特許第6739207号(P6739207)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクノロジーズの特許一覧

<>
  • 特許6739207-荷電粒子線装置 図000002
  • 特許6739207-荷電粒子線装置 図000003
  • 特許6739207-荷電粒子線装置 図000004
  • 特許6739207-荷電粒子線装置 図000005
  • 特許6739207-荷電粒子線装置 図000006
  • 特許6739207-荷電粒子線装置 図000007
  • 特許6739207-荷電粒子線装置 図000008
  • 特許6739207-荷電粒子線装置 図000009
  • 特許6739207-荷電粒子線装置 図000010
  • 特許6739207-荷電粒子線装置 図000011
  • 特許6739207-荷電粒子線装置 図000012
  • 特許6739207-荷電粒子線装置 図000013
  • 特許6739207-荷電粒子線装置 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6739207
(24)【登録日】2020年7月27日
(45)【発行日】2020年8月12日
(54)【発明の名称】荷電粒子線装置
(51)【国際特許分類】
   H01J 37/244 20060101AFI20200730BHJP
【FI】
   H01J37/244
【請求項の数】12
【全頁数】19
(21)【出願番号】特願2016-69943(P2016-69943)
(22)【出願日】2016年3月31日
(65)【公開番号】特開2017-183126(P2017-183126A)
(43)【公開日】2017年10月5日
【審査請求日】2018年10月17日
【前置審査】
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110001807
【氏名又は名称】特許業務法人磯野国際特許商標事務所
(72)【発明者】
【氏名】關口 好文
(72)【発明者】
【氏名】今村 伸
(72)【発明者】
【氏名】川野 源
(72)【発明者】
【氏名】ホック シャヘドゥル
【審査官】 鳥居 祐樹
(56)【参考文献】
【文献】 実開昭54−070359(JP,U)
【文献】 米国特許出願公開第2017/0261713(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/244
G01T 1/20
(57)【特許請求の範囲】
【請求項1】
シンチレータと、
前記シンチレータからの光を入射する入射面と、当該入射面から入射した光を出射する出射面と、前記入射面から入射した光を前記出射面に案内する表面を備えたライトガイドと、を備えた荷電粒子線装置であって、
前記荷電粒子線装置は、前記シンチレータに向かって曲がることのできる電子光学系を、さらに備え、前記シンチレータには、試料から放出された2次粒子又は3次粒子が入射し、
前記ライトガイドは、
屈曲部を有し、
前記屈曲部の前記表面は、前記入射面の端部である入射面端を始点とし、前記ライトガイドの屈曲方向外側の曲面である外側曲面を有し、当該外側曲面と前記入射面との接点において、前記入射面の法線より、当該外側曲面は前記入射面側に傾いた接線を有し、
前記入射面の法線と平行方向に前記外側曲面に入射する光線と、前記光線の前記外側曲面への入射点における前記外側曲面の法線と、のなす角θに対して、
前記外側曲面と前記入射面の接点における接線が、前記入射面の法線と平行となる仮想外側曲面を仮定した場合に、前記光線と、前記光線の前記仮想外側曲面への入射点における前記仮想外側曲面の法線と、のなす角θを定義にしたときに、
前記なす角θよりも前記なす角θが大きくなるように前記外側曲面が形成されていることを特徴とする荷電粒子線装置。
【請求項2】
請求項1において、
前記ライトガイドには、前記入射面と当該入射面とは異なる方向に面方向を有する側壁面からなるシンチレータ収容空間と、前記側壁面から入射した光を反射する反射面が形成されていることを特徴とする荷電粒子線装置。
【請求項3】
請求項2において、
前記反射面は、光を2回以上反射する形状であることを特徴とするライトガイドを備えた荷電粒子線装置。
【請求項4】
請求項1において、
前記ライトガイドは、前記屈曲部よりも前記出射面側に傾斜部を備えることを特徴とする荷電粒子線装置。
【請求項5】
請求項4において、
前記傾斜部は、前記入射面と前記出射面とを含む平面で前記ライトガイドを切断したときに、互いに略平行な直線により構成される断面形状を有することを特徴とする荷電粒子線装置。
【請求項6】
請求項1に記載の荷電粒子線装置であって、
前記ライトガイドは、
前記シンチレータの荷電粒子入射面とは反対の面に対向する第1の面と、前記シンチレータの荷電粒子入射面の反対の面とは異なる面に対向する第2の面から形成されて前記シンチレータを収容するシンチレータ収容空間をなすシンチレータ収容部と、前記第2の面から入射する光を、前記ライトガイド内部に向かって反射する傾斜面を備え、
前記第1の面は、前記入射面であることを特徴とする荷電粒子線装置。
【請求項7】
請求項6において、
前記第1の面は、前記第2の面より大きいことを特徴とする荷電粒子線装置。
【請求項8】
請求項6において、
前記傾斜面には、反射部材が設けられていることを特徴とする荷電粒子線装置。
【請求項9】
請求項6において、
前記傾斜面は、複数の異なる方向に向いた面、或いは曲面で形成されることを特徴とする荷電粒子線装置。
【請求項10】
請求項6において、
前記ライトガイドは、前記第1の面、及び第2の面から入射した光を異なる方向に案内する屈曲部を備えていることを特徴とする荷電粒子線装置。
【請求項11】
請求項10において、
前記ライトガイドは、前記出射面に前記光を案内する直線部と、当該直線部と、前記屈曲部との間に形成される傾斜部とを備えたことを特徴とする荷電粒子線装置。
【請求項12】
請求項1において
前記入射面と前記出射面とを含む平面で前記ライトガイドを切断したときの前記外側曲面の断面は、円の方程式で近似できる部位を有し、当該円の中心は前記入射面と平行な面内のどの点よりも前記ライトガイドから離れた位置にあることを特徴とする荷電粒子線装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ライトガイド、ライトガイドを備えた検出器、及び荷電粒子線装置に係り、特に、光を高効率に受光素子に導くライトガイドを備えた荷電粒子線装置に関する。
