(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、近年、航空機において、車輪等の駆動装置の電動化が進んでおり、これに伴い、駆動装置を制御する制御ユニットを搭載する必要がある。制御ユニットは、多数の発熱部品を有しており、発熱量が多い。このため、このような制御ユニットには、放熱器を設ける必要がある。しかしながら、特許文献1に開示されたヒートシンクは、流路における圧力損失については考慮されていない。したがって、流路の圧力損失が大きい場合には、大型のコンプレッサが必要になる。航空機においては、搭載スペース及び積載重量に限りがあり、小型のコンプレッサでも十分に冷却可能な放熱器が必要である。
【0005】
本開示は、上述する問題点に鑑みてなされたもので、航空機用放熱器において、圧力損失の増加を抑えつつ、冷却性能を向上させることを目的とする。
【課題を解決するための手段】
【0006】
本開示は、上記課題を解決するための手段として、以下の構成を採用する。
【0007】
第1の開示は、航空機に搭載された発熱源の冷却を行う航空機用放熱器であって、主流の流動方向の上流に向けた面が平面視で湾曲した形状である凹部または凸部が上記主流との接触面に形成された放熱部を備える。
【0008】
第2の開示は、上記第1の開示において、上記接触面の法線方向から見た上記凹部または上記凸部の輪郭は、上記主流の流動方向に沿う基準軸を中心にして対称であると共に、上記基準軸に沿って配置される半径の違う円を結んだ平面形状をしており、前記基準軸に沿って小さい上記円から大きい上記円に向かう方向において小さい上記円の中心を越えて広がる形状に設定されている。
【0009】
第3の開示は、上記第2の開示において、上記凹部または上記凸部は、小さい上記円側が上記主流の流動方向の上流に配置されるように形成される。
【0010】
第4の開示は、上記第1〜第3のいずれかの開示において、上記放熱部は、第1面に上記凹部が形成され、上記第1面と対向する第2面に上記凸部が形成される。
【0011】
第5の開示は、上記第4の開示において、上記接触面の法線方向から見て、第1面に形成された凹部と第2面に形成された凸部とが重ねて配置されている。
【発明の効果】
【0012】
本開示によれば、航空機用放熱器の放熱部に凹部または凸部が形成される。これにより、航空機用放熱器内部を流体が通過する際に、凹部または凸部と接触するため、放熱を促進させることができる。また、本開示に係る放熱器の凹部または凸部は、主流の流動方向の上流に向かう面が曲面状であることにより、流体が前記面に沿って緩やかに流れ方向を変化させるため、圧力損失が増加しにくい。したがって、圧力損失の増加を抑えつつ、冷却性能を向上させることができる。
【発明を実施するための形態】
【0014】
以下、図面を参照して、本開示に係る放熱器の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
図1は、本実施形態に係る放熱器1を含む冷却システム100の模式図である。
【0015】
本実施形態に係る冷却システム100は、一例として、航空機の車輪の駆動制御を行うタキシングモータコントローラ200(発熱源)の冷却に用いられ、
図1に示すように、コンプレッサ110と、コンプレッサモータコントローラ120と、外部接続ダクト130と、フィルタ140と、放熱器1とを備えている。タキシングモータコントローラ200は、駆動回路等を有しており、航空機の航行時に高温となる。コンプレッサ110は、放熱器1の排気側に接続されており、放熱器1を通過した冷却空気を外部へと排出している。コンプレッサモータコントローラ120は、コンプレッサ110の駆動制御のための装置であり、除熱のために、放熱器1の上に配置されている。
【0016】
外部接続ダクト130は、放熱器1の吸気側に取り付けられ、航空機内の空気を冷却空気として取り入れるための取入口(不図示)と接続されている。また、この外部接続ダクト130には、上記取入口との接続部にフィルタ140が設けられている。フィルタ140は、航空機内の空気に含まれる塵などの粒子が放熱器1へと流入することを防止している。
