特許第6706854号(P6706854)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 古河電気工業株式会社の特許一覧

特許6706854耐熱性架橋樹脂成形体及びその製造方法、並びに、耐熱性製品
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6706854
(24)【登録日】2020年5月21日
(45)【発行日】2020年6月10日
(54)【発明の名称】耐熱性架橋樹脂成形体及びその製造方法、並びに、耐熱性製品
(51)【国際特許分類】
   C08J 3/22 20060101AFI20200601BHJP
   C08J 3/24 20060101ALI20200601BHJP
   C08L 101/04 20060101ALI20200601BHJP
   C08K 3/00 20180101ALI20200601BHJP
   C08K 5/14 20060101ALI20200601BHJP
   C08K 5/54 20060101ALI20200601BHJP
   H01B 3/00 20060101ALI20200601BHJP
   H01B 3/44 20060101ALI20200601BHJP
【FI】
   C08J3/22CEU
   C08J3/22CEW
   C08J3/24 ACEV
   C08L101/04
   C08K3/00
   C08K5/14
   C08K5/54
   H01B3/00 A
   H01B3/44 B
   H01B3/44 D
   H01B3/44 P
【請求項の数】13
【全頁数】25
(21)【出願番号】特願2016-24489(P2016-24489)
(22)【出願日】2016年2月12日
(65)【公開番号】特開2017-141383(P2017-141383A)
(43)【公開日】2017年8月17日
【審査請求日】2018年9月12日
(73)【特許権者】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】100076439
【弁理士】
【氏名又は名称】飯田 敏三
(74)【代理人】
【識別番号】100118809
【弁理士】
【氏名又は名称】篠田 育男
(72)【発明者】
【氏名】西口 雅己
(72)【発明者】
【氏名】原 英和
(72)【発明者】
【氏名】松村 有史
【審査官】 加賀 直人
(56)【参考文献】
【文献】 特開昭60−144315(JP,A)
【文献】 特開平06−168629(JP,A)
【文献】 特開平10−081802(JP,A)
【文献】 特開2014−136752(JP,A)
【文献】 国際公開第2013/147148(WO,A1)
【文献】 国際公開第2015/046476(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 3/22
C08J 3/24
C08K 3/00
C08K 5/14
C08K 5/54
C08L 101/04
H01B 3/00
H01B 3/44
(57)【特許請求の範囲】
【請求項1】
含ハロゲン樹脂を含有する樹脂100質量部に対して、有機過酸化物0.003〜0.3質量部と、無機フィラー0.5〜400質量部と、前記含ハロゲン化樹脂にグラフト反応しうるグラフト化反応部位、及び前記無機フィラーの化学結合しうる部位と反応し、シラノール縮合可能な反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下とを用いて、測定温度150℃、荷重5NでのUL1581に基づく加熱変形率が50%以下である耐熱性架橋樹脂成形体を製造するに当たり、
少なくとも前記無機フィラー及び前記シランカップリング剤を前記質量比で前混合して混合物を調製する工程(a−1)、及び前記混合物と、前記ベース樹脂の全部又は一部とを前記有機過酸化物の存在下で前記有機過酸化物の分解温度以上の温度で溶融混合して、前記ベース樹脂と前記シランカップリング剤とをグラフト反応させることによりシラン架橋性樹脂を含むシランマスターバッチを調製する工程(a−2)を有する工程(a)と、
前記工程(a)で得られたシランマスターバッチとシラノール縮合触媒と、前記工程(a−2)において前記ベース樹脂の一部を使用した場合には更に前記ベース樹脂の残部とを混合した後に成形する工程(b)と、
前記工程(b)で得られた成形体を水分と接触させて架橋させる工程(c)と、
を有する、前記耐熱性架橋樹脂成形体の製造方法。
【請求項2】
前記有機過酸化物の含有量が、0.005〜0.1質量部である請求項1に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項3】
前記シランカップリング剤の含有量が、3〜12.0質量部である請求項1又は2に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項4】
前記シランカップリング剤の含有量が、4〜12.0質量部である請求項1〜3のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項5】
前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランである請求項1〜4のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項6】
前記無機フィラーが、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム及び三酸化アンチモンからなる群から選ばれる少なくとも1種である請求項1〜5のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項7】
前記工程(a−2)における溶融混練が、密閉型のミキサーを用いて行われる請求項1〜6のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項8】
前記耐熱性架橋樹脂成形体を肉厚1mの管状成形体として、117gのおもり取り付けて170℃に15分晒した場合の伸び率が100%以下である請求項1〜7のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
【請求項9】
請求項1〜8のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法により製造された、測定温度150℃、荷重5NでのUL1581に基づく加熱変形率が50%以下である耐熱性架橋樹脂成形体。
【請求項10】
肉厚1mの管状成形体として、117gのおもり取り付けて170℃に15分晒した場合の伸び率が100%以下である請求項9に記載の耐熱性架橋樹脂成形体。
【請求項11】
前記含ハロゲン樹脂が、シラノール結合を介して前記無機フィラーと架橋してなる請求項9又は10に記載の耐熱性架橋樹脂成形体。
【請求項12】
請求項9〜11のいずれか1項に記載の耐熱性架橋樹脂成形体を含む耐熱性製品。
【請求項13】
前記耐熱性架橋樹脂成形体が、電線あるいは光ファイバーケーブルの被覆である請求項12に記載の耐熱性製品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐熱性架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品に関する。
【背景技術】
【0002】
電気・電子機器分野や産業分野に使用される絶縁電線、ケーブル、コード、光ファイバー心線又は光ファイバーコード(光ファイバーケーブル)の配線材には、難燃性、耐熱性、機械特性(例えば、引張特性、耐摩耗性)など種々の特性が要求されている。
【0003】
また、これらの配線材は、長時間の使用により、80〜105℃、さらには125℃位にまで昇温することがあり、これに対する耐熱性も要求される場合がある。このような場合、配線材としてゴム材料や架橋材料が使用される。ゴムを架橋する方法としては一般に化学架橋法が用いられ、また、架橋材料を製造する場合には電子線架橋法や化学架橋法が用いられる。
【0004】
従来、ポリエチレン等のポリオレフィン樹脂を架橋する方法として、電子線を照射して架橋させる電子線架橋法、また、成形後に熱を加えることにより有機過酸化物等を分解させて架橋反応させる架橋法やシラン架橋法等の化学架橋法が知られている。
シラン架橋法とは、有機過酸化物の存在下で不飽和基を有するシランカップリング剤を樹脂にグラフト反応させてシラングラフト樹脂を得た後に、シラノール縮合触媒の存在下でシラングラフト樹脂を水分と接触させることにより、架橋した樹脂を得る方法である。
上記の架橋法のなかでも、特にシラン架橋法は特殊な設備を要しないことが多いため、幅広い分野で使用することができる。
【0005】
ところが、シラン架橋法において、ニーダーやバンバリーミキサーを用いてシラングラフト反応を行う場合には、不飽和基を有するシランカップリング剤は、一般に揮発性が高く、シラングラフト反応する前に揮発してしまうという問題がある。そのため、シラングラフト樹脂を含有する、所望のシラン架橋マスターバッチを作製することが困難であった。