【背景技術】
【0002】
試料に電子ビーム等の荷電粒子ビームを照射することによって得られる荷電粒子を検出する荷電粒子線装置には、荷電粒子を検出するための検出器が備えられている。例えば電子ビームを試料に走査することによって、試料から放出された電子を検出する場合、電子検出器に10kV程度の正電圧を印加することによって、電子を荷電粒子検出器のシンチレータに導く。電子の衝突によってシンチレータにて発生した光はライトガイドに導かれ、光電管などの受光素子によって電気信号に変換され、画像信号や波形信号となる。
【0003】
特許文献1には、シンチレータに取り付けられたライトガイドが説明されている。更に、特許文献1には、シンチレータから放出された光を、PMT(Photomultiplier Tube)に導くべく、ライトガイドに傾斜面を設ける構成が説明されている。特許文献2には、アクリル樹脂など透明度が高い材料を用いたライトガイドが記載されている。更に、引用文献2には、シンチレータで発生した光を、ライトガイドによって導光し、光電子増倍管や半導体の受光素子などからなる光電変換素子に入射させる装置が示されている。また、ライトガイドに向かって高効率に光を導くため、電子の入射面とは反対側の面を、傾斜面としたシンチレータ構造が説明されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】USP8,895,935
【特許文献2】特開2014−67526号公報(対応米国特許公開公報US2015/0214002)
【発明の概要】
【発明が解決しようとする課題】
【0005】
一方、シンチレータで発生する光は、ライトガイドによって受光素子に導かれるが、受光素子に至る過程で、ライトガイド壁面に衝突する光がある。衝突した光は、反射によって受光素子に向かうが、ライトガイド外部に突き抜けてしまう光もある。ライトガイド外への光の透過を抑制しつつ、受光素子に光を導くことができれば、荷電粒子線装置のSNを向上させることができる。特許文献1に開示のライトガイドによれば、シンチレータで発生した光を、当該ライトガイドのシンチレータ取り付け面とは反対側の斜面によって反射させることによって、シンチレータで発生した光をPMTに導くことができるが、上述のようにライトガイド壁面に衝突する光の中には、反射することなく突き抜けてしまうものがあり、高効率検出には限度がある。また、傾斜面に入射する光のできるだけ多くを反射できるように、シンチレータ取り付け面とは反対側の傾斜面と、取り付け面との相対角度を大きくすることが考えられるが、その場合、ライトガイドの電子顕微鏡等の光軸方向の寸法が大きくなり、真空室内の限られた空間内に配置する部材としては、不向きなものとなることが考えられる。
【0006】
特許文献2に開示の検出器構造によれば、シンチレータ側方から放出される光を受光素子に導くことができるが、シンチレータの荷電粒子の衝突面と反対側の面から、光が透過してしまうことがあり、やはり高効率検出には限度がある。
【0007】
以下に、シンチレータにて発生する光を高効率に受光素子に導くことを目的とするライトガイドを備えた荷電粒子線装置を提案する。
【課題を解決するための手段】
【0010】
上記目的を達成するため、シンチレータと、前記シンチレータからの光を入射する入射面と、当該入射面から入射した光を出射する出射面と、前記入射面から入射した光を前記出射面に案内する表面を備えたライトガイドと、を備えた荷電粒子線装置であって、前記荷電粒子線装置は、前記シンチレータに向かって曲がることのできる電子光学系を、さらに備え、前記シンチレータには、試料から放出された2次粒子又は3次粒子が入射し、前記ライトガイドは、屈曲部を有し、前記屈曲部の前記表面は、前記入射面の端部である入射面端を始点とし、前記ライトガイドの屈曲方向外側の曲面である外側曲面を有し、当該外側曲面と前記入射面との接点において、前記入射面の法線より、当該外側曲面は前記入射面側に傾いた接線を有し、前記入射面の法線と平行方向に前記外側曲面に入射する光線と、前記光線の前記外側曲面への入射点における前記外側曲面の法線と、のなす角θに対して、前記外側曲面と前記入射面の接点における接線が、前記入射面の法線と平行となる仮想外側曲面を仮定した場合に、前記光線と、前記光線の前記仮想外側曲面への入射点における前記仮想外側曲面の法線と、のなす角θを定義にしたときに、前記なす角θよりも前記なす角θが大きくなるように前記外側曲面が形成されている荷電粒子線装置を提案する。
【発明の効果】
【0011】
上記構成によれば、シンチレータにて発生した光を高効率に受光素子に導くことができる。
【図面の簡単な説明】
【0012】
図1】電子顕微鏡の構造を示す図。
図2】シンチレータ内の光の通過の軌跡の一例を示す図。
図3】シンチレータの収容空間と側面プリズムを備えたライトガイドの一例を示す図。
図4】側面プリズムの変形例を説明する図。
図5】電子顕微鏡の構造を示す図。
図6】屈曲部を備えたライトガイドの一例を示す図。
図7】屈曲部と直線部を接続する傾斜部を備えたライトガイドの一例を説明する図。
図8】屈曲部の断面形状を円の方程式を用いてフィッティングした例を示す図
図9】ライトガイドの具体的な形状を説明する図。
図10】ライトガイドの具体的な形状を説明する図。
図11】ライトガイドの光入射面を種々の方向からみた図。
図12】ライトガイドの具体的な形状を説明する図。
図13】ライトガイドの具体的な形状を説明する図。
【発明を実施するための形態】
【0013】
シンチレータを検出素子とする荷電粒子検知器において、シンチレータ内部で発光した光を高効率に受光素子に導くことによって、荷電粒子の高効率検出を実現することができる。一方、立体形状のシンチレータは、複数の面を持ち、光を反射する反射材が備わっていない全てのシンチレータの表面から出射するが、ライトガイドに面していないシンチレータ面から放出された光を導くことはできない。即ち、一部の表面から出射した光しか、ライトガイドに入射させることができていない。また、ライトガイドが直線でなく、屈曲部を有する場合には、光が屈曲部で漏れて受光素子に届かない。それゆえ、シンチレータから出射した光を十分に受光素子まで伝播させることができていない。つまり、ライトガイドを用いた光学系は、シンチレータから出射した光に対し、受光素子に到達する光の割合(光利用効率)が低いことが多い。
