を改善することができるようになり、かつ、比較的小さい定格出力の高周波バイアス電源を用いることでプラズマ処理装置の装置コストを抑えることが出来るようになった。
【実施例2】
【0056】
本発明の第2の実施例を、
図5を用いて説明する。
本実施例は、実施例1における
図1に示したエッチング装置100における高周波バイアス電力印加回路部120を、
図5に示したような高周波バイアス電力印加回路部500に置き換えたものである。高周波バイアス電力印加回路部500以外は、実施例1と同じ構成であるので、図示及び繰り返しの説明を省略する。
【0057】
図5に示した本実施例に係る高周波バイアス電力印加回路部500は、中心側電極114と外周側電極115との間の位相差を測定して、二つのバイアス電源から出力される高周波電力の位相差を自動で調整できるようにしたものである。
【0058】
図5に示した本実施例に係る高周波バイアス電力印加回路部500においては、第一の高周波バイアス電源501と第一のマッチング回路502の間、及び第二の高周波バイアス電源503と第二のマッチング回路504との間に、位相調整器505を接続する構成とした。
【0059】
さらに、第一のマッチング回路502と中心側電極114とを繋ぐライン5021と、第二のマッチング回路504と外周側電極115とを繋ぐライン5041の間に、位相差測定器506を接続した。また、第一のマッチング回路502及び第二のマッチング回路504と位相差測定器506の間に、第一のマッチング回路502からの出力と第二のマッチング回路504からの出力とを結ぶ電極間回路510を設けた。
【0060】
次に、
図5に示したような構成において、実施例1において
図1を用いて説明した真空容器101の内部の試料載置用電極107に試料であるウェハ10を載置した状態で真空容器101の内部にプラズマを発生させ、試料載置用電極107の中心側電極114と外周側電極115とに、それぞれ第一の高周波バイアス電源501と第二の高周波バイアス電源503とから、高周波バイアス電力を印加する。
【0061】
この状態で、位相差測定器506により、中心側電極114に印加された高周波電力と外周側電極115に印加された高周波電力の位相差を測定する。この位相差測定器506で測定した位相差の信号を位相調整器505に入力する。
【0062】
位相調整器505において、位相差測定器506から入力した位相差の信号と、位相差信号設定部507から入力した位相差信号の設定値:θ
RFとを比較して、両方の位相差信号の差がゼロになるように、実施例1で
図3を用いて説明したように、第一の高周波バイアス電源501から出力された高周波電力の位相と第二の高周波バイアス電源503から出力された高周波電力の位相を調整する。
【0063】
このように、本実施例によれば、エッチング処理中に検出された位相差測定器506で測定した中心側電極114に印加された高周波電力と外周側電極115に印加された高周波電力との位相差の情報と、位相差信号設定部507に予め設定した位相差信号の設定値:θ
RFとの差に基づいて、位相調整器505で第一の高周波バイアス電源501から出力された高周波電力の位相と第二の高周波バイアス電源503から出力された高周波電力の位相との差を調整することができる。
【0064】
これにより、ウェハ10をエッチング処理中に、中心側電極114に印加された高周波電力と外周側電極115に印加された高周波電力の位相差を、位相差信号設定部507で設定した値に維持することが出来る。
【0065】
その結果、本実施例によれば、試料載置用電極に載置されたウェハをエッチング処理中に、ウェハの面内のV
PP分布を制御することが可能になり、定格出力が比較的大きい高周波バイアス電源を必要とせず、定格出力が比較的小さい複数の高周波バイアス電源を用いてウェハの中心部から外周部でのエッチングレートの均一性を改善することができるようになった。
【0066】
これにより、ウェハの中心部から外周部に亘るエッチングレートの均一性を改善することができるようになり、かつ、比較的小さい定格出力の高周波バイアス電源を用いることでプラズマ処理装置の装置コストを抑えることが出来るようになった。
【0067】
以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。