しかも、シラン架橋法により、ポリ塩化ビニル樹脂、塩素化ポリエチレン、クロロプレンゴム等の含ハロゲン樹脂等をシラン架橋させることは、上記のポリオレフィン樹脂をシラン架橋させることよりも、難しい。ただ単に、有機過酸化物の存在下で不飽和基を有するシランカップリング剤を含ハロゲン樹脂にシラングラフト反応させてシラングラフト樹脂を得た後に、シラノール縮合触媒の存在下で水分と接触させても、架橋した樹脂を製造することは難しい。
【0006】
シラン架橋法の例を挙げると、例えば、特許文献1には、ポリオレフィン系樹脂にシランカップリング剤で表面処理した無機フィラー、シランカップリング剤、有機過酸化物、架橋触媒をニーダーにて十分に溶融混練した後に、単軸押出機にて成形する方法が提案されている。
【0007】
また、特許文献2〜4にはブロック共重合体等をベースポリマーとし、軟化剤として非芳香族系ゴム用軟化剤を加えたビニル芳香族系熱可塑性エラストマー組成物を、シラン表面処理された無機フィラーを介して有機過酸化物を用いて部分架橋する方法が提案されている。
【0008】
特許文献5においては、ベース材料に対し、有機過酸化物とシランカップリング剤とを、無機フィラーとともに加え、さらにシラノール縮合触媒とともに押し出し成形し、その後水分と接触させることにより、耐熱性を有するケーブルを得る方法が提案されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2001−101928号公報
【特許文献2】特開2000−143935号公報
【特許文献3】特開2000−315424号公報
【特許文献4】特開2001−240719号公報
【特許文献5】特開2012−255077号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
特許文献1に記載された方法では、ニーダー等での溶融混練中に樹脂が架橋することがある。さらに、無機フィラーを表面処理しているシランカップリング剤以外のシランカップリング剤の大部分が揮発し、又は互いに縮合することがある。そのため、所望の耐熱性を有する電線を得ることができない。加えて、シランカップリング剤同士の縮合反応により、得られる電線の外観が悪化することがある。
特許文献2〜4に記載された方法であっても、まだ、樹脂が十分な網状構造になっていないため、高温で樹脂と無機フィラーの結合が切れやすい。したがって、得られた成形体が高温下で溶融し、例えば電線のハンダ加工中に絶縁材が熔けてしまうことがある。また成形体を2次加工する際に、変形したり、発泡を生じたりすることがある。さらに200℃程度に短時間加熱されると、外観が劣化したり、変形したりすることもある。
特許文献5に記載の方法は、上記の問題を解決するためのものであるが、特許文献5に記載の方法においても、含ハロゲン系樹脂やゴム材料においては、十分に架橋しなかったり、外観不良を生じたりすることがある。
【0011】
本発明は、上記の問題点を解決し、耐熱性に優れ、高温(特に限定されないが、好ましくは170℃以上)においても溶融しない、含ハロゲン樹脂若しくはゴム材料の耐熱性架橋樹脂成形体及びその製造方法を提供することを、課題とする。
また、本発明は、この耐熱性架橋樹脂成形体を形成可能な、シランマスターバッチ、マスターバッチ混合物及びその成形体を提供することを、課題とする。
さらに、本発明は、耐熱性架橋樹脂成形体の製造方法で得られた耐熱性架橋樹脂成形体を含む耐熱性製品を提供することを、課題とする。
【課題を解決するための手段】
【0012】
本発明者らは、シラン架橋法において、特定の割合で、含ハロゲン樹脂(含ハロゲンゴムを含む)と無機フィラーとシランカップリング剤とを溶融混合して調製したシランマスターバッチと、シラノール縮合触媒とを混合する特定の製造方法により、耐熱性に優れ、高温においても溶融しない耐熱性架橋樹脂成形体を製造できることを見出した。本発明者らはこの知見に基づきさらに研究を重ね、本発明をなすに至った。
【0013】
すなわち、本発明の課題は以下の手段によって達成された。
<1>含ハロゲン樹脂を含有する樹脂100質量部に対して、有機過酸化物0.003〜0.3質量部と、無機フィラー0.5〜400質量部と、前記含ハロゲン化樹脂にグラフト反応しうるグラフト化反応部位、及び前記無機フィラーの化学結合しうる部位と反応し、シラノール縮合可能な反応部位を有するシランカップリング剤2質量部を越え15.0質量部以下とを用いて、測定温度150℃、荷重5NでのUL1581に基づく加熱変形率が50%以下である耐熱性架橋樹脂成形体を製造するに当たり、
少なくとも前記無機フィラー及び前記シランカップリング剤を前記質量比で前混合して混合物を調製する工程(a−1)、及び前記混合物と、前記ベース樹脂の全部又は一部とを前記有機過酸化物の存在下で前記有機過酸化物の分解温度以上の温度で溶融混合して、前記ベース樹脂と前記シランカップリング剤とをグラフト反応させることによりシラン架橋性樹脂を含むシランマスターバッチを調製する工程(a−2)を有する工程(a)と、
前記工程(a)で得られたシランマスターバッチとシラノール縮合触媒と、前記工程(a−2)において前記ベース樹脂の一部を使用した場合には更に前記ベース樹脂の残部とを混合した後に成形する工程(b)と、
前記工程(b)で得られた成形体を水分と接触させて架橋させる工程(c)と、
を有する、前記耐熱性架橋樹脂成形体の製造方法。
<2>前記有機過酸化物の含有量が、0.005〜0.1質量部である<1>に記載の耐熱性架橋樹脂成形体の製造方法。
<3>前記シランカップリング剤の含有量が、3〜12.0質量部である<1>又は<2>に記載の耐熱性架橋樹脂成形体の製造方法。
<4>前記シランカップリング剤の含有量が、4〜12.0質量部である<1>〜<3>のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
<5>前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランである<1>〜<4>のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
<6>前記無機フィラーが、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム及び三酸化アンチモンからなる群から選ばれる少なくとも1種である<1>〜<5>のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
<7>前記工程(a−2)における溶融混練が、密閉型のミキサーを用いて行われる<1>〜<6>のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
<8>前記耐熱性架橋樹脂成形体を肉厚1mの管状成形体として、117gのおもり取り付けて170℃に15分晒した場合の伸び率が100%以下である<1>〜<7>のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法。
【0014】
>上記<1>〜<>のいずれか1項に記載の耐熱性架橋樹脂成形体の製造方法により製造された、測定温度150℃、荷重5NでのUL1581に基づく加熱変形率が50%以下である耐熱性架橋樹脂成形体。
<10>肉厚1mの管状成形体として、117gのおもり取り付けて170℃に15分晒した場合の伸び率が100%以下である<9>に記載の耐熱性架橋樹脂成形体。
11>前記含ハロゲン樹脂が、シラノール結合を介して前記無機フィラーと架橋してなる<9>又は<10>に記載の耐熱性架橋樹脂成形体。
12>上記<9>〜<11>のいずれか1項に記載の耐熱性架橋樹脂成形体を含む耐熱性製品。
13>前記耐熱性架橋樹脂成形体が、電線あるいは光ファイバーケーブルの被覆である<12>に記載の耐熱性製品。
【0015】
本明細書において「〜」を用いて表される数値範囲は、「〜」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
【発明の効果】
【0016】
本発明によれば、従来の上記方法が有する課題を克服し、耐熱性に優れ、高温においても溶融しない耐熱性架橋樹脂成形体及びそれを含む耐熱性製品を、含ハロゲン樹脂及び/又はゴムと混練り前及び/又は混練り時に、無機フィラー及びシランカップリング剤を混合することにより、混練り時のシランカップリング剤の揮発を抑え、効率的に製造することができる。さらに無機フィラーを大量に加えても高耐熱性の架橋樹脂成形体を電子線架橋機等の特殊な機械を使用することなく、製造することができる。
したがって、本発明により、耐熱性に優れ、高温においても溶融しない耐熱性架橋樹脂成形体及びその製造方法を提供できる。また、この耐熱性架橋樹脂成形体を形成可能な、シランマスターバッチ、マスターバッチ混合物及びその成形体を提供できる。さらには、上記耐熱性架橋樹脂成形体を含む耐熱性製品を提供できる。
【発明を実施するための形態】
【0017】
まず、本発明において用いる各成分について説明する。
<樹脂>
本発明に用いられる樹脂は、ハロゲン原子を含有する樹脂又はゴムである含ハロゲン樹脂を含有する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましい。含ハロゲン樹脂は、ハロゲン原子を1種又は2種以上含有していてもよい。