【0014】
以下に、光利用効率を向上させるライトガイドを備えた荷電粒子線装置について説明する。なお、本実施例では、シンチレータを検出素子とする検出器を備え、シンチレータと受光素子間にライトガイドを備えた荷電粒子線装置について説明する。なお、以下に説明する実施例では、電子顕微鏡、特に走査電子顕微鏡の例について説明するが、これに限られることなく、以下に説明する実施例は、イオンビームを用いた走査イオン顕微鏡などの他の荷電粒子線装置への適用も可能である。また、走査電子顕微鏡を用いた半導体パターンの計測装置、検査装置、観察装置等にも適用可能である。
【0015】
本明細書でのシンチレータとは、荷電粒子線を入射して発光する素子を指すものとする。本明細書におけるシンチレータは、実施例に示されたものに限定されず、様々な形状や構造をとることができる。
【0016】
《第1の実施形態》
図1は、電子顕微鏡1の基本構成を示す図である。図1は側面から電子顕微鏡を見た図であり、図2および図3はシンチレータ5およびライトガイド3の詳細図である。電子源2から放出された一次電子線100が試料50に照射され、二次電子や反射電子等の二次粒子101が放出される。二次粒子101は信号粒子制限板6に衝突してから、シンチレータ5に入射する。なお、信号粒子制限板6に衝突した後の粒子を三次粒子と呼ぶこともあるが、説明を簡略化するため、試料50から放出された二次粒子、及び試料から放出された二次粒子が信号粒子制限板6に衝突することによって発生する二次電子等を含めて二次粒子と呼ぶことにする。本実施形態では、円形の二次粒子入射面を持つシンチレータ5について説明する。本実施例では、二次粒子の入射面の大きさに対し、相対的に高さ方向の寸法が小さい円柱形状のシンチレータを例にとって説明する。シンチレータ5に二次粒子101が入射するとシンチレータ5で発光が起こる。シンチレータ5の発光は、ライトガイド3により導光され、受光素子4で電気信号に変換する。以下、シンチレータ5、ライトガイド3、受光素子4を合わせて検出系と呼ぶこともある。
【0017】
走査電子顕微鏡の場合、一次電子線(電子ビーム)の走査に同期して、受光素子4で得られた信号がフレームメモリ等の記憶媒体に記憶される。電子線照射位置に対応した画像位置(画素)に、得られた信号量に応じた輝度の表示を行うことによって、走査領域のコントラスト像とすることができる。図1では、一次電子線100を試料に集束して照射するための電子光学系、すなわち偏向器やレンズ、絞り、対物レンズ等は図示を省略している。
【0018】
電子光学系を構成する電子光学鏡筒60の内部は、真空状態が保たれており、真空空間をビームが通過するように構成されている。また、試料50は、当該試料を少なくともX−Y方向(一次電子線の理想光軸をZ方向とした場合)に移動させる試料ステージに載置され、試料50と試料ステージは試料室61に配置される。試料室61は、一般的には電子線照射の時には真空状態に保たれている。また、電子顕微鏡には図示しないが全体および各部品の動作を制御する制御部や、画像を表示する表示部、ユーザが電子顕微鏡の動作指示を入力する入力部等が備えられている。更に、試料ステージには、図示しない負電圧印加電源が接続されており、電子ビームに対する減速電界を形成することができる。電子ビームに対する減速電界は、試料から放出される二次粒子(二次電子や後方散乱電子)にとって、加速電界となるため、電子源2の方向に向かって二次粒子等は加速され、信号電子制限板6等に衝突する。
【0019】
この電子顕微鏡は構成の一つの例であり、シンチレータ5、ライトガイド3、受光素子4を備えた電子顕微鏡であれば、他の構成でも適用が可能である。図1の例では、信号電子制限板6への二次粒子の衝突に基づいて発生する新たな二次粒子(三次粒子)を検出する例について説明しているが、信号電子制限板6の位置に、シンチレータを配置し、当該シンチレータで発生した光をライトガイドで受光素子に導くような構成とすることもできる。
【0020】
また、二次粒子101には、透過電子、走査透過電子等も含まれる。また、簡単のため、検出器は1つのみ示しているが、複数の検出器を設けても良い。反射電子検出用検出器と二次電子検出用検出器を別々に設けてもよいし、方位角または仰角を弁別して検出するために複数の検出器を備えていてもよい。
【0021】
次に、図2を用いて、本実施形態のシンチレータ5を詳細に説明する。図2において、正面方向DFは、円柱状のシンチレータ5の底面(円柱の上下の底面を区別するために上底面5cと呼ぶことにする。)の法線に平行で二次粒子101が伝播してくる方向である。側面方向DSは正面方向DFに垂直な方向である。図は、円柱状のシンチレータ5を側面方向DSから見た図である。シンチレータ5は、入射した二次粒子101のエネルギーを光に変換して発光する発光部5aと、シンチレータ5に電圧を印加する伝導層5bから構成される。伝導層5bは発光部5a上に積層して形成された層であり、本実施形態ではAl層である。但し、シンチレータ5としては、発光部5aを有すれば良く、この構成に限らない。
【0022】
発光部5aの材料としては、半導体(GaN、Si、SiC)、セラミック蛍光体 YAG(YAl12:Ce)、YAP(YAlO:Ce)、ガラスなどの基板に成膜して用いる粉体蛍光体YSiO:Ceなどがある。半導体シンチレータの例としては、InGanNとGaNを積層して量子井戸を形成した構造を光変換部とする半導体がある。InGanN層とGaN層は、荷電粒子の入射方向に向かって積層される。
【0023】
シンチレータ5に入射した二次粒子101は伝導層5bを貫通して発光部5aで光に変換され、変換された光は発光部5aを伝播してシンチレータ5の外へ出射する。伝導層5bは光に対しては反射部材として機能するため、伝導層5bが無い全ての表面から光は出射する。
【0024】
光線例を図中にRayF1、RayF2、RayS1、RayS2として示した。RayF1、F2は正面方向DFに上低面5cから出射する例で、RayF2は伝導層5bで反射して出射する例である。RayS1、RayS2は側面方向DSに伝播して側面5dから出射する例である。RayS2は上底面5cで全反射し、伝導層5bで反射して側面5dから出射する例を示しており、発光部5a内を導光して側面5dから出射する例である。発光部5aは空気よりも屈折率が高いので、一部の光はシンチレータ5の表面で全反射して導光する。
【0025】
