【実施例】
【0068】
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
【0069】
[実験1]
図2の実施形態の回転ディスクを用いて金属粉末を作製した。
【0070】
[モリブデン合金の準備]
粒度を調整したモリブデン粉末及び粒度を調整した炭化物を混合し、熱間等方加圧法(HIP)にて円柱状のモリブデン合金を作製した。炭化物の組成、粒径及びモリブデンの粒径を変えて、複数の合金が作製された。
【0071】
[回転ディスクの作製]
上記のモリブデン合金から、基板の径が60mm、厚さが2mmの回転ディスクが作製された。基板の表面に研磨処理を施した。作製された回転ディスクの諸元が、表1及び2に示されている。
【0072】
[粉末を作製する金属]
ディスクアトマイズ法で、Sn―50mass%Cu(融点=690℃)、Sn−80mass%Ag−0.5mass%In(融点=730℃)純Ag(融点=960℃)、純Cu(融点=1083℃)、Ag−28mass%Cu(融点780℃)、Ag−30mass%Zn(融点=940℃)の粉末の作製を試みた。これらの粉末の製作において、各金属をその融点から300℃高い温度まで昇温した。すなわち、Sn―50mass%Cuで990℃、Sn−80Ag−0.5Inで1030℃、純Agで1260℃、純Cuで1383℃、Ag−28mass%Cuで1080℃、Cu−30mass%Znで1240℃まで昇温した。
【0073】
[評価方法]
[回転ディスク破損]
回転ディスクを使用して、遠心噴霧法で粉末の作製を試みた。出湯ノズルの直径は4mmである。粉末を作製する金属各々について、溶湯の量は溶解量50kg、ディスク回転速度は130000rpm、出湯温度は上記の通り融点より300℃高い温度とした。粉末が作製される途中で、回転ディスク破損の発生の有無が確認された。
【0074】
[平均粒径]
回転ディスク破損試験で、回転ディスク破損が発生せず、粉末が得られたものについて、その粉末の平均粒径を評価した。粉末の平均粒径の測定方法には、レーザー回折法が用いられた。
【0075】
[総合評価]
粉末の製造結果をもとに、回転ディスクについて以下の格付けを行った。
A1:粉末が作製でき、その粉末の平均粒径が30μm以下。
B1:粉末が作製でき、その粉末の平均粒径が30μmより大きい。
C1:粉末が作製できたが、ディスクに亀裂が発生、継続利用が困難と判断。
F1:ディスクがアトマイズ中に破損し実験を中止。
A1、B1、C1、F1の順に良好である。
【0076】
[評価結果]
[実施例6−15]
実施例6−15では、下記の条件の回転ディスクが使用された。
(1)比(N1/N):95.0%以上
(2)最短距離L:10μm以上
(3)炭化物の組成:Ti、Zr、Hfの炭化物の少なくとも一種を含む。
(4)平均結晶粒径Dlave:50μm以下
この結果が表1に示されている。なお、表において、N12は、円相当径が1μm以上の炭化物の個数である。以降の表においても同じである。
【0077】
[実施例1−5]
実施例1−5では、下記の条件の回転ディスクが使用された。
(1)比(N1/N):90.0%以上95.0%未満
その他の条件は、上記実施例6−15と同じである。この結果が表1に示されている。
【0078】
[実施例16−20]
実施例16−20では、下記の条件の回転ディスクが使用された。
(2)最短距離L:10μm未満
その他の条件は、上記実施例6−15と同じである。この結果が表1に示されている。
【0079】
[実施例21−25]
実施例21−25では、下記の条件の回転ディスクが使用された。
(3)炭化物の組成:Ti、Zr、Hfの炭化物のいずれも含まない。
その他の条件は、上記実施例6−15と同じである。この結果が表1に示されている。
【0080】
[実施例25−30]
実施例21−25では、下記の条件の回転ディスクが使用された。
(4)平均結晶粒径Dlave:50μmより大
その他の条件は、上記実施例6−15と同じである。この結果が表1に示されている。
【0081】
[比較例1−5]
比較例1−5では、下記の条件の回転ディスクが使用された。
(1)比(N1/N):90.0%未満
その他の条件は、上記実施例6−15と同じである。この結果が表2に示されている。
【0082】
【表1】
【0083】
【表2】
【0084】
[実験2]
図3の実施形態の回転ディスクを用いて金属粉末を作製した。
【0085】
[モリブデン合金の準備]
粒度調整したモリブデン粉末及び粒度調整した炭化物を混合し、熱間等方加圧法(HIP)にて円柱状のモリブデン合金を作製した。炭化物の組成、粒径及びモリブデンの粒径を変えて、複数の合金が作製された。
【0086】
[回転ディスクの作製]
上記のモリブデン合金から、径が60mm、厚さが2mmである基板と軸とからなる基材ディスクが作製された。この基板の上面に、粗面処理を行い、この上面にセラミックス膜を被覆させて回転ディスクを製作した。セラミックス膜は、セラミックスと焼結助剤を添加したものを基板上面に塗布し焼結させることで形成した。セラミックス膜を形成後、その上面に研磨処理を施した。セラミックス膜上面の表面粗さRzの値Crが1μm以下となるよう研磨処理が施された。作製された回転ディスクの諸元が、表3−8に示されている。
【0087】
[粉末を作製する金属]