【0018】
含ハロゲン樹脂としては、特に限定されるものではなく、従来、ハロゲン含有樹脂若しくはハロゲン含有ゴム組成物に使用されている通常のものを使用することができる。
このような含ハロゲン樹脂としては、シランカップリング剤のグラフト化反応部位と有機過酸化物の存在下でグラフト化反応可能な部位、例えば炭素鎖の不飽和結合部位や、水素原子を有する炭素原子を主鎖中又はその末端に有する重合体の樹脂又はゴムが挙げられる。
【0019】
含ハロゲン樹脂は、主鎖又は側鎖にハロゲン原子を含有する樹脂又はゴムが挙げられる。例えば、含ハロゲン樹脂として、塩素原子を含有する塩素含有樹脂若しくはゴム、フッ素原子を含有するフッ素樹脂若しくはゴム等が挙げられる。
本発明において、含ハロゲン樹脂が2種以上のハロゲン原子を含有する場合、この含ハロゲン樹脂は、下記のハロゲン含有量を満たすハロゲン原子を含有する樹脂に、分類される。
【0020】
含ハロゲン樹脂としては、ハロゲン原子を含有する単量体(モノマー)を(共)重合することにより得られる樹脂、(共)重合体をハロゲン化(通常、塩素化)して得られる樹脂、ハロゲン原子を含有する単量体(モノマー)の(共)重合体をさらにハロゲン化(通常、塩素化)して得られる樹脂、又は、ハロゲンを含まない樹脂にハロゲン元素を置換することによりハロゲン化して得られる樹脂等が挙げられる。
このような含ハロゲン樹脂としては、例えば、ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、クロロプレンゴム、スルホン化クロロプレンゴム、塩化ビニルと酢酸ビニルの共重合体からなる樹脂若しくはゴム、塩化ビニルとウレタンの共重合体からなる樹脂若しくはゴム、ハロゲン原子を有する材料等の塩素含有樹脂若しくはゴム、又は、フッ素ゴム等のフッ素樹脂若しくはゴム等が挙げられる。
他にも、ポリ塩化ビニルの共重合体、ポリ塩化ビニリデン又はその共重合体、塩素化ポリエチレンの共重合体、クロロスルホン化ゴム等の塩素含有樹脂若しくはゴム、フッ素樹脂等のフッ素含有樹脂若しくはゴム等が挙げられる。
本発明において、塩素含有樹脂若しくはゴムとしては、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂又はポリ塩化ビニルの共重合体が好ましい。
【0021】
フッ素ゴムとしては、特に限定されるものではないが、テトラフルオロエチレン−プロピレン共重合体ゴム(FEPM)、テトラフルオロエチレン−フッ化(例えばヘキサフルオロ)プロピレン共重合体ゴム、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体ゴム(FFKM)、フッ化ビニリデンゴム(FKM、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体ゴム)、又は、これらと塩素系ゴム例えばクロロプレンとの共重合体ゴム等が挙げられる。
【0022】
本発明において、含ハロゲン樹脂としては、塩素樹脂若しくはゴム、又は、フッ素樹脂若しくはゴムが好ましく、塩素樹脂若しくはゴムがより好ましい。
本発明においては、含ハロゲン樹脂として、フッ素ゴム及びクロロプレンの少なくとも一方を含む態様、フッ素ゴム及びクロロプレンの少なくとも一方を含まない態様が挙げられる。
【0023】
含ハロゲン樹脂におけるハロゲン原子の含有量(含ハロゲン樹脂全量に対するハロゲン原子の質量割合、ハロゲン含有量という)は、特には限定されない。
例えば、塩素含有樹脂若しくはゴムの場合、塩素含有量は、20質量%以上が好ましく、より好ましくは25質量%以上、さらに好ましくは30質量%以上である。また、フッ素含有樹脂若しくはゴムの場合、フッ素含有量は、25質量%以上が好ましく、より好ましくは40質量%以上、さらに好ましくは50質量%以上である。ハロゲン含有量の上限は、ハロゲン化する前の共重合体又は樹脂が有する、ハロゲンで置換可能な原子のすべてをハロゲンで置換した場合の質量割合となり、ハロゲン化する前の共重合体又は樹脂の分子量、ハロゲンで置換可能な原子の数等により、一義的に決定できない。例えば、75質量%とすることができる。
塩素含有量は、JIS K 7229に記載の電位差滴定法により、定量できる。
フッ素含有量は、合成時の計算値、又は、炭酸カリウム加熱分解法によって求められる。炭酸カリウム加熱分解法としては、能代誠ら、日化、6、1236(1973)に記載の方法が挙げられる。
【0024】
本発明において、樹脂成分は、含ハロゲン樹脂の他に、他の樹脂、オイル成分や可塑剤を含有していてもよい。
この場合、含ハロゲン樹脂、他の樹脂、オイル成分や可塑剤等の各成分の総計が100質量%となるように、各成分の含有率が適宜に決定され、好ましくは下記範囲内から選択される。
例えば、含ハロゲン樹脂の、樹脂成分中の含有率は、30〜100質量%が好ましく、50〜100質量%がより好ましい。この含有率が少なすぎると、含ハロゲン樹脂本来の難燃性、耐油性、耐候性等を付与することができないことがある。
他の樹脂は、特に限定されないが、熱可塑性エラストマー、ポリオレフィン樹脂等が挙げられる。本発明において、ベース樹脂は、熱可塑性エラストマー及びポリオレフィン樹脂の少なくとも一方を含有する態様と、これらエラストマー及び樹脂の少なくとも一方を含有しない態様とを含む。
【0025】
オイル成分は、特に限定されないが、有機油又は鉱物油が挙げられる。
有機油又は鉱物油として、大豆油、パラフィンオイル、ナフテンオイルが挙げられる。
オイルの含有率は、特に限定されないが、樹脂がオイルを含有する場合、樹脂100質量%中、0〜75質量%であることが好ましく、0〜60質量%であることがより好ましい。オイルの含有量があまり多すぎるとブリードしたり、強度が低下したりする。
【0026】
可塑剤は、特に限定されず、含ハロゲン樹脂又は含ハロゲンゴムに通常用いられる各種のものが挙げられる。例えば、トリメリット酸トリアルキル(C8、C10)、ピロメリット酸エステル系可塑剤、フタル酸エステル系可塑剤、アジピン酸エステル可塑剤、ポリエステル系可塑剤等が挙げられる。
可塑剤の含有率は、特に限定されないが、樹脂が可塑剤を含有する場合、樹脂100質量%中、0〜75質量%であることが好ましく、0〜60質量%であることがより好ましい。可塑剤の含有量が多すぎるとブリードしたり、強度が低下したりする。
【0027】
<有機過酸化物>
有機過酸化物は、少なくとも熱分解によりラジカルを発生して、触媒として、シランカップリング剤の樹脂成分へのラジカル反応によるグラフト反応を生起させる働きをする。特にシランカップリング剤の反応部位が例えばエチレン性不飽和基を含む場合、エチレン性不飽和基と樹脂成分とのラジカル反応(樹脂成分からの水素ラジカルの引き抜き反応を含む)によるグラフト反応を生起させる働きをする。
有機過酸化物としては、ラジカルを発生させるものであれば、特に制限はなく、例えば、一般式:R−OO−R、R−OO−C(=O)R、RC(=O)−OO(C=O)Rで表される化合物が好ましい。ここで、R〜Rは各々独立にアルキル基、アリール基又はアシル基を表す。各化合物のR〜Rのうち、いずれもアルキル基であるもの、又は、いずれかがアルキル基で残りがアシル基であるものが好ましい。
【0028】
このような有機過酸化物としては、例えば、ジクミルパーオキサイド(DCP)、ジ−tert−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ−(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、1,1−ビス(tert−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p−クロロベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert−ブチルクミルパーオキサイド等を挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3が好ましい。
【0029】
有機過酸化物の分解温度は、80〜195℃が好ましく、125〜180℃が特に好ましい。
本発明において、有機過酸化物の分解温度とは、単一組成の有機過酸化物を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味する。具体的には、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
【0030】
<無機フィラー>
本発明において、無機フィラーは、その表面に、シランカップリング剤のシラノール基等の反応部位と水素結合若しくは共有結合等、又は分子間結合により、化学結合しうる部位を有するものであれば特に制限なく用いることができる。この無機フィラーにおける、シランカップリング剤の反応部位と化学結合しうる部位としては、OH基(水酸基、含水若しくは結晶水の水分子、カルボキシ基等のOH基)、アミノ基、SH基等が挙げられる。
【0031】