側面5dから出射する光の総和(側面出射光量Is)と、上底面5cから出射する光の総和(平面出射光量Ip)の比率は、シンチレータ5の内部構造に依存する。半導体、セラミック蛍光体材料のシンチレータを用いる場合や、粉体蛍光体を成膜した基板をシンチレータとして用い、基板からの光も取り出して活用する場合、一般に材料の屈折率は1.5よりも大きく、屈折率1.5のときのシンチレータ5表面での全反射角度は40度程度である。それゆえ、表面へ入射した光の約75%以上の光が全反射する。発光部5a内部が、散乱が起こりやすい構造であると、乱反射して再度表面に到達して表面から出射することもあるが、上記シンチレータの場合、光散乱が起こり難い構成であるため、側面5dまで光が導光し、側面5dからも多くの光が出射する。GaNを材料とするシンチレータ5の場合、シミュレーションによれば、円柱の高さが0.5mm、円の直径が9mmで、Ip:Is=1:1程度である。また、発光部5a内にピラミッド、円錐などのパターン構造や光の波長程度以下のパターン構造などを導入して、散乱により導光を抑制して、上底面5cからの平面出射光量Ipを向上させる技術を導入しても、Ip:Is=7:3程度である。したがって、側面出射光量Isもライトガイドで捉えて光の収量を向上させることは重要である。
【0026】
次に、図3を用いて、ライトガイド3に関して説明する。図3はライトガイド3の断面図であり、ライトガイド3は、中心線CLに対して回転対称な形状である。ライトガイド3の材質としては、PMMA樹脂、シクロオレフィンポリマー(COP)樹脂や、シリカ、石英などを用いれば良い。但し、本発明は材質に限定されない。
【0027】
ライトガイドの円柱の側面3dには、電子光学鏡筒60内の真空と外側の大気を分離するための分離フランジ3cが設けられている。分離フランジ3cは電子顕微鏡1の構造に依存してある場合とない場合がある。本実施形態の場合、受光素子4を電子光学鏡筒60の外側に配置し、シンチレータ5を電子光学鏡筒60の内側に配置しているので、ライトガイド3に分離フランジ3cが設けられている。
【0028】
ライトガイド3の出射面3bは円形であり、受光素子4に対向して配置される面である。シンチレータ5の上底面5cに対向する面がライトガイド3の入射面3a(第1の面)である。入射面3aから入射した光は、一部はライトガイド3に吸収されるが、大部分は出射面3bに到達する。RayF3は入射面3aからライトガイドに入射し、出射面3bから出射する光線例である。
【0029】
シンチレータ5の側面5dに対向して配置される部位は、側面プリズム3eであり、側面プリズム3eは、シンチレータ5の側面5dに対向し、側面5dからの光を入射する側面プリズム入射面3e1(第2の面)を有する。側面プリズム入射面3e1は、ライトガイド3の入射面3aとは異なる方向に面方向を有する側壁面である。
【0030】
さらに、ライトガイド3の入射面3aと側面プリズム入射面3e1はシンチレータ5を囲む収容空間を形成している。シンチレータ5からの光を全て取り込むためには、収容空間はシンチレータ5の光が出射する表面の全てに対向するように形成されていることが好ましい。但し、当該収容空間は、シンチレータ5の光が出射する表面の一部にしか対向する面が形成されていない構成であっても、側壁面を有すれば光利用効率を向上するという効果を奏する。
【0031】
側面プリズム3eは、側面プリズム入射面3e1から入射した光を、出射面3bに光が向かうように反射する反射面3e2(傾斜面)を有する。反射面3e2は、側面プリズム入射面3e1を包囲するように形成されている。RayS3は入射面3e1から側面プリズム3eに入射し、反射面3e2で全反射して出射面3bから出射する光線例である。本実施形態では反射面3e2が側面プリズム入射面3e1の法線方向3eNと所定の角度θe2を有することで、側面プリズム入射面3e1の法線方向3eNに入射した光を全反射できるようにした構成である。
【0032】
なお、全反射は反射面3e2への光の入射角度が臨界角θよりも大きい場合にのみ起きる。入射光は法線方向3eN以外の角度の光も有し、より多くの光を反射するためには、反射面3e2の表面に反射部材を付与した方が良い。反射部材としては、アルミニウム、銀、多層反射膜などがある。
【0033】
角度θe2に関しては、出射面3bの方向に反射するという観点では、20度よりも大きくした方が良く、70度よりも小さい方が良い。但し、角度の上限は、ライトガイド3の形状に依存し、例えば、曲がったライトガイド3の場合は別の値となる。角度θe2を適切に設定することで、反射光を出射面3bに向けて伝搬させることが可能となるため、光利用効率を向上するという効果を奏する。
【0034】
また、入射面3aの法線方向3aNに反射する角度θe2は、ライトガイド3の形状に依存せず、45度±15度の範囲が良い。入射面3aの法線方向3aNに向かう光の多くは、ライトガイド3の出射面以外から漏れることなく、ライトガイド3を導光することが可能であるので、光利用効率を向上するという効果を奏する。
【0035】
側面プリズム3eは、シンチレータ5の側面5dからの出射光もライトガイド3に入射させ、反射面3e2で出射面3bに向けて反射し、受光素子4に向けて、より多くの光を伝搬させることができるので、光利用効率を向上するという効果を奏する。また、通常、シンチレータは、入射面に直交する方向の面(側面)の厚み方向の寸法が、荷電粒子の入射面の面方向の寸法より十分に小さい。よって、上底面5cから放出される光を、プリズム等を用いた反射を行うことなく、ライトガイドの中心線CLの方向(ライトガイドの光路方向)に導くように構成すると共に、シンチレータ側面から放出された光を、側面プリズムを用いた反射を伴って、ライトガイド光路方向に導くように構成する。即ち、ライトガイド3にシンチレータ5の収容空間を形成する場合、側面プリズム入射面3e1の高さ方向の寸法を、入射面3aより小さく構成すると共に、シンチレータ5の側面5dと、ライトガイド3の側面プリズム入射面3e1、及びシンチレータの上底面5cと、ライトガイド3の入射面3aをそれぞれ対向させるように配置する。
【0036】
以上のような構成によれば、ライトガイド内で反射により伝播方向を変える光の量を少なくしつつ、シンチレータの各面から放出される光を高効率に検出素子に導くことが可能となる。
【0037】
次に、図4を用いて反射面3e2の変形例に関して説明する。図4は側面プリズム3e付近を拡大した断面図である。
【0038】
