特許第6751211号(P6751211)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クラレの特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6751211
(24)【登録日】2020年8月17日
(45)【発行日】2020年9月2日
(54)【発明の名称】ブロック共重合体の水素添加物
(51)【国際特許分類】
   C08F 8/04 20060101AFI20200824BHJP
   C08F 297/02 20060101ALI20200824BHJP
   C08L 53/02 20060101ALI20200824BHJP
   C08L 101/00 20060101ALI20200824BHJP
   F16F 15/02 20060101ALI20200824BHJP
   C09J 153/02 20060101ALI20200824BHJP
   B32B 27/00 20060101ALI20200824BHJP
   C09K 3/00 20060101ALI20200824BHJP
【FI】
   C08F8/04
   C08F297/02
   C08L53/02
   C08L101/00
   F16F15/02 Q
   C09J153/02
   B32B27/00 A
   C09K3/00 P
【請求項の数】15
【全頁数】46
(21)【出願番号】特願2019-536107(P2019-536107)
(86)(22)【出願日】2018年11月21日
(86)【国際出願番号】JP2018043022
(87)【国際公開番号】WO2019103048
(87)【国際公開日】20190531
【審査請求日】2019年7月1日
(31)【優先権主張番号】特願2017-225097(P2017-225097)
(32)【優先日】2017年11月22日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2018-105641(P2018-105641)
(32)【優先日】2018年5月31日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000001085
【氏名又は名称】株式会社クラレ
(74)【代理人】
【識別番号】110002620
【氏名又は名称】特許業務法人大谷特許事務所
(72)【発明者】
【氏名】千田 泰史
(72)【発明者】
【氏名】加藤 真裕
【審査官】 中村 英司
(56)【参考文献】
【文献】 特開平02−073806(JP,A)
【文献】 特開2011−148956(JP,A)
【文献】 特開2007−079348(JP,A)
【文献】 特開2003−005440(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 8/04
C08F 297/02
C08L 53/02
(57)【特許請求の範囲】
【請求項1】
重合体ブロック(A)及び重合体ブロック(B)を含有するブロック共重合体における該重合体ブロック(A)及び該重合体ブロック(B)の合計含有量が100質量%で該重合体ブロック(A)の含有量が1質量%以上50質量%以下であり、
該重合体ブロック(A)が、芳香族ビニル化合物に由来する構造単位であって
該重合体ブロック(B)が、共役ジエン化合物に由来する構造単位であってかつ下記式(X)で表される1種以上の脂環式骨格(X)を主鎖に含む構造単位を有し、
該共役ジエン化合物が、ブタジエン、イソプレン、又はブタジエンとイソプレンとの併用であり、
該重合体ブロック(B)の水素添加率が、50〜99モル%である、
ブロック共重合体の水素添加物。
【化1】


(上記式(X)中、R〜Rは、それぞれ独立に水素原子又はメチル基を示し、複数あるR〜Rはそれぞれ同一でも異なってもよい。)
【請求項2】
前記重合体ブロック(B)におけるビニル結合量が55〜95モル%である、請求項1に記載のブロック共重合体の水素添加物。
【請求項3】
JIS K7244−10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度−70〜100℃、昇温速度3℃/分の条件で測定したtanδが1.0以上となる一連の温度領域が存在し、該温度領域の最大幅が13℃以上である、請求項1又は2に記載のブロック共重合体の水素添加物。