無機フィラーとしては、特に限定されず、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミニウムウイスカ、水和珪酸アルミニウム、水和珪酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト、タルクなどの水酸基あるいは結晶水を有する化合物のような金属水和物が挙げられる。また、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカ等)、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、ほう酸亜鉛、ホワイトカーボン、硼酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛等が挙げられる。
【0032】
無機フィラーは、シランカップリング剤等で表面処理した表面処理無機フィラーを使用することができる。例えば、シランカップリング剤表面処理無機フィラーとして、キスマ5L、キスマ5P(いずれも商品名、水酸化マグネシウム、協和化学工業社製等)等が挙げられる。シランカップリング剤による無機フィラーの表面処理量は、特に限定されないが、例えば、3質量%以下である。
【0033】
これらの無機フィラーのうち、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム及び三酸化アンチモンからなる群から選ばれる少なくとも1種が好ましい。
無機フィラーは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
【0034】
無機フィラーが粉体である場合、無機フィラーの平均粒径は、0.2〜10μmが好ましく、0.3〜8μmがより好ましく、0.4〜5μmがさらに好ましく、0.4〜3μmが特に好ましい。平均粒径が上記範囲内にあると、シランカップリング剤の保持効果が高く、耐熱性に優れたものとなる。また、シランカップリング剤との混合時に無機フィラーが2次凝集しにくく、外観に優れたものとなる。平均粒径は、無機フィラーをアルコールや水で分散させて、レーザ回折/散乱式粒子径分布測定装置等の光学式粒径測定器によって求められる。
【0035】
<シランカップリング剤>
本発明に用いられるシランカップリング剤は、有機過酸化物の分解により生じたラジカルの存在下で含ハロゲン樹脂にグラフト反応しうるグラフト化反応部位(基又は原子)と、無機フィラーの化学結合しうる部位と反応し、シラノール縮合可能な反応部位(加水分解して生成する部位を含む。例えばシリルエステル基等)とを、少なくとも有するものであればよい。このようなシランカップリング剤として、従来、シラン架橋法に使用されているシランカップリング剤が挙げられる。
【0036】
シランカップリング剤としては、例えば下記の一般式(1)で表される化合物を用いることができる。
【0037】
【化1】
【0038】
一般式(1)中、Ra11はエチレン性不飽和基を含有する基、Rb11は脂肪族炭化水素基、水素原子又はY13である。Y11、Y12及びY13は加水分解しうる有機基である。Y11、Y12及びY13は互いに同じでも異なっていてもよい。
【0039】
a11は、グラフト化反応部位であり、エチレン性不飽和基を含有する基が好ましい。エチレン性不飽和基を含有する基としては、例えば、ビニル基、(メタ)アクリロイルオキシアルキレン基、p−スチリル基を挙げることができる。なかでも、ビニル基が好ましい。
【0040】
b11は、脂肪族炭化水素基、水素原子又は後述のY13を示す。脂肪族炭化水素基としては、脂肪族不飽和炭化水素基を除く炭素数1〜8の1価の脂肪族炭化水素基が挙げられる。Rb11は、好ましくは後述のY13である。
【0041】
11、Y12及びY13は、シラノール縮合可能な反応部位(加水分解しうる有機基)を示す。例えば、炭素数1〜6のアルコキシ基、炭素数6〜10のアリールオキシ基、炭素数1〜4のアシルオキシ基が挙げられ、アルコキシ基が好ましい。加水分解しうる有機基としては、具体的には例えば、メトキシ、エトキシ、ブトキシ、アシルオキシ等を挙げることができる。このなかでも、シランカップリング剤の反応性の点から、メトキシ又はエトキシがさらに好ましい。
【0042】
シランカップリング剤としては、好ましくは、加水分解速度の速いシランカップリング剤であり、より好ましくは、Rb11がY13であり、かつY11、Y12及びY13が互いに同じであるシランカップリング剤、又は、Y11、Y12及びY13の少なくとも1つがメトキシ基であるシランカップリング剤である。
【0043】
シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン等のビニルシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシランを挙げることができる。
上記シランカップリング剤のなかでも、末端にビニル基とアルコキシ基を有するシランカップリング剤がさらに好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましい。
【0044】
シランカップリング剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、そのままで用いても、溶媒等で希釈して用いてもよい。
【0045】
<シラノール縮合触媒>
シラノール縮合触媒は、含ハロゲン樹脂にグラフトしたシランカップリング剤を水分の存在下で縮合反応させる働きがある。このシラノール縮合触媒の働きに基づき、シランカップリング剤を介して、含ハロゲン樹脂同士が架橋される。その結果、優れた耐熱性を有する耐熱性架橋樹脂成形体が得られる。
【0046】
本発明に用いられるシラノール縮合触媒としては、有機スズ化合物、金属石けん、白金化合物等が挙げられる。一般的なシラノール縮合触媒としては、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物等が用いられる。これらのなかでも、特に好ましくは、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物である。
【0047】
<キャリア樹脂>
シラノール縮合触媒は、所望により樹脂に混合されて、用いられる。このような樹脂(キャリア樹脂ともいう)としては、特に限定されないが、含ハロゲン樹脂で説明した各樹脂成分又はゴム成分を用いることができる。キャリア樹脂は、シランマスターバッチとの相溶性の兼ね合いで、シランマスターバッチに使用されている樹脂成分の1種類又は2種類以上の樹脂成分を含有していることが好ましい。
【0048】
<添加剤>
耐熱性架橋樹脂成形体等は、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプにおいて、一般的に使用されている各種の添加剤を本発明の効果を損なわない範囲で含有してもよい。このような添加剤として、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、又は、充填剤(難燃(助)剤を含む。)等が挙げられる。
【0049】
架橋助剤とは、有機過酸化物の存在下において、含ハロゲン樹脂との間に部分架橋構造を形成するものをいう。例えば、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート等の(メタ)アクリレート系化合物、トリアリルシアヌレート等のアリル系化合物、マレイミド系化合物、ジビニル系化合物等の多官能性化合物が挙げられる。
【0050】
酸化防止剤としては、特に限定されないが、例えば、アミン酸化防止剤、フェノール酸化防止剤又は硫黄酸化防止剤等が挙げられる。アミン酸化防止剤としては、例えば、4,4’−ジオクチルジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン、2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物等が挙げられる。フェノール酸化防止剤としては、例えば、ペンタエリスリチル−テトラキス(3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート)、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。硫黄酸化防止剤としては、例えば、ビス(2−メチル−4−(3−n−アルキルチオプロピオニルオキシ)−5−tert−ブチルフェニル)スルフィド、2−メルカプトベンズイミダゾール及びその亜鉛塩、ペンタエリスリトール−テトラキス(3−ラウリル−チオプロピオネート)等が挙げられる。酸化防止剤は、含ハロゲン樹脂100質量部に対して、好ましくは0.1〜15.0質量部、さらに好ましくは0.1〜10質量部で加えることができる。
【0051】
金属不活性剤としては、N,N’−ビス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル)ヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、2,2’−オキサミドビス(エチル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)等が挙げられる。
【0052】