図4(a)は、反射面3e2の表面に反射部材3e2Rを貼りつけた例である。反射部材3e2Rを設けることで、反射面3e2で全反射できず貫通してしまう光も反射することが可能となり、光利用効率が向上する。光線RayS4は、反射部材3e2Rが無い場合には、反射面3e2を透過して損失となる光であるが、反射部材3e2Rがある場合は反射して出射面3bに向かって導光する。反射部材は、貼り付ける以外にも蒸着など様々な方法の取り付け方があり、本実施形態は取り付け方に限定されない。ここで、本実施形態では、反射部材を用いてライトガイド全体を覆わずに、ライトガイドの一部(反射面)にのみ貼りつけている。一般の反射材は反射時に光の一部を吸収するので、光が複数回反射するライトガイドの側面3dには貼りつけない。反射材として金属を用いた場合の吸収率は、5〜15%程度である。側面3dは光吸収が起きない全反射にて導光させることが重要である。
【0039】
図4(b)は、反射面3e2の形状が、直線ではなく折れ線の場合を示している。複数回の反射により光の伝播方向を変えている。一例として、光線例RayS5を図示した。
【0040】
図4(c)は、反射面3e2の形状が、直線ではなく曲線の場合を示している。複数回の反射により光の伝播方向を変えている。一例として、光線例RayS6を図示した。曲線の形状は、円、楕円、放物線、双曲線など様々な形状が考えられる。また、曲線だけに限らず、曲線と折れ線または曲線と直線の組み合わせでも良い。反射面3e2の形状としては、光が出射面3bに向かって伝搬するように反射する形状であれば、光利用効率を向上するという効果を奏する。
【0041】
《第2の実施形態》
図5、6は第2の実施形態を説明するための図である。第1の実施形態と同じ個所、または、同じ機能を有する箇所に関しては説明を省略する。また、図中で同じ符号の箇所は、同様の機能を有する箇所である。図5(a)は、側面から電子顕微鏡を見た図で、図5(b)は、図5(a)の矢印Aの方向から電子顕微鏡1を見た図である。点線Bと出射面の中心を含む平面を平面S1とした場合に、図6(a)は、平面S1におけるライトガイド3の断面図である。また、平面S1は入射面3aの中心も含む面である。
【0042】
図5に例示するような電子顕微鏡には、図1で例示したような信号粒子制限板がなく、二次粒子101は直接シンチレータ5に入射する。また、図1の例と比較すると、ライトガイド形状が異なる。本実施形態のライトガイド3は、入射面3aと出射面3bが対向していない(シンチレータの入射面の法線方向に、シンチレータの出射面がない)ため、ライトガイド3には屈曲部3fが設けられている。
【0043】
なお、簡単のため、検出系は1つのみ示しているが、複数の検出系を設けても良いし、信号粒子制限板がある別の検出系を設けてもよい。本実施形態では図示していないが、信号粒子制限板がある別の検出系が、図示されている検出系より試料50に近い側に設けられている。
【0044】
本実施形態の電子光学系は、電子源2から放出された一次電子線100は試料50に向かって直進するが、二次粒子101はシンチレータ5に向かって曲がることができる光学系を有する。二次粒子101が直接シンチレータ5に入射するので、試料50から直進してきた二次粒子101を高感度に検出することが可能である。
【0045】
図5(b)で示すようにライトガイド3は屈曲部3fを有し、光も屈曲部3fを反射しながら出射面3bに向かって導光し、受光素子4に到達する。図6(a)を用いて断面形状を詳細に説明する。断面形状は大きく、3つの部位からなる。屈曲部3f1、3f2と、屈曲部よりなだらかに形状が変化する傾斜部3g1、3g2と、直線部3h1、3h2の3つの部位である。
【0046】
直線部3hの形状は出射面3bを底面(半径raの円、図6(b)参照)とする円柱である。直線部3hには、分離フランジ3cが設けられている。直線部3hに分離フランジ3cを設けることで、電子光学鏡筒60の側壁などに垂直に分離フランジ3cを押し当てることができ、大気が真空に流入することを抑制する構成となっている。
【0047】
傾斜部3gの形状は、屈曲部3fと直線部3hを接続する形状である。断面形状3g1、3g2は緩やかに変化する曲線である。断面形状は曲線に限らず、直線、折れ線、曲線と直線、曲線と折れ線の組み合わせなどでも良い。
【0048】
屈曲部の断面形状3f1、3f2は、本実施形態では、中心角が60度から89度の間にある円弧である。なお、当該断面形状は、円弧からずれた曲線などでも良いし、一部は円弧または曲線で、その他は直線または折れ線でも良い。屈曲部は屈曲部の表面からライトガイドの外に漏れる光の量を低減するために複雑な形状をしている。入射面3aは、図6(c)に示す形状で、点DおよびEに断面形状3f1および3f2がそれぞれ接続する。点線Fを境に左半分が円3a1、右半分が楕円3a2となっている。円の半径はrで、楕円の短軸、長軸の1/2の長さは、それぞれrとrである(r<r)。点線Fと、点DとEが結ぶ線分との交点に略対向する位置にシンチレータ5の中心が配置される。
【0049】
平面S1に垂直で点線Cを含む面を平面S2とした場合に、平面S2におけるライトガイド3の断面形状は出射面3bと同じ円である。屈曲部3fの形状は、当該円と入射面3aの形状を、断面形状3f1、3f2を輪郭として繋いだ形状である。例えば、一般的な3D CAD(three−dimensional computer aided design system)を用いて、当該円と入射面3aの形状を、断面形状3f1、3f2を輪郭としてロフトすることで屈曲部の形状が作成できる。図6(d)は本実施形態のライトガイド3の斜視図である。符号3iは、ライトガイド3とシンチレータ5を固定するための部位を示す。
【0050】
図7を用いて、屈曲部の形状をより詳細に説明する。図7(a)は屈曲部3fで光が漏れる要因を説明するための平面S1における断面図である。この例では、図6で示したライトガイドのように傾斜部3gが存在しない。入射面3aと出射面3bの形状は図6(b)に示す円で、屈曲部の断面形状3f1、3f2は中心角90度、入射面3aを始点する円弧である。屈曲部3fと出射面3bは直線部3hで繋がれている。入射面3aと出射面3bを繋げる最も簡単なライトガイド形状である。
【0051】
3本の光線例を用いて代表的な光が漏れる光線経路を説明する。光線RayF5は、屈曲部の断面3f1に到達し、到達点の面の法線3N1との角度が全反射の臨界角よりも小さいために、面を透過する例である。入射面3aの法線と入射面3aを出射するときの光線の角度が、図の角度より大きい光線は全て屈曲部3fを透過して損失となる。