【請求項4】
前記脂環式骨格(X)において、前記R〜Rのうち少なくとも1つがメチル基である脂環式骨格(X’)が含まれる、請求項1〜3のいずれかに記載のブロック共重合体の水素添加物。
【請求項5】
前記R〜Rが同時に水素原子である、請求項1〜3のいずれかに記載のブロック共重合体の水素添加物。
【請求項6】
前記重合体ブロック(B)中に前記脂環式骨格(X)を1モル%以上40モル%以下含有する、請求項1〜5のいずれかに記載のブロック共重合体の水素添加物。
【請求項7】
前記重合体ブロック(B)中に前記脂環式骨格(X’)を1モル%以上40モル%以下含有する、請求項4に記載のブロック共重合体の水素添加物。
【請求項8】
前記ブロック共重合体における前記重合体ブロック(A)の含有量が1質量%以上16質量%以下である、請求項1〜7のいずれかに記載のブロック共重合体の水素添加物。
【請求項9】
前記ブロック共重合体が、前記重合体ブロック(A)をAで、前記重合体ブロック(B)をBで表したときに、A−B、A−B−A、B−A−B、A−B−A−B、A−B−A−B−A、B−A−B−A−B、及び(A−B)nZ(Zはカップリング剤残基を表し、nは3以上の整数を表す)のいずれかの結合様式を含む、請求項1〜8のいずれかに記載のブロック共重合体の水素添加物。
【請求項10】
請求項1〜9のいずれかに記載のブロック共重合体の水素添加物を含有する樹脂組成物。
【請求項11】
請求項1〜9のいずれかに記載のブロック共重合体の水素添加物である(I)成分と、
オレフィン系樹脂、スチレン系樹脂(ただし、該(I)成分を除く。)、ポリフェニレンエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、イソブチレン−イソプレン共重合ゴム、及びポリウレタン系熱可塑性エラストマーから選ばれる少なくとも1種である(II)成分とを含有し、
該(I)成分と該(II)成分との含有割合[(I)/(II)]が質量比で1/99〜99/1である樹脂組成物。
【請求項12】
請求項1〜9のいずれかに記載のブロック共重合体の水素添加物、又は請求項10あるいは11に記載の樹脂組成物を成形してなるフィルム又はシート。
【請求項13】
請求項1〜9のいずれかに記載のブロック共重合体の水素添加物、又は請求項10あるいは11に記載の樹脂組成物を含有してなる制振材。
【請求項14】
請求項1〜9のいずれかに記載のブロック共重合体の水素添加物、又は請求項10あるいは11に記載の樹脂組成物を含有してなる接着剤又は粘着剤。
【請求項15】
請求項1〜9のいずれかに記載のブロック共重合体の水素添加物又は請求項10あるいは11に記載の樹脂組成物を含有してなるX層と、該X層の少なくとも一方の面に積層されたY層とを有する積層体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ブロック共重合体又はその水素添加物に関する。詳しくは、該ブロック共重合体又はその水素添加物、該ブロック共重合体又はその水素添加物を含有する樹脂組成物、及び、該ブロック共重合体、該水素添加物又は該樹脂組成物の各種用途に関する。
【背景技術】
【0002】
芳香族ビニル化合物に由来する構造単位を含有する重合体ブロックと、共役ジエン化合物に由来する構造単位を含有する重合体ブロックとを有するブロック共重合体及びその水素添加物の中には制振性を有するものがあることは既に知られており、制振材に利用されてきた。また、上記ブロック共重合体及びその水素添加物は、制振性の他に遮音性、耐熱性、耐衝撃性、及び粘接着性等の物性を有することが可能なものがあり、さまざまな用途に用い得ることが考えられる。そこで、上記ブロック共重合体及びその水素添加物に関し、各種用途に応じて要求される物性に優れるための技術改良が行われている。
【0003】
例えば、制振性や柔軟性、耐熱性、引張強さ及び耐衝撃性等の機械的特性に優れさせるためにtanδのピーク温度やビニル結合量を特定した、スチレン系化合物とイソプレンやブタジエン等の共役ジエン化合物との水添ブロック共重合体が開示されている(例えば、特許文献1〜4参照)。
また、制振性や柔軟性、透明性及び耐熱性等に優れる樹脂組成物として、熱可塑性樹脂とビニル結合量を特定したブロック共重合体と含有する樹脂組成物が開示されている(例えば、特許文献5及び6参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2002−284830号公報