難燃(助)剤、充填剤としては、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化マグネシウム、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、炭酸カルシウム、炭酸マグネシウム、ほう酸亜鉛、ホワイトカーボン等が挙げられる。これらの充填剤はフィラーとしてシランカップリング剤を混合させる際に使用してもよいし、キャリア樹脂に加えてもよい。
【0053】
滑剤としては、炭化水素系、シロキサン系、脂肪酸系、脂肪酸アミド系、エステル系、アルコール系、金属石けん系等が挙げられる。これらの滑剤はキャリア樹脂に加えた方がよい。
【0054】
次に、本発明の製造方法を具体的に説明する。
本発明の耐熱性架橋樹脂成形体の製造方法は、下記工程(a)〜工程(c)を行う。
また、本発明のシランマスターバッチは下記工程(a)により製造され、本発明のマスターバッチ混合物は下記工程(a)及び工程(b)により製造される。
【0055】
工程(a):含ハロゲン樹脂を含有する樹脂100質量部に対して、有機過酸化物0.003〜0.3質量部と、無機フィラー0.5〜400質量部と、シランカップリング剤2質量部を越え15.0質量部以下とを、前記有機過酸化物の分解温度以上の温度で溶融混練し、シランマスターバッチを調製する工程
工程(b):工程(a)で得られたシランマスターバッチとシラノール縮合触媒とを混合した後に成形する工程
工程(c):工程(b)で得られた成形体を水分と接触させて架橋させる工程
ここで、混合するとは、均一な混合物を得ることをいう。
【0056】
工程(a)において、有機過酸化物の配合量は、樹脂100質量部に対して、0.003〜0.3質量部であり、0.005〜0.1質量部が好ましい。有機過酸化物の配合量が0.003質量部未満では、グラフト反応が進行せず、未反応のシランカップリング剤同士が縮合又は未反応のシランカップリング剤が揮発して、耐熱性を十分に得ることができないことがある。一方、0.3質量部超であると、副反応によって樹脂成分の多くが直接的に架橋してブツを形成し、外観不良が生じることがある。また、押し出し性に優れたシランマスターバッチ等が得られないことがある。すなわち、有機過酸化物の配合量をこの範囲内にすることにより、適切な範囲でグラフト反応を行うことができ、ゲル状のブツ(凝集塊)も発生することなく押し出し性に優れたシランマスターバッチ等を得ることができる。
【0057】
無機フィラーの配合量は、樹脂100質量部に対して、0.5〜400質量部であり、30〜280質量部が好ましい。無機フィラーの配合量が0.5質量部未満では、シランカップリング剤のグラフト反応が不均一となり、耐熱性架橋樹脂成形体に優れた耐熱性を付与できないことがある。また、シランカップリング剤のグラフト反応が不均一となり、耐熱性架橋樹脂成形体の外観が低下することがある。一方、400質量部を超えると、成形時や混練時の負荷が非常に大きくなり、2次成形が難しくなることがある。また、耐熱性や外観が低下することがある。
【0058】
シランカップリング剤の配合量は、樹脂100質量部に対して、2.0質量部を超え15.0質量部以下である。シランカップリング剤の配合量が2.0質量部以下では、架橋反応が十分に進行せず、優れた耐熱性を発揮しないことがある。また、シラノール縮合触媒とともに成形する際に、外観不良やブツを生じ、また押出機を止めた際にブツが多く生じることがある。一方、15.0質量部を超えると、それ以上の無機フィラー表面にシランカップリング剤が吸着しきれず、シランカップリング剤は混練中に揮発してしまい、経済的でない。また、吸着しないシランカップリング剤が縮合してしまい、成形体に架橋ゲルブツや焼けが生じて外観が悪化するおそれがある。
上記観点により、このシランカップリング剤の配合量は、樹脂100質量部に対して、3〜12.0質量部が好ましく、4〜12.0質量部がより好ましい。
【0059】
シラノール縮合触媒の配合量は、特に限定されず、好ましくは、樹脂100質量部に対して、0.0001〜0.5質量部、より好ましくは0.001〜0.2質量部である。シラノール縮合触媒の配合量が上述の範囲内にあると、シランカップリング剤の縮合反応による架橋反応がほぼ均一に進みやすく、耐熱性架橋樹脂成形体の耐熱性、外観及び物性が優れ、生産性も向上する。すなわち、シラノール縮合触媒の配合量が少なすぎると、シランカップリング剤の縮合反応による架橋が進みにくくなり、耐熱性架橋樹脂成形体の耐熱性がなかなか向上せずに生産性が低下し、又は架橋が不均一になることがある。一方、多すぎると、シラノール縮合反応が非常に速く進行し、部分的なゲル化が生じて、外観が低下することがある。また、耐熱性架橋樹脂成形体(樹脂)の物性が低下することがある。
【0060】
本発明において、「樹脂、有機過酸化物、無機フィラー及びシランカップリング剤を溶融混合する」とは、溶融混合する際の混合順を特定するものではなく、どのような順で混合してもよいことを意味する。工程(a)における混合順は特に限定されない。本発明においては、無機フィラーは、シランカップリング剤と混合して用いることが好ましい。すなわち、本発明においては、上記各成分を、下記工程(a−1)及び(a−2)により、(溶融)混合することが好ましい。
工程(a−1):少なくとも無機フィラー及びシランカップリング剤を混合して混合物を調製する工程
工程(a−2):工程(a−1)で得られた混合物と、樹脂の全部又は一部とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度において、溶融混合する工程
【0061】
上記工程(a−2)においては、「樹脂の全量(100質量部)が配合される態様」と、「樹脂の一部が配合される態様」とを含む。工程(a−2)において、樹脂の一部が配合される場合、樹脂の残部は、好ましくは工程(b)で配合される。
本発明において、「樹脂の一部」とは、樹脂のうち工程(a−2)で使用する樹脂であって、樹脂そのものの一部(樹脂と同一組成を有する)、樹脂を構成する樹脂成分の一部、樹脂を構成する一部の樹脂成分(例えば、複数の樹脂成分のうちの特定の樹脂成分全量)をいう。
また、「樹脂の残部」とは、樹脂のうち工程(a−2)で使用する一部を除いた残りの樹脂であって、具体的には、樹脂そのものの残部、樹脂を構成する樹脂成分の残部、樹脂を構成する残りの樹脂成分をいう。
工程(a−2)で樹脂の一部を配合する場合、工程(a)及び工程(b)における樹脂の配合量100質量部は、工程(a−2)及び工程(b)で混合される含ハロゲン樹脂の合計量である。
ここで、工程(b)で樹脂の残部が配合される場合、樹脂は、工程(a−2)において、好ましくは80〜99質量%、より好ましくは85〜95質量%が配合され、工程(b)において、好ましくは1〜20質量%、より好ましくは5〜15質量%が配合される。
【0062】
本発明においては、シランカップリング剤は、上記のように、無機フィラーと前混合等されることが好ましい(工程(a−1))。
無機フィラーとシランカップリング剤を混合する方法としては、特に限定されないが、湿式処理、乾式処理等の混合方法が挙げられる。具体的には、アルコールや水等の溶媒に無機フィラーを分散させた状態でシランカップリング剤を加える湿式処理、無処理の無機フィラー中に、又は予めステアリン酸やオレイン酸、リン酸エステル若しくは一部をシランカップリング剤で表面処理した無機フィラー中に、シランカップリング剤を、加熱又は非加熱で加え混合する乾式処理、及び、その両方が挙げられる。本発明においては、無機フィラー、好ましくは乾燥させた無機フィラー中にシランカップリング剤を、加熱又は非加熱で加え混合する乾式処理が好ましい。
このようにして前混合されたシランカップリング剤は、無機フィラーの表面を取り囲むように存在し、その一部又は全部が無機フィラーに吸着又は結合する。これにより、後の溶融混合の際にシランカップリング剤の揮発を低減できる。また、無機フィラーに吸着又は結合しないシランカップリング剤が縮合して溶融混練が困難になることも防止できる。さらに、押出成形の際に所望の形状を得ることもできる。
【0063】
このような混合方法として、好ましくは、有機過酸化物の分解温度未満の温度、好ましくは室温(25℃)で無機フィラーとシランカップリング剤を、数分〜数時間程度、乾式又は湿式で混合(分散)した後に、この混合物と樹脂とを、有機過酸化物の存在下で、溶融混合させる方法が挙げられる。この混合は、好ましくは、バンバリーミキサーやニーダー等のミキサー型混練機で行われる。このようにすると、樹脂成分同士の過剰な架橋反応を防止することができ、外観が優れたものとなる。
この混合方法においては、上記分解温度未満の温度が保持されている限り、樹脂が存在していてもよい。この場合、樹脂とともに金属酸化物及びシランカップリング剤を上記温度で混合(工程(a−1))した後に溶融混合することが好ましい。
【0064】
有機過酸化物を混合する方法としては、特に限定されず、上記混合物と樹脂とを溶融混合する際に、存在していればよい。有機過酸化物は、例えば、無機フィラー等と同時に混合されても、また無機フィラーとシランカップリング剤との混合段階のいずれにおいて混合されてもよく、無機フィラーとシランカップリング剤との混合物に混合されてもよい。例えば、有機過酸化物は、シランカップリング剤と混合した後に無機フィラーと混合されてもよいし、シランカップリング剤と分けて別々に無機フィラーに混合されてもよい。生産条件によっては、シランカップリング剤のみを無機フィラーに混合し、次いで有機過酸化物を混合してもよい。