【0052】
光線RayF6(他の光線と見分けるために点線で示す。)は、屈曲部の断面3f2で、入射面3aの法線方向に全反射して、屈曲部の断面3f1に到達し、到達点の面の法線3N2との角度が全反射の臨界角よりも小さいために、面を透過する例である。屈曲部の断面3f2に近い位置から出射する光は、屈曲部の断面3f2で反射して同様の光線経路でライトガイド3から漏れる。
【0053】
光線RayF7は、入射面3aの法線から出射面3bの方へ傾いて、入射面3aから出射した光線が、直線部の断面3h1に到達して、到達点の面の法線3N3との角度が全反射の臨界角よりも小さいために、面を透過する例である。入射面3aの法線と略平行な法線を持つ面に到達した光は、当該面を透過する確率が高い。透過率はフレネルの透過率に従う。
【0054】
図6(a)に示したライトガイド3は、これら光漏れを抑制する形状となっている。図7(b)に示すライトガイドは、図6(a)に示したライトガイド3であり、当該図を用いて、光漏れ抑制効果を説明する。図7(b)のライトガイド3の主な特徴は、図7(a)に比べて屈曲部の断面3f1の曲率半径が大きい点と、入射面3aの形状が図6(c)に示した長軸が出射面の方向にある楕円を含む形状である点である。屈曲部の断面3f1の曲率半径が大きいがゆえに、入射面3aと出射面3bとの間の領域以外にも、光を出射面3bに案内するライトガイド3の表面が存在する構成である。入射面3aと出射面3bとの間の領域とは、図7(b)において、矢印DAで示される領域である。矢印が指す点線は領域を示すための補助線で、図中下側の点線は入射面3aの端部と一致し、上側の点線は出射面3bの端部と一致する。図7(a)に示す傾斜部のないライトガイドは、当該領域以外には、光を出射面3bに案内するライトガイド3の表面が存在しない。なお、分離フランジ3cなどの固定部位は、光を出射面3bに案内する表面ではない。
【0055】
屈曲部の断面3f1の曲率半径が大きいと、屈曲部で全反射が起きやすくなる。光線RayF8は、光線RayF5と同じ角度で入射面3aから出射する光線であるが、屈曲部の断面3f1への入射角度は、光線RayF5の場合よりも大きく、全反射する。曲率半径が大きいので、円弧へ光が入射する位置の法線3N4が入射面3aの法線から大きく傾いた位置に入射する。それゆえ、屈曲部で全反射する光の量が増え、ライトガイドの光利用効率が向上する。
【0056】
光線RayF10は、光線RayF7と同じ角度で入射面3aから出射する光線である。曲率半径が大きいので、光線RayF10は終点付近の屈曲部の断面3f1に入射し、全反射して導光する。終点付近の屈曲部の断面3f1の法線3N6は、入射面3aから出射面3bとは反対方向に傾いているので、法線3N6と入射光線との角度は大きくなり、全反射し易くなる。全反射しない場合でもフレネル反射率は向上するので、反射する光の量が増え、ライトガイドの光利用効率が向上する。
【0057】
シンチレータ5が直径9mmの円柱の場合に、入射面3aを直径10mmの円とし、屈曲部の断面3f1および3f2の曲率半径を、それぞれ15mm、5mmから18mm、8mmに変更することで、光利用効率が37%向上することを光線追跡計算により確認した。
【0058】
光線RayF9は、光線RayF6と同じ角度で入射面3aから出射する光線である。入射面3aの一部を長軸が出射面の方向にある楕円とし、屈曲部の断面3f2を出射面3b側に移動することで、光線RayF9は、断面3f2で反射すること無く傾斜部の断面3g1に到達することが可能となる。光線RayF9は、断面3g1で必ずしも全反射はしないが、光線RayF6の場合に比べて、断面3g1の入射点において、光線RayF9と法線3N5との角度が大きくなるので、フレネル反射率は大きくなり、導光する光の量が増え、光利用効率が向上する。
【0059】
ここで、入射面3aの楕円部の形状に関して説明する。例えば、シンチレータ5の半径が4.5mmの場合、図6(c)において、rとrは、それぞれ4.5mm、5.5mmとすると、入射面3aを直径9mmの円とした場合に比較して、光利用効率が数%向上することを光線追跡計算により確認した。本実施形態では、入射面3aの一部を楕円とし、形状を出射面側に長くすることで断面3f2を出射面側に移動して光利用効率を向上させたが、入射面3aの一部を楕円とすることには限定されず、形状を出射面側に長くすれば良い。別の言い方をすれば、シンチレータ5の中心から入射面3aの端部までの距離が、出射面方向とそれとは反対方向で異なり、出射面方向の距離が長ければ良い。
【0060】
次に、屈曲部3fの一部または全部を円弧とする場合の形状に関して、図7(c)、(d)を用いて説明する。屈曲部の断面形状3f1は本実施形態の円弧の形状である。断面形状3f1C(点線で示す)は、円弧の中心CP1が入射面3aを含む平面SP(点線で示す)内に存在し、断面形状3f1Cの入射面3aから立ち上がる接線が入射面の法線3aNと平行の場合の断面形状である。断面形状3f1Cは、図7(a)に示す傾斜部のないライトガイドを構成する場合の屈曲部の形状であり、屈曲部として最も簡単な形状と言える。
【0061】
断面形状3f1は、円弧の中心CP2が平面SP内には存在しない構成であり、入射面3aより下側(ライトガイド3から離れる方向)にある。さらに、断面形状3f1の入射面3aから立ち上がる接線3f1Tと入射面の法線3aNは所定の角度θtを持つ形状である。角度θtは2度から10度程度の範囲であることが光利用効率向上の観点で望ましい。図7(b)に示したライトガイド3の角度θtは2.5度である。また、中心CP2と平面SPの距離は1mmである。当該距離は0.3mmから5mm程度の範囲内にあることが望ましい。
【0062】
ライトガイド3の表面をあるラインで分割し、外側曲面と内側曲面とした場合に、断面形状3f1は、入射面3aの端部を始点とした外側曲面に含まれ、断面形状3f2は内側曲面に含まれる。上述した構成は、当該外側曲面と入射面3aとの接点において、入射面の法線3aNより、当該外側曲面は前記入射面側に傾いた接線を有する構成である。
【0063】