【0017】
図2は、本実施形態に係る放熱器1の伝熱部2及び放熱部3を示す平面図である。
図3は、本実施形態に係る放熱器1の伝熱部2及び放熱部3の断面図である。
放熱器1は、航空機用放熱器であり、伝熱部2と、放熱部3(
図2参照)と、放熱ダクト4とを備えている。伝熱部2は、複数の伝熱性の高い金属製の板材2aを複数積層して接着することにより構成されている略直方体の部材である。伝熱部2は、タキシングモータコントローラ200及びコンプレッサモータコントローラ120と接触しており、タキシングモータコントローラ200及びコンプレッサモータコントローラ120の熱を放熱部3へと伝える。
【0018】
放熱部3は、放熱ダクト4に内設され、長尺状の放熱板3aを複数有しており、複数の放熱板3aが、隙間を空けながら複数枚積層されている。放熱板3aは、長手方向が、伝熱部2の積層された板材2aの長手方向に対して接触した状態で伝熱部2に固定された長尺状の薄板である。放熱板3aには、冷却空気と接触する接触面に複数の放熱促進部3bが等間隔に形成されている。
【0019】
図4は、本実施形態に係る放熱器1の放熱板3aの拡大図である。
放熱促進部3bは、放熱板3aから冷却空気への熱伝達率を向上させるために放熱板3aに複数設けられている。この放熱促進部3bは、例えば放熱板3aをプレス加工することにより形成されており、
図3に示すように、放熱板3aの接触面である第1面においては凹部であると共に、対向する接触面である第2面の同一位置においては凸部となっている。第1面及び第2面の法線方向から見た放熱促進部3bの輪郭は、
図4に示すように、長手方向に沿う基準軸Xに対して対称である。また、放熱促進部3bの輪郭は、基準軸X上に中心を有する大円C1(大きい円)と大円C1より径の小さい小円C2(小さい円)とを配置し、大円C1と小円C2との共通接線L1より僅かに外側に膨らんだ曲線により結ばれている。放熱促進部3bの輪郭は、大円C1と、小円C2と、共通接線L1より僅かに外側に膨らんだ曲線とによって得られた図形の外形形状とされている。すなわち、放熱促進部3bの輪郭は、基準軸Xに沿って小円C2から大円C1に向かう方向において、小円C2の中心を越えて広がる形状に設定されている。また、放熱促進部3bの基準軸Xが冷却空気の主流の流動方向に沿うように配置されることで、基準軸Xに沿って大円C1が冷却空気の流れ方向下流側となり、小円C2が冷却空気の流れ方向上流側となる。放熱促進部3bの輪郭は、冷却空気の主流の流動方向の上流に向かう面が湾曲した形状となっている。
【0020】
また、放熱促進部3bの凹部断面形状は、第1面の法線方向において大円C1の中心と重なる位置が最も深く、小円C2の外縁に向かうに連れて浅くなるように設定されている。これにより、放熱促進部3bの凹部断面形状は、主流の流動方向の上流側に配置される縁端部からなだらかに傾斜し、大円C1の中心と重なる位置から主流の流動方向の下流側に配置される縁端部までが急激に立ち上がる形状となっている。また、放熱促進部3bの凹部断面形状は、基準軸Xに対して対称である。
放熱促進部3bは、
図2に示すように、冷却空気の流れ方向に沿う方向に多数配列されると共に、冷却空気の流れ方向と交差する方向に複数配列されている。
【0021】
放熱ダクト4は、一端が外部接続ダクト130と接続され、他端がコンプレッサ110と接続された筒状部材である。この放熱ダクト4は、内部に放熱部3を収容しており、放熱部3を通過する流路を形成する。
【0022】
このような本実施形態における冷却システム100の動作を説明する。
タキシングモータコントローラ200は、航空機の航行時に回路に負荷がかかることにより発熱し、表面温度が上昇する。タキシングモータコントローラ200に接触した状態の伝熱部2は、放熱部3の放熱板3aにタキシングモータコントローラ200の熱を伝達する。
【0023】
コンプレッサ110が駆動すると、外部接続ダクト130を介して、航空機内から空気が冷却空気として放熱ダクト4へと流入する。放熱部3は、放熱ダクト4に収容され、冷却空気の流路中に張り出しており、放熱部3に冷却空気が接触することにより放熱部3の熱が冷却空気へと伝達される。このとき、冷却空気は、放熱板3aの第1面においては、凹部の小円C2側の領域へと流入し、小円C2側の主流の流動方向に向かう曲面に沿って凹部の内部を流れ、凹部の外へと流れる。