また、有機過酸化物は、他の成分と混合させたものでもよいし、単体でもよい。
【0065】
無機フィラーとシランカップリング剤との混合方法において、湿式混合では、シランカップリング剤と無機フィラーとの結合力が強くなるため、シランカップリング剤の揮発を効果的に抑えることができるが、シラノール縮合反応が進みにくくなることがある。一方、乾式混合では、シランカップリング剤が揮発しやすいが、無機フィラーとシランカップリング剤の結合力が比較的弱くなるため、効率的にシラノール縮合反応が進みやすくなる。
【0066】
本発明の製造方法においては、次いで、得られた混合物と樹脂の全部又は一部と、工程(a−1)で混合されていない残余の成分とを、有機過酸化物の存在下で有機過酸化物の分解温度以上の温度に加熱しながら、溶融混練する(工程(a−2))。
【0067】
工程(a−2)において、上記成分を溶融混合(溶融混練、混練りともいう)する温度は、有機過酸化物の分解温度以上、好ましくは有機過酸化物の分解温度+(25〜110)℃の温度である。この分解温度は樹脂成分が溶融してから設定することが好ましい。上記混合温度であれば、上記成分が溶融し、有機過酸化物が分解、作用して必要なシラングラフト反応が工程(a−2)において十分に進行する。その他の条件、例えば混合時間は適宜設定することができる。
混合方法としては、ゴム、プラスチック等で通常用いられる方法であれば、特に限定されない。混合装置は、例えば無機フィラーの配合量に応じて適宜に選択される。混練装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダー等が用いられる。樹脂成分の分散性、及び架橋反応の安定性の面で、バンバリーミキサー又は各種のニーダー等の密閉型ミキサーが好ましい。
また、通常、このような無機フィラーが樹脂100質量部に対して100質量部を超える量で混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサー等の密閉型ミキサーで混練りするのがよい。
含ハロゲン樹脂を含む樹脂の混合方法は、特に限定されない。例えば、予め混合調製された樹脂を用いてもよく、各成分、例えば含ハロゲン樹脂等の樹脂成分、オイル成分、可塑剤それぞれを別々に混合してもよい。
【0068】
本発明において、上記各成分を一度に溶融混合する場合、溶融混合の条件は、特に限定されないが、工程(a−2)の条件を採用できる。
この場合、溶融混合時にシランカップリング剤の一部又は全部が無機フィラーに吸着又は結合する。
【0069】
工程(a)、特に工程(a−2)においては、シラノール縮合触媒を実質的に混合せずに上述の各成分を混練することが好ましい。これにより、シランカップリング剤の縮合反応を抑えることができ、溶融混合しやすく、また押出成形の際に所望の形状を得ることができる。ここで、「実質的に混合せず」とは、不可避的に存在するシラノール縮合触媒をも排除するものではなく、シランカップリング剤のシラノール縮合による上述の問題が生じない程度に存在していてもよいことを意味する。例えば、工程(a−2)において、シラノール縮合触媒は、樹脂100質量部に対して0.01質量部以下であれば、存在していてもよい。
【0070】
工程(a)においては、上記成分の他に用いることができる他の樹脂や上記添加物の配合量は、本発明の目的を損なわない範囲で、適宜に設定される。
工程(a)において、上記添加剤、特に酸化防止剤や金属不活性剤は、いずれの工程で又は成分に混合されてもよいが、無機フィラーに混合されたシランカップリング剤の樹脂へのグラフト反応を阻害しない点で、キャリア樹脂に混合されるのがよい。
工程(a)、特に工程(a−2)において、架橋助剤は実質的に混合されないことが好ましい。架橋助剤が実質的に混合されないと、溶融混合中に有機過酸化物により樹脂成分同士の架橋反応が生じにくく、外観が優れたものになる。また、シランカップリング剤の樹脂へのグラフト反応が生じにくく、耐熱性が優れたものになる。ここで、実質的に混合されないとは、不可避的に存在する架橋助剤をも排除するものではなく、上述の問題が生じない程度に存在していてもよいことを意味する。
【0071】
このようにして、工程(a)を行い、マスターバッチ混合物の製造に用いられるシランマスターバッチ(シランMBともいう)が調製される。このシランMBは、後述の工程(b)により成形可能な程度にシランカップリング剤が樹脂にグラフトしたシラン架橋性樹脂を含有している。
【0072】
本発明の製造方法において、次いで、工程(a)で得られたシランMBとシラノール縮合触媒とを混合した後に成形する工程(b)を行う。
工程(b)においては、上記工程(a−2)で樹脂の一部を溶融混合した場合、樹脂の残部とシラノール縮合触媒とを溶融混合し、触媒マスターバッチ(触媒MBともいう)を調製して、この触媒MBを用いる。なお、樹脂の残部に加えて他の樹脂を用いることもできる。
【0073】
キャリア樹脂としての上記樹脂の残部とシラノール縮合触媒との混合割合は、特に限定されないが、好ましくは、工程(a)における上記配合量を満たすように、設定される。
混合は、均一に混合できる方法であればよく、樹脂の溶融下で行う混合(溶融混合)が挙げられる。溶融混合は上記工程(a−2)の溶融混合と同様に行うことができる。例えば、混合温度は、80〜250℃、より好ましくは100〜240℃で行うことができる。その他の条件、例えば混合時間は適宜設定することができる。
このようにして調製される触媒MBは、シラノール縮合触媒及びキャリア樹脂、所望により添加されるフィラーの混合物である。
【0074】
一方、工程(a−2)で樹脂の全部を溶融混合する場合、シラノール縮合触媒そのもの、又は、他の樹脂とシラノール縮合触媒との混合物を用いる。他の樹脂とシラノール縮合触媒との混合方法は、上記触媒MBと同様である。
他の樹脂の配合量は、工程(a−2)においてグラフト反応を促進させることができるうえ、成形中にブツが生じにくい点で、樹脂100質量部に対して、好ましくは1〜60質量部、より好ましくは2〜50質量部、さらに好ましくは2〜40質量部である。
【0075】
本発明の製造方法においては、シランMBと、シラノール縮合触媒(シラノール縮合触媒そのもの、準備した触媒MB、又は、シラノール縮合触媒と他の樹脂との混合物)とを混合する。
混合方法は、上述のように均一な混合物を得ることができれば、どのような混合方法でもよい。例えば、混合は、工程(a−2)の溶融混合と基本的に同様である。DSC等で融点が測定できない樹脂成分、例えばエラストマーもあるが、少なくとも樹脂が溶融する温度で混練する。溶融温度は、樹脂又はキャリア樹脂の溶融温度に応じて適宜に選択され、例えば、好ましくは80〜250℃、より好ましくは100〜240℃である。その他の条件、例えば混合(混練)時間は適宜設定することができる。
工程(b)においては、シラノール縮合反応を避けるため、シランMBとシラノール縮合触媒が混合された状態で高温状態に長時間保持されないことが好ましい。
【0076】
工程(b)においては、シランMBとシラノール縮合触媒とを混合すればよく、シランMBと触媒MBとを溶融混合するのが好ましい。
【0077】
本発明においては、シランMBとシラノール縮合触媒とを溶融混合する前に、ドライブレンドすることができる。ドライブレンドの方法及び条件は、特に限定されず、例えば、工程(a−1)での乾式混合及びその条件が挙げられる。このドライブレンドにより、シランMBとシラノール縮合触媒とを含有するマスターバッチ混合物が得られる。
【0078】
工程(b)において、無機フィラーを用いてもよい。この場合、無機フィラーの配合量は、特には限定されないが、キャリア樹脂100質量部に対し、350質量部以下が好ましい。無機フィラーの配合量が多すぎるとシラノール縮合触媒が分散しにくく、架橋が進行しにくくなるためである。一方、無機フィラーの配合量が少なすぎると、成形体の架橋度が低下して、十分な耐熱性が得られない場合がある。
【0079】
本発明において、上記工程(a)及び工程(b)の混合は、同時又は連続して行うことができる。
【0080】
工程(b)においては、このようにして得られた混合物を成形する。
この成形工程は、混合物を成形できればよく、本発明の耐熱性製品の形態に応じて、適宜に成形方法及び成形条件が選択される。成形方法は、押出機を用いた押出成形、射出成形機を用いた押出成形、その他の成形機を用いた成形が挙げられる。押出成形は、本発明の耐熱性製品が電線又は光ファイバーケーブルである場合に、好ましい。
【0081】
工程(b)において、成形工程は、上記混合工程と同時に又は連続して、行うことができる。すなわち、混合工程における溶融混合の一実施態様として、溶融成形の際、例えば押出成形の際に、又は、その直前に、成形原料を溶融混合する態様が挙げられる。例えば、ドライブレンド等のペレット同士を常温又は高温で混ぜ合わせて成形機に導入(溶融混合)してもよいし、混ぜ合わせた後に溶融混合し、再度ペレット化をして成形機に導入してもよい。より具体的には、シランMBとシラノール縮合触媒との混合物(成形材料)を被覆装置内で溶融混練し、次いで、導体等の外周面に押出被覆して、所望の形状に成形する一連の工程を採用できる。