光線RayF11は入射面の法線3aNと平行方向に入射面3aの略中心から屈曲部へ出射する光線である。なお、シンチレータ5から発光する光強度は、一般に当該方向および位置の強度が最も大きい。符号3f1N、3f1CNは、それぞれ断面3f1および3f1Cと光線RayF11の交点における法線を示す。角度θ1、θ2は、法線3f1Nと光線RayF11および3f1CNと光線RayF11がそれぞれ成す角度である。図7(d)は、角度θ1、θ2を比較するための図であり、光線RayF11と各断面の交点を一致させた図である。この図から分かるように角度θ1の方が角度θ2よりも大きくなる。したがって、断面3f1の方が光線RayF11の当該断面への入射角度が大きくなるので、ライトガイド3に入射する光束のうち全反射する光束の割合が増え、さらに、フレネル反射率が大きくなるので、光漏れが低減され光利用効率が向上する。
【0064】
つまり、断面形状3f1の一部(望ましくは、RayF11が入射する部位)が円弧であって、円弧の中心CP2が入射面3aを含む平面SP内には存在しない構成である場合に光利用効率は向上する。また、断面形状3f1の入射面3aから立ち上がる接線3f1Tと入射面の法線3aNが所定の角度θtを持つ形状である場合に光利用効率は向上する。
【0065】
傾斜部の断面形状3g1と断面形状3g2は、本実施形態のように略平行とすることが望ましい。なぜならば、図7(b)に示すように、出射面3bに向けてライトガイドの高さが小さくなる場合、断面形状3g1への入射角度は、断面形状3g1へ光が入射する度に小さくなるが、断面形状3g2への入射角度は、断面形状3g2へ光が入射する度に大きくなるので(ライトガイドの高さが大きくなる場合、現象が逆になる。)、入射角度が補償される。それゆえ、最初に傾斜部3gに入射したときの入射角度が導光途中で大きくは変化せず、全反射角度より入射角度が小さくなり光漏れが起こるのを抑制するという効果を奏する。
【0066】
本実施形態では、屈曲部の断面形状3f1、3f2を円弧としたが、これに限定されず、円の方程式からずれた曲線でも折れ線でも良い。但し、屈曲部の外側の断面形状3f1は、円、楕円、放物線の方程式を用いて部分的にはフィッティングされる形状であることが望ましい。
【0067】
図8のグラフを用いて、屈曲部の断面形状3f1を円の方程式を用いてフィッティングした例を説明する。参考のためグラフ中に入射面3aの位置を記入した。本グラフにおいて、断面形状3f1は、図6図7に記載のライトガイドの断面形状とは、反対向きで記載されている。横軸は入射面に平行な位置座標[mm]を表し、縦軸は入射面の法線に平行な方向の位置座標[mm]を示す。点線は屈曲部の断面形状3f1の一例であり、完全な円弧とはなっていない。実線3f1Fは点線を円の方程式でフィッティングした結果である。点線と実線は、入射面3aの端部付近を除いて良く一致している。このフィッティング結果を用いて円弧の中心P1等を求めれば良い。
【0068】
本実施形態では、入射面3aおよび出射面3bの形状として、円、一部円と楕円等を用いたが、本発明はこれに限定されない。たとえば、シンチレータ5が四角形の角柱であれば、入射面を四角としても良く、受光素子の形状が四角であれば出射面を四角にしても良く、さまざまな形状が考えられる。また、例えば出射面と平行な面の断面形状は、円などに限定されるものではなく、四角や六角など様々な形状が考えられる。
【0069】
《第3の実施形態》
図9は第3の実施形態を説明するための図である。第1の実施形態と同じ個所、または、同じ機能を有する箇所に関しては説明を省略する。また、図中で同じ符号の箇所は、同様の機能を有する箇所である。第1の実施形態と異なる箇所は、屈曲部3fを有するライトガイド3に側面プリズム3eを設けた点である。図9は、屈曲部3fと側面プリズム3eに着目した断面図である。なお、本実施形態のライトガイド3の形状は、側面プリズム3eが付与されている部位以外は、第2の実施形態で図6(b)を用いて説明したライトガイドと同じである。
【0070】
図9(a)は、入射面3aのシンチレータ5が対向していない部位に側面プリズム3eを設置した例である。当該部位は入射面3aの楕円の長軸方向先端部で、もともと光はほとんど入射しない位置であり、かつ、入射面3a以降のライトガイド形状に影響を与えないので、導光にも影響を与えない。したがって、当該位置に側面プリズム3eを設置する場合、入射面3a以降のライトガイド形状と側面プリズム3eを独立に最適化することが可能となる。
【0071】
側面プリズム3eを設置することで光利用効率を向上するという効果を奏する。なお、側面プリズム3eの変形は、第1の実施形態において図4を用いて説明したように様々な変形が可能である。特に、反射面3e2の表面に反射部材を付与することで効果的に光利用効率を向上することが可能となる。符号RayS7は光線例である。
【0072】
図9(b)は、外側の屈曲部3f1にも側面プリズム3eoを設置した例で、外側の側面プリズム3eoは光の伝播方向を略180度回転して出射面側に反射する必要があるので、反射面を2つ以上有する構成となる。つまり、側面プリズム3eoは、光を2回以上反射する反射面形状を有する。図9(b)は、シンチレータ5の側面5dに対向し、側面5dからの光を入射する側面プリズム入射面3eo1を有し、反射面3eo2で略入射面3aの法線方向に光を反射し、反射面3eo3で略出射面3bの方向に光を反射している例である。このような構成とすることで、光利用効率を向上するという効果を奏する。但し、外側の側面プリズム3eoの場合は、断面形状3f1に変更を加えるので、導光に影響を与える。それゆえ、側面プリズム 3eoの影響で大きな光漏れが発生し、全体としての光利用効率が低下しないように形状を小さくすることが好ましい。また、例えば、反射面3eo3を、断面形状3f1の一部として、点線で示す断面形状3f1’のように、入射面3aと略同位置まで連続的な形状とすることが好ましい。符号RayS8は光線例である。
【0073】
図9(b)の変形例を、図10を用いて説明する。図10(a)は屈曲部3fと側面プリズム3eに着目した断面図である。本変形例と図9(b)の形状で異なる点は、外側の側面プリズム3eoと屈曲部3f間に空隙を設けた構成である。前述したように、断面形状3f1に変更を加えると導光に影響を与えるので、影響を与えないように空隙を設けている。入射面3aから入射した光は、断面形状3f1と3f2で反射して導光し、側面プリズム入射面3e1、3eo1から入射した光は、側面プリズム3e、3eoで反射して導光する構成である。
【0074】