【0024】
また、冷却空気は、放熱板3aの第2面においては、凸部の大円C1側の主流の流動方向に向かう面に沿って凸部の外周を流れる。このように、放熱促進部3bに沿って冷却空気が流れることにより、熱が冷却空気へと伝達される。放熱板3aは、このような放熱促進部3bが冷却空気の流動方向に沿って多数配列されていることで、冷却空気へと多くの熱を伝達することができる。
さらに、熱が伝達された冷却空気は、コンプレッサ110により吸い上げられた後、冷却システム100の外側へと排出される。
【0025】
このような本実施形態の放熱板3aの性能評価を行った結果を、
図5を参照して説明する。
図5は、本実施形態の放熱板3aと、円形の外形形状を有する放熱促進部3bが設けられた放熱板3aと、従来のオフセットフィンとについての性能評価の結果を示す表である。本性能評価において比較対象とされるオフセットフィンは、板材を波状に加工することにより凹凸を形成した構成であり、この凹凸の冷却空気に向かう面は、平面状となっている。
【0026】
図5の表において、熱伝達率を示す数値として、各放熱器におけるヌッセルト数Nuを平滑面におけるヌッセルト数Nu
∞で標準化された値と、各放熱器におけるヌッセルト数Nuを平滑面における同一送風動力条件のヌッセルト数Nu
∞,Sで標準化された値とを用いている。ここでいう同一送付動力条件とは、送風する動力すなわち差圧が同じ条件であり、換言すれば圧力損失が同じ条件ともいえる。また、
図5の表において、摩擦抵抗を示す数値として、各放熱器における摩擦係数fを、平滑面における摩擦係数f
∞で標準化された値と、各放熱器における摩擦係数fを平滑面における同一送風動力条件の摩擦係数f
∞,Sで標準化された値とを用いている。さらに、
図5の表に示す伝熱総合係数ηは、摩擦力(圧力損失)と、熱伝達率とについて総合的に評価する無次元数である。伝熱総合係数ηは、スタントン数St及び摩擦係数fを用いて下式1で与えられる。なお、スタントン数Stは、物体からの熱移動を表す無次元数である。また、St
∞,Sは、同一送風動力条件での平滑面におけるスタントン数を示している。なお、伝熱総合係数ηの値が大きいほど、摩擦係数の大きさに対して、熱伝達率が高いことを示している。
【0028】
本実施形態の放熱板3aと、従来型オフセットフィンとの各放熱板におけるヌッセルト数Nuを平滑面におけるヌッセルト数Nu
∞で標準化された値について比較すると、放熱板3aの放熱促進部3bの凹部側と凸部側との平均値が、従来型オフセットフィンの熱伝達率の2倍以上であり、熱伝達率が大幅に改善されている。さらに、各放熱板におけるヌッセルト数Nuを同一送風動力条件におけるヌッセルト数Nu
∞,Sで標準化された値について比較すると、放熱板3aの放熱促進部3bの凹部側と凸部側との平均値が、従来型オフセットフィンよりもさらに大きいことがわかる。すなわち、本実施形態の放熱板3aは、熱伝達効率が従来型オフセットフィンよりも大幅に向上していることがわかる。
【0029】
また、本実施形態の放熱板3aと、従来型オフセットフィンとの摩擦係数について比較すると、いずれの送風条件においても、本実施形態の放熱板3aは摩擦係数が増加している。そして、伝熱総合係数ηは、本実施形態の放熱板3aが従来型オフセットフィンの約2倍である。すなわち、放熱器1は、従来型オフセットフィンと比較して、摩擦の増加の割合と比較して、熱伝達率が大幅に高い。すなわち、放熱板3aは、従来型オフセットフィンと比較して、摩擦による圧力損失を抑えられると共に、熱伝達の効率が向上しており、放熱量を確保するために必要な面積が小さい場合にも、十分な効果を発揮することができる。
【0030】
また、本実施形態の放熱板3aにおいて、放熱促進部3bの凹部と凸部とで比較すると、いずれの送風条件においても、凸部の熱伝達率が高いことが示されている。このような本実施形態の放熱板3aは、放熱促進部3bの凸部により熱伝達率を向上させていると共に、凹部により摩擦の増加を抑制している。