このようにして、シランマスターバッチとシラノール縮合触媒とをドライブレンドしてマスターバッチ混合物を調製し、マスターバッチ混合物を成型機に導入して成形した、耐熱性架橋性樹脂組成物の成形体が得られる。
【0082】
ここで、マスターバッチ混合物の溶融混合物は、架橋方法の異なるシラン架橋性樹脂を含有する。このシラン架橋性樹脂において、シランカップリング剤の反応部位は、無機フィラーと結合又は吸着していてもよいが、後述するようにシラノール縮合していない。したがって、シラン架橋性樹脂は、無機フィラーと結合又は吸着したシランカップリング剤が樹脂(含ハロゲン樹脂)にグラフトした架橋性樹脂と、無機フィラーと結合又は吸着していないシランカップリング剤が樹脂にグラフトした架橋性樹脂とを少なくとも含む。また、シラン架橋性樹脂は、無機フィラーが結合又は吸着したシランカップリング剤と、無機フィラーが結合又は吸着していないシランカップリング剤とを有していてもよい。さらに、シランカップリング剤と未反応の樹脂成分を含んでいてもよい。
上記のように、シラン架橋性樹脂は、シランカップリング剤がシラノール縮合していない未架橋体である。実際的には、工程(b)で溶融混合されると、一部架橋(部分架橋)は避けられないが、得られる耐熱性架橋性樹脂組成物について、少なくとも成形時の成形性が保持されたものとする。
工程(b)により得られる成形体は、上記混合物と同様に、一部架橋は避けられないが、工程(b)で成形可能な成形性を保持する部分架橋状態にある。したがって、この発明の耐熱性架橋樹脂成形体は、工程(c)を実施することによって、架橋又は最終架橋された成形体とされる。
【0083】
本発明の耐熱性架橋樹脂成形体の製造方法においては、工程(b)で得られた成形体を水と接触させる工程(c)を行う。これにより、シランカップリング剤の反応部位が加水分解されてシラノールとなり、成形体中に存在するシラノール縮合触媒によりシラノールの水酸基同士が縮合して架橋反応が起こる。こうして、シランカップリング剤がシラノール縮合して架橋した耐熱性架橋樹脂成形体を得ることができる。
この工程(c)の処理自体は、通常の方法によって行うことができる。シランカップリング剤同士の縮合は、常温で保管するだけで進行する。したがって、工程(c)において、成形体を水に積極的に接触させる必要はない。この架橋反応を促進させるために、成形体を水分と接触させることもできる。例えば、温水への浸水、湿熱槽への投入、高温の水蒸気への暴露等の積極的に水に接触させる方法を採用できる。また、その際に水分を内部に浸透させるために圧力をかけてもよい。
【0084】
このようにして、本発明の耐熱性架橋樹脂成形体の製造方法が実施され、耐熱性架橋樹脂成形体が製造される。この耐熱性架橋樹脂成形体は、(シラン架橋性)樹脂がシラノール結合(シロキサン結合)を介して縮合した架橋樹脂を含んでいる。このシラン架橋樹脂成形体の一形態は、シラン架橋樹脂と無機フィラーとを含有する。ここで、無機フィラーはシラン架橋樹脂のシランカップリング剤に結合していてもよい。したがって、含ハロゲン樹脂を含む樹脂が、シラノール結合を介して無機フィラーと架橋してなる態様を含む。具体的には、このシラン架橋樹脂は、複数の架橋樹脂がシランカップリング剤により無機フィラーに結合又は吸着して、無機フィラー及びシランカップリング剤を介して結合(架橋)した架橋樹脂と、上記架橋性樹脂にグラフトしたシランカップリング剤の反応部位が加水分解して互いにシラノール縮合反応することにより、シランカップリング剤を介して架橋した架橋樹脂とを少なくとも含む。また、シラン架橋樹脂は、無機フィラー及びシランカップリング剤を介した結合(架橋)と、シランカップリング剤を介した架橋とが混在していてもよい。さらに、シランカップリング剤と未反応の樹脂成分及び/又は架橋していないシラン架橋性樹脂を含んでいてもよい。
【0085】
上記本発明の製造方法は、以下のように、表現できる。
下記工程(A)、工程(B)及び工程(C)を有する耐熱性架橋樹脂成形体の製造方法であって、工程(A)が下記工程(A1)〜工程(A4)を有する耐熱性架橋樹脂成形体の製造方法。
工程(A):含ハロゲン樹脂を含有する樹脂100質量部に対して、有機過酸化物0.003〜0.3質量部と、無機フィラー0.5〜400質量部と、シランカップリング剤2質量部を越え15.0質量部以下と、シラノール縮合触媒とを混合して混合物を得る工程
工程(B):工程(A)で得られた混合物を成形して成形体を得る工程
工程(C):工程(B)で得られた成形体を水と接触させて耐熱性架橋樹脂成形体を得る工程
工程(A1):少なくとも無機フィラー及びシランカップリング剤を混合する工程
工程(A2):工程(A1)で得られた混合物と樹脂の全部又は一部を有機過酸化物の存在下で有機過酸化物の分解温度以上の温度で溶融混合する工程
工程(A3):シラノール縮合触媒と、キャリア樹脂として、含ハロゲン樹脂を含有する樹脂と異なる樹脂、又は、含ハロゲン樹脂を含有する樹脂の残部とを混合する工程
工程(A4):工程(A2)で得られた溶融混合物と、工程(A3)で得られた混合物とを混合する工程
上記方法において、工程(A)は、上記工程(a)及び工程(b)の混合までに対応し、工程(B)は上記工程(b)の成形工程に対応し、工程(C)は上記工程(c)に対応する。また、工程(A1)は上記工程(a−1)に、工程(A2)は上記工程(a−2)に、工程(A3)及び工程(A4)は上記工程(b)の混合までに、それぞれ、対応する。
【0086】
本発明の製造方法における反応機構の詳細についてはまだ定かではないが、以下のように考えられる。
一般に、樹脂(含ハロゲン樹脂又は含ハロゲンゴム)に対して有機過酸化物を加えると急激にラジカルが発生し、樹脂同士の架橋反応や分解反応が生じやすくなる。これにより、得られる耐熱性架橋樹脂成形体には、ブツが発生し、物性が低下する。
しかし、本発明においては、工程(a)において、シランカップリング剤を多く配合し、さらにそのシランカップリング剤を無機フィラーとシラノール結合や水素結合、分子間結合によって予め結合させる。特に工程(a)の好ましい形態においては、この結合を生じる処理と、溶融混合処理とは、別に行う。これらにより、シランカップリング剤のグラフト化反応部位と含ハロゲン系樹脂とがグラフト反応する機会が増やされているものと考えられる。この保持されたシランカップリング剤と樹脂に生じるラジカルの結合反応は、上記樹脂同士の架橋反応や分解反応よりも、優勢になると考えられる。したがって、シラン架橋が可能となり、しかも本反応中(工程(a))において含ハロゲン樹脂の劣化や架橋が生じないため、ブツの発生や物性の低下が生じにくいものと考えられる。
工程(a)において、これらが混練り(溶融混合)される際に、無機フィラーと弱い結合(水素結合による相互作用、イオン、部分電荷若しくは双極子間での相互作用、吸着による作用等)で結合又は吸着したシランカップリング剤は、無機フィラーから脱離し、結果的に樹脂にグラフト反応する。このようにしてグラフト反応したシランカップリング剤は、その後、シラノール縮合可能な反応部位が縮合反応(架橋反応)して、シラノール縮合を介して架橋した樹脂を形成する。この架橋反応により得られた耐熱性架橋樹脂成形体の耐熱性は高くなり、高温でも溶融しない耐熱性架橋樹脂成形体を得ることが可能となる。
一方、無機フィラーと強い結合(無機フィラー表面の水酸基等との化学結合等)で結合したシランカップリング剤は、このシラノール縮合触媒による水存在下での縮合反応が生じにくく、無機フィラーとの結合が保持される。そのため、シランカップリング剤を介した樹脂と無機フィラーの結合(架橋)が生じる。これにより樹脂と無機フィラーの密着性が強固になり、機械強さ、耐摩耗性が良好で、傷つきにくい成形体が得られる。特に、1つの無機フィラー粒子表面に複数のシランカップリング剤を複数結合でき、高い機械強さを得ることができる。
これらのシラングラフト樹脂を、シラノール縮合触媒とともに成形し、次いで水分と接触させることで、高い耐熱性を有する耐熱性架橋樹脂成形体を得ることが可能となると推定される。
【0087】
本発明においては、樹脂100質量部に対して、有機過酸化物を0.003質量部以上、好ましくは0.005質量部以上、また0.3質量部以下、好ましくは0.1質量部以下の割合で混合し、さらに、シランカップリング剤を、2質量部を超え15質量部以下の割合で無機フィラーの存在下に混合することにより、耐熱性の高い耐熱性架橋樹脂成形体を得ることができる。
【0088】
本発明の製造方法は、耐熱性が要求される製品(半製品、部品、部材も含む。)、さらには、強度が求められる製品、難燃性が要求される製品、ゴム材料等の製品の構成部品又はその部材の製造に適用することができる。したがって、本発明の耐熱性製品は、このような製品とされる。このとき、耐熱性製品は、耐熱性架橋樹脂成形体を含む製品でもよく、耐熱性架橋樹脂成形体のみからなる製品でもよい。
本発明の耐熱性製品として、例えば、耐熱性難燃絶縁電線等の電線、耐熱難燃ケーブル又は光ファイバーケーブルの被覆材料、ゴム代替電線・ケーブルの材料、その他、耐熱難燃電線部品、難燃耐熱シート、難燃耐熱フィルム等が挙げられる。また、電源プラグ、コネクター、スリーブ、ボックス、テープ基材、チューブ、シート、パッキン、クッション材、防震材、電気・電子機器の内部配線及び外部配線に使用される配線材、特に電線や光ファイバーケーブルが挙げられる。