図10(b)は、側面プリズム3eoをより詳細に説明する断面図である。光はシンチレータと対向する面3eo1から入射し、反射面3eo2、3で反射して、屈曲部3fと対向する側面プリズム出射面3eo4から出射して、屈曲部3fに入射する。反射面3eo2、3eo3としては、第1の実施形態において図4を用いて説明したように様々な変形が可能である。例えば、反射面3eo2と反射面3eo3を連続的な曲面としても良い。その際には、当該曲面に、略入射面3aの法線方向に光を反射し、その後で略出射面3bの方向に光を反射する機能があれば良い。また、反射面3eo2、3eo3にアルミニウムなどの反射部材を付与すると、効果的に光利用効率を向上できる。
【0075】
なお、側面プリズム出射面3eo4と屈曲部3f間を全て空隙として示しているが、一部は結合していても良い。例えば、側面プリズム出射面3eo4の入射面3aに近い位置は屈曲部3fと結合していても良い。なぜならば、結合部が小さければ入射面3aから入射した光の導光への影響は小さいためである。
【0076】
外側の側面プリズム3eoとライトガイド3は一体としても良いが、空隙を設けるため、別体として、側面プリズム3eoをライトガイド3に取り付けても良い。
【0077】
図10(c)は、入射面3aが見える方向からの斜視図である。図中矢印aの方向(入射面3aの法線方向)からライトガイド3を見た図が図11(a)である。図中矢印bの方向から見た図が図11(b)で、図中矢印cの方向から見た図が図11(c)である。図11(a)を見ると、シンチレータ5(点線で図示)に沿って側面プリズム3e、3eoが配置されていることが分かる。入射面3aと外側の側面プリズム3eoとの間に空隙AIRがある。
【0078】
本変形例の構成とすることで、側面プリズム3eoを備えることによる入射面3aからの入射光の導光への影響をなくしつつ、光利用効率を向上させるという効果を奏する。
【0079】
次に別の変形例に関して平面S1における断面を示す図12を用いて説明する。本変形例は、屈曲部3fの断面形状において曲線が1つの場合である。入射面3aから入射した光の一部は、光線例RayF12のように断面形状3f1で反射して直線部3hに入射して導光する。側面プリズム入射面3eo1から入射した光の一部は、光線例RayS9のように、反射面3eo2で反射して、屈曲部3fの曲面と連続的に繋がっている反射面3eo3で反射して、出射面3bに向かって導光する。側壁面3e1’から入射した光は、光線例RayS10のように出射面3bに向かって導光する。本変形例は、入射面3aに対向した曲面と、入射面3a、側面プリズム入射面3eo1と側壁面3e1’に囲まれた収容空間と、側面プリズム3eo1を設けることで、シンチレータ5から出射する全方位の光をライトガイド3に取り込み、導光させることが可能となり、光利用効率を向上するという効果を奏する。なお、本変形例の収容空間は、シンチレータ5の光を出射する全ての面に対向して、光が入射する面を有しているが、シンチレータ5の光を出射する面の一部に対向して、光が入射する面を有することでも光利用効率を向上するという効果を奏する。
【0080】
次に別の変形例に関して平面S1における断面を示す図13を用いて説明する。本変形例は、ある断面において、受光素子4が左右両側に配置され、両側に光を伝播させるために、ライトガイド3がシンチレータ5に対向する位置で二股に分かれる形状である。本変形例では、シンチレータ5の中心を通る中心線CL1に対して断面3f1は左右対称な形状である。左右対称とすることで、入射面3aから入射した光の伝搬方向を回転する角度を小さく(略90度内と)することが可能となる。一般に、光の伝播方向を回転する角度が大きくなるほど、受光素子4に届くように光を反射させることが難しくなり、ライトガイド3から漏れる光が多くなる。それゆえ、屈曲部の断面3f1を中心線CL1に対して、左右対称とすることで、光利用効率が向上するという効果を奏する。シンチレータ5の両側の側面5dに対向して、側面プリズム入射面3e1が配置される構成である。左右それぞれの受光素子4に入射する光線例を、RayS11、RayS12として記載した。何れも、側面プリズム入射面3e1から入射し、反射面3e2で反射した後で、断面形状3f2、3f1で順次反射して、直線部3h2で反射して、出射面3bから受光素子4に入射する例である。受光素子4が左右両側に配置される構成であっても、側面プリズムを有する構成により、光利用効率を向上させることが可能となる。本構成は、側面プリズム3eにより、180度伝播方向を回転させられる光線が無い、もしくは、ほとんど無い。したがって、光の伝搬方向を回転する角度が小さいので、光利用効率が向上するという効果を奏する。また、図9(b)において示した外側の屈曲部3f1に設置される側面プリズム3eoが無いので、外側の屈曲部3f1と側面プリズム3eを別々に最適化でき、光利用効率が向上するという効果を奏する。図13には直線部の断面3h1と屈曲部の断面3f1の間に傾斜部が存在しないが、屈曲部の断面3f1の曲率半径を大きくして光利用効率を高め、傾斜部を有する構成としても良い。
【0081】
以上より、本構成のように、ある断面で見た場合に両側に受光素子4を設ける構成は、光利用効率が向上するという効果を奏する。また、反射面3e2は、第1から第3の実施形態3で説明した様々な形状を取ることができる。なお、シンチレータ5をドーナツ状の形状として、中心線CL1に沿って、1次電子線100など、粒子を貫通させる場合に、ライトガイド5も中心線CL1に沿って貫通穴を設けても良い。当該貫通穴は、円、四角など様々な形状が考えられる。以上、第1の実施形態から第3の実施形態まで説明したが、それぞれで記載した事項は適宜組み合わせても良く、組み合わせることでより大きな効果を奏することもある。
【0082】
上記構成によれば、光利用効率を向上させることが可能となる。
【符号の説明】
【0083】
1 電子顕微鏡
2 電子源
3 ライトガイド
3a 入射面、第1の面
3b 出射面
3e 側面プリズム
3e1 側面プリズム入射面、側壁面、第2の面
3e2 反射面(傾斜面)
3f 屈曲部
3f1 外側曲面、屈曲部、屈曲部の断面形状
3f2 屈曲部、屈曲部の断面形状
3g 傾斜部
3g1 傾斜部
3g2 傾斜部
3h 直線部
3h1 直線部
3h2 直線部
4 受光素子
5 シンチレータ
6 信号粒子制限板
50 試料
60 電子光学鏡筒
61 試料室
100 一次電子線
101 二次粒子
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13