【0031】
また、円形の放熱促進部3bを有する放熱板と、従来型オフセットフィンとを比較した場合にも、円形の放熱促進部3bを有する放熱板は、熱伝達率が約2倍となっている。さらに、円形の放熱促進部3bを有する放熱板は、本実施形態の放熱板3aより摩擦係数が低い。したがって、円形の放熱促進部3bを有する放熱板は、伝熱総合係数ηが本実施形態の放熱板3aよりは小さいものの、従来型オフセットフィンの約2倍であり、従来型オフセットフィンよりも伝熱総合係数ηが大幅に改善されている。
【0032】
本実施形態に係る放熱器1によれば、放熱部3に放熱促進部3bが形成される。これにより、放熱ダクト4を冷却空気が通過する際に、放熱促進部3bと接触する。この放熱促進部3bは、冷却空気の主流の流動方向に向かう面が曲面状であることにより、流体がこの面に沿って流れるため、圧力損失が増大しにくい。また、放熱促進部3bは、
図5に示すように、従来型オフセットフィンよりも熱伝達率が大幅に向上している。したがって、本実施形態に係る放熱器1は、圧力損失の増加を抑えつつ、冷却性能を向上させることが可能である。そして、放熱器1における圧力損失の増加が押さえられたことにより、小型のコンプレッサ110を適用することが可能である。
【0033】
本実施形態に係る放熱器1は、大円C1と小円C2とを共通接線L1で結び、これによって得られた図形の外形形状とされている。これにより、円形の放熱促進部3bを有する放熱板と比較して放熱器1の熱伝達率を向上させることができる。したがって、放熱器1は、より冷却性能を向上させることができる。
【0034】
本実施形態に係る放熱器1は、大円C1が冷却空気の流動方向上流側に配置され、小円C2が冷却空気の流動方向下流側に配置されるように、放熱促進部3bが形成されている。これにより、放熱促進部3bの凸部における冷却空気の流動方向に向かう面が曲率半径の大きい曲面状であり、冷却空気の抵抗を抑制することができる。
【0035】
本実施形態に係る放熱器1は、放熱板3aにおいて、第1面において凹部が形成され、第2面において凸部が形成されている。放熱器1は、凸部によって熱伝達率を向上させ、凹部によって圧力損失の増大を抑えている。したがって、本実施形態に係る放熱器1は、圧力損失の増加を抑えつつ、冷却性能を向上させることが可能である。
【0036】
以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
【0037】
例えば、上記実施形態においては、放熱促進部3bが大円C1と小円C2とを共通接線L1で結び、これによって得られた図形の外形形状とされている。しかしながら、本開示はこれに限定されるものではなく、放熱促進部3bの凹部及び凸部は、外形形状が円形であってもよい。
図5に示すように、円形の放熱促進部3bを有する放熱板は、従来型オフセットフィンよりも伝熱総合係数ηが向上している。したがって、外形形状が円形の放熱促進部3bであっても、十分な冷却性能を確保することが可能である。さらに、上記実施形態に係る放熱器1と比較して、円形の放熱促進部3bを有する放熱板は、摩擦係数が小さく、圧力損失を低く抑えることができる。
【0038】
また、放熱板3aは、凹部及び凸部が第1面及び第2面の両面に混在して形成される構成、すなわち、1つの面に凹部と凸部との両方が形成される構成を採用することも可能である。この場合、放熱板3aの第1面と第2面との摩擦係数及び熱伝達率の差を減少させ、第1面と第2面との伝熱総合係数の差を減少させることができる。
【0039】
また、放熱器1の冷却対象は、タキシングモータコントローラ200に限定されず、発熱部品であればよい。さらに、冷却対象となる部品の形状によって、伝熱部2の伝熱面形状を変更することも可能である。
【0040】
また、放熱板3aには、第1面及び第2面に形成される放熱促進部3bとして、凹部のみ、または、凸部のみが設けられる構成を採用することも可能である。放熱促進部3bが凹部のみとされる場合、冷却空気の圧力損失をより小さくすることができる。また、放熱促進部3bが凸部のみとされる場合、冷却空気への熱伝達率を向上させることができる。