【0089】
本発明の製造方法は、上記製品のなかでも、特に電線及び光ファイバーケーブルの製造に好適に適用され、これらの被覆材料(絶縁体、シース)を形成することができる。
本発明の耐熱性製品が電線又は光ファイバーケーブル等の押出成形品である場合、好ましくは、成形材料を押出機(押出被覆装置)内で溶融混練して耐熱性架橋性樹脂組成物を調製しながら、この耐熱性架橋性樹脂組成物を導体等の外周に押し出して、導体等を被覆する等により、製造できる。このような耐熱性製品は、無機フィラーを大量に加えても耐熱性架橋性樹脂組成物を電子線架橋機等の特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添え若しくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚り線等を用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いることもできる。導体の周りに形成される絶縁層(本発明の耐熱性架橋樹脂成型体からなる被覆層)の肉厚は特に限定しないが、通常、0.15〜5mm程度である。
【実施例】
【0090】
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されない。
表1及び表2において、各例の配合量に関する数値は特に断らない限り質量部を表す。
【0091】
実施例及び比較例は、下記成分を用いて、それぞれの諸元を表1及び表2に示す条件に設定して実施し、表1及び表2に後述する評価結果を併せて示した。
【0092】
表1及び表2中に示す各化合物の詳細を以下に示す。
塩素化ポリエチレンの塩素含有量及びフッ素ゴムのフッ素含有量は、上記測定方法による。
<樹脂>
(含ハロゲン樹脂)
「エラスレン401A」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量40質量%)
「エラスレン402NA−X5」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量40質量%)
「エラスレン351A」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量35質量%)
「エラスレン353」(商品名、昭和電工社製、塩素化ポリエチレン、塩素含有量35質量%)
「ZEST 1000」(商品名、トクヤマ社製、ポリ塩化ビニル(PVC)、塩素含有量57質量%)
「スカイプレンE−33」(商品名、東ソー社製、クロロプレンゴム)、塩素含有量40質量%
「アフラス150P」(商品名、旭ガラス社製、フッ素ゴム(テトラフルオロエチレン−プロピレン共重合体)、フッ素含有量57質量%
(その他の成分)
「トリメックスN−08」(商品名、花王社製、トリメリット酸系可塑剤)
「アデカサイザー0130P」(商品名、ADEKA社製、エポキシ化大豆油)
【0093】
<無機フィラー>
「DHT4A」(商品名、協和化学工業社製、ハイドロタルサイト)
「キスマ5L」(商品名、協和化学工業社製、シランカップリング剤前処理水酸化マグネシウム)
「クリスタライト5X」(商品名、龍森社製、結晶性シリカ)
「ソフトン2200」(商品名、備北粉化工業社製、炭酸カルシウム)
「アエロジル200」(商品名、日本アエロジル社製、親水性フュームドシリカ、非結晶性シリカ)
【0094】
<シランカップリング剤>
「KBM−1003」(商品名、信越化学工業社製、ビニルトリメトキシシラン)
「KBE−1003」(商品名、信越化学工業社製、ビニルトリエトキシシラン)
<有機過酸化物>
「パーヘキサ25B」(商品名、日本油脂社製、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、分解温度149℃)
<シラノール縮合触媒>
「アデカスタブOT−1」(商品名、ADEKA社製、ジオクチルスズジラウレート)
【0095】
<酸化防止剤>
「イルガノックス1010」(商品名、BASF社製、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート])
【0096】
(実施例1〜12及び比較例1〜6)
実施例1〜12及び比較例1〜6において、樹脂の10質量%(塩素化ポリエチレン)を触媒MBのキャリア樹脂として用いた。
【0097】
まず、無機フィラー、シランカップリング剤を、表1及び表2に示す質量比で、東洋精機製10Lヘンシェルミキサーに投入し、室温(25℃)で1時間混合して、粉体混合物を得た。次に、このようにして得られた粉体混合物と、表1及び表2の含ハロゲン樹脂欄に示す各成分及び有機過酸化物とを、表1及び表2に示す質量比で、日本ロール製2Lバンバリーミキサー内に投入し、有機過酸化物の分解温度以上の温度、具体的には190℃において10分混練り後、材料排出温度190℃で排出し、シランMBを得た。得られたシランMBは、樹脂にシランカップリング剤がグラフト反応したシラン架橋性樹脂を含有している。
【0098】
一方、キャリア樹脂とシラノール縮合触媒と酸化防止剤とを、表1及び表2に示す質量比で、180〜190℃でバンバリーミキサーにて溶融混合し、材料排出温度180〜190℃で排出して、触媒MBを得た。この触媒MBは、キャリア樹脂及びシラノール縮合触媒の混合物である。
次いで、シランMBと触媒MBを密閉型のリボンブレンダーに投入し、室温(25℃)で5分間ドライブレンドしてドライブレンド物(マスターバッチ混合物)を得た。このとき、シランMBと触媒MBとの混合比は、表1及び表2に示す質量比である。具体的には、各例において、シランMB中の含ハロゲン樹脂が90質量部で、触媒MB中のキャリア樹脂が10質量部となる割合とした。
【0099】
次いで、得られたドライブレンド物を、L/D(スクリュー有効長Lと直径Dとの比)=24、スクリュー直径30mmのスクリューを備えた押出機(圧縮部スクリュー温度170℃、ヘッド温度200℃)に導入した。この押出機内でドライブレンド物を溶融混合しながら、1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの被覆導体を得た。この被覆導体を温度40℃、相対湿度95%の雰囲気に1週間放置した。
このようにして、上記導体の外周面に、耐熱性架橋樹脂成形体からなる被覆層を有する電線を製造した。被覆層としての耐熱性架橋樹脂成形体は上述のシラン架橋樹脂を有している。
比較例1は、ブツが多量に発生して、押出成形できなかった。
【0100】
上記ドライブレンド物を押出機内で押出成形前に溶融混合することにより、耐熱性架橋性樹脂組成物が調製される。この耐熱性架橋性樹脂組成物は、シランMBと触媒MBとの溶融混合物であって、上述のシラン架橋性樹脂を含有している。
【0101】
製造した各電線について、下記試験をし、その結果を表1及び表2に示した。
【0102】
<加熱変形試験>
製造した各電線において、UL1581に基づいて、測定温度150℃、荷重5Nで、加熱変形試験を行った。本試験において、加熱変形は、変形率が50%以下である場合を合格とした。
【0103】
<ホットセット試験>
製造した各電線から導体を抜き取って作製した管状片を用いて、ホットセット試験を行った。ホットセット試験は、この管状片に、長さ50mmの評線を付けた後に、170℃の恒温槽の中に117gのおもりを取り付け15分間放置し、放置後の長さを測定して伸び率を求めた。なお、伸び率が100%以下を本試験の合格として「A」で表した。伸び率が100%を超えた場合を「C」で表した。
【0104】
<押出外観試験>
押出外観試験は、被覆導体を製造する際に、被覆導体の外観を観察して評価した。
被覆導体の外観にブツがなく電線形状に成形できたものを「A」、ブツの発生を確認できたが外観に問題がない程度であり、電線形状に成形できたものを「B」、著しく外観不良が発生して電線形状に成形できなかったものを「C」とした。押出外観試験は、参考試験であるが、評価「B」以上が本試験の合格レベルである。
比較例5の電線においては、発泡による外観不良が確認された。
【0105】
【表1】
【0106】
【表2】
【0107】
表1及び表2に示す結果から明らかなように、実施例1〜12は、いずれも、加熱変形試験及びホットセット試験に合格した。このように、本発明によれば、耐熱性に優れ、高温においても溶融しない架橋樹脂成形体を被覆として有する電線を製造できた。さらに、実施例1〜12の電線は、外観試験にも合格し、優れた外観を有する架橋樹脂成形体を被覆として有する電線を製造できた。
【0108】
これに対して、有機過酸化物の含有量が多すぎる比較例1は押出成形すらできなかった。有機過酸化物の含有量が少なすぎる比較例2は、加熱変形試験及びホットセット試験のいずれも不合格であった。無機フィラーの含有量は少なすぎても(比較例3)、多すぎても(比較例4)、加熱変形試験及びホットセット試験に合格しなかった。シランカップリング剤の含有量が多すぎる比較例5はホットセット試験に合格せず、シランカップリング剤の含有量が少なすぎる比較例6は加熱変形試験にも合格しなかった。