粉末を作製する金属は、鉄基のSUS316L(融点=1396℃)、マルエージング鋼(融点=1430℃)、Ni基のAlloyC276(融点=1390℃)、Alloy718(融点=1400℃)、Co基のCo−28mass%Cr−6mass%Mo合金(融点=1440℃)およびAlloyNo.6(融点=1290℃)とした。各合金をその融点から50℃高い温度まで昇温した。すなわちSUS316Lで1446℃、マルエージング鋼で1480℃、AlloyC276で1440℃、Alloy718で1450℃、Co−28mass%Cr−6mass%Mo合金で1490℃、AlloyNo.6で1340℃まで加熱した。なお、セラミックス材料は、上記の金属に対して良好な漏れ性を有するものが選択されている。
【0088】
[評価方法]
[被膜剥離]
製作した回転ディスクをそのままモーターに設置し、回転速度150000rpmにて10分間回転させた。その後回転を止めてセラミックス膜の剥離の有無を目視にて確認した。セラミックス膜の剥離が発生していない場合が「OK」、それ以外が「NG」とされた。
【0089】
[回転ディスク破損]
上記被膜剥離試験にて問題のなかった回転ディスクを使用して、遠心噴霧法で粉末の作製を試みた。出湯ノズルの直径は4mmである。粉末を作製する金属各々について、溶湯の量は溶解量50kg、ディスク回転速度は150000rpm、出湯温度は上記のとおり融点より50℃高い温度とした。粉末が作製される途中で、回転ディスク破損の発生の有無が確認された。回転ディスク破損が発生しなければ「OK」、それ以外が「NG」とされた。
【0090】
[モーター温度上昇]
遠心噴霧装置のモーターの軸に熱電対を接触させ、モーターへの熱流入を確認した。モーターの軸に使用している金属の軟化温度である500℃以下を保持した場合は「OK」、それ以外は粉末製造を途中中止し「NG」とされた。
【0091】
[平均粒径]
上記回転ディスク破損試験で、回転ディスク破損が発生せず、粉末が得られたものについて、その粉末の平均粒径を評価した。粉末の平均粒径の測定方法には、レーザー回折法が用いられた。
【0092】
[総合評価]
上記評価結果をもとに、回転ディスクについて以下の格付けを行った。
A2:粉末が作製でき、その粉末の平均粒径が30μm以下。
B2:粉末が作製でき、その粉末の平均粒径が30μmより大きい。
C2:粉末が作成できたが、ディスクに亀裂が発生、継続利用が困難と判断。
D2:アトマイズ中にモーターの軸部温度が上昇し中止。
E2:基板上へのセラミックス膜の被覆率は100%であったが、150000rpm回転時に被膜が剥離し遠心噴霧での実験は中止。
F2:アトマイズ開始直後にディスクが破損し中止。
A2、B2、C2、D2、E2、F2の順に良好である。
【0093】
[評価結果]
表3及び4はSUS316L粉末およびマルエージング鋼粉末の作製結果である。表の「合金」の列で、「SUS」はSUS316Lを表す。「MA」はマルエージング鋼を表す。表5及び6は、はAlloyC276粉末およびAlloy718粉末の作製結果である。表の「合金」の列で、「AC276」はAlloyC276を表す。「A718」はAlloy718を表す。表7及び8は、Co−28mass%Cr−6mass%Mo合金粉末およびAlloyNo.6粉末の作製結果である。表の「合金」の列で、「CCrMo」はCo−28mass%Cr−6mass%Moを表す。「A6」はAlloyNo.6を表す。
【0094】
[実施例41−54、79−92及び117−130]
実施例41−54、79−92及び117−130では、下記の条件の回転ディスクが使用された。
(1)比(N1/N):95.0%以上
(2)最短距離L:10μm以上
(3)炭化物の組成:Ti、Zr、Hfの炭化物の少なくとも一種を含む。
(4)平均結晶粒径Dlave:50μm以下
この結果が表3、5及び7に示されている。
【0095】
[実施例31−40、69−78及び107−116]
実施例31−40、69−78及び107−116では、下記の条件の回転ディスクが使用された。
(1)比(N1/N):90.0%以上95.0%未満
その他の条件は、上記実施例41−54、79−92及び117−130と同じである。
この結果が表3、5及び7に示されている。
【0096】
[実施例55−58、93−96及び131−134]
実施例55−58、93−96及び131−134では、下記の条件の回転ディスクが使用された。
(2)最短距離L:10μm未満
その他の条件は、上記実施例41−54、79−92及び117−130と同じである。この結果が表3、5及び7に示されている。
【0097】
[実施例59−60、97−98及び135−136]
実施例59−60、97−98及び135−136では、下記の条件の回転ディスクが使用された。
(3)炭化物の組成:Ti、Zr、Hfの炭化物のいずれも含まない。
その他の条件は、上記実施例41−54、79−92及び117−130と同じである。この結果が表3、5及び7に示されている。
【0098】
[実施例61−68、99−106及び137−144]
実施例61−68、99−106及び137−144では、下記の条件の回転ディスクが使用された。
(4)平均結晶粒径Dlave:50μmより大
その他の条件は、上記実施例41−54、79−92及び117−130と同じである。この結果が表4及び5−8に示されている。
【0099】
[比較例6−20]
比較例6−20では、下記の条件の回転ディスクが使用された。
(1)比(N1/N):90.0%未満
その他の条件は、上記実施例41−54、79−92及び117−130と同じである。この評価結果が表4、6及び8に示されている。
【0100】
【表3】
【0101】
【表4】
【0102】
【表5】
【0103】
【表6】
【0104】
【表7】
【0105】
【表8】
【0106】
表1−8に示された評価結果から、本発明の優位性は明らかである。