【特許文献2】国際公開第2000/015680号
【特許文献3】特開2006−117879号公報
【特許文献4】特許2010−053319号公報
【特許文献5】特開平5−202287号公報
【特許文献6】特許平10−067894号公報
【特許文献7】特表2005−513172号公報
【特許文献8】米国特許第3966691号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記のように、制振性や各種物性を向上させるために共役ジエン化合物のビニル結合量やtanδを特定すること、イソプレンやブタジエン等の共役ジエン化合物及びスチレン系化合物を用いる等の技術が開示されている。しかしながら、共役ジエン化合物としてブタジエンを用いた場合はビニル結合量を高くしてもガラス転移温度を上げるには限界があり、一方イソプレンを用いた場合はビニル結合量を高くすることによりガラス転移温度を上げることはできるが水素添加率を高くすることは困難であり、制振性及び各種物性をバランスよくさらに向上させることは難しかった。また、イソプレンとブタジエンを併用した場合では、水素添加率をある程度高くすることはできるが、イソプレン単独の場合よりもガラス転移温度を向上させることができず、制振性が不十分であった。また、スチレン系化合物と共役ジエン化合物とのスチレン系共重合体とすることによりガラス転移温度を上げることはできるが、スチレン非共重合体と比べてtanδのピーク強度が低くなり、さらに優れた制振性を発現させるためには改良の余地があった。
【0006】
一方、イソプレンやブタジエン等の共役ジエン化合物を用いた重合体として、環状ビニル単位を有するエラストマーが知られている(例えば、特許文献7及び8参照)。しかしながら、特許文献7及び8には該エラストマーの製造方法等について開示されているが、その用途や、これをブロック共重合体に用いること及び共重合体とした場合の効果に関しては何ら記載されていない。
【0007】
そこで本発明は、優れた制振性を有し、各種用途に好適なブロック共重合体又はその水素添加物を提供することを課題とする。
【課題を解決するための手段】
【0008】
上記課題を解決すべく鋭意検討した結果、本発明者らは特定の脂環式骨格を主鎖に有する重合体ブロックを含有するブロック共重合体又はその水素添加物により当該課題を解決できることを見出し、本発明に想到するに至った。
すなわち、本発明は下記のとおりである。
【0009】
[1]重合体ブロック(A)及び重合体ブロック(B)を含有し、該重合体ブロック(B)が、共役ジエン化合物に由来する構造単位であって、下記式(X)で表される1種以上の脂環式骨格(X)を主鎖に含む構造単位を有する、ブロック共重合体又はその水素添加物。
【0010】
【化1】
【0011】
(上記式(X)中、R〜Rは、それぞれ独立に水素原子又は炭素数1〜11の炭化水素基を示し、複数あるR〜Rはそれぞれ同一でも異なってもよい。)
[2]上記ブロック共重合体又はその水素添加物を含有する樹脂組成物。
[3]上記ブロック共重合体、上記水素添加物又は上記樹脂組成物を用いてなる制振材、フィルム、シート、接着剤、粘着剤、又は積層体。
【発明の効果】
【0012】
本発明によれば、優れた制振性を有し、各種用途に好適なブロック共重合体又はその水素添加物を提供することができる。
【発明を実施するための形態】
【0013】
本発明は、重合体ブロック(A)及び重合体ブロック(B)を含有し、該重合体ブロック(B)が、共役ジエン化合物に由来する構造単位であって、前記式(X)で表される1種以上の脂環式骨格(X)を主鎖に含む構造単位を有する、ブロック共重合体又はその水素添加物、該ブロック共重合体又はその水素添加物を含有する樹脂組成物、並びに該ブロック共重合体、該水素添加物又は該樹脂組成物の各種用途に係る。
以下、本発明について説明する。
【0014】
<ブロック共重合体又はその水素添加物>
[重合体ブロック(A)]
本発明のブロック共重合体を構成する重合体ブロック(A)は、制振性及び機械的特性の観点から、モノマーとして用いられる芳香族ビニル化合物に由来する構造単位を有することが好ましい。
重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位(以下、「芳香族ビニル化合物単位」と略称することがある。)を、重合体ブロック(A)中70モル%超含有することが好ましく、機械的特性の観点から、より好ましくは80モル%以上、さらに好ましくは90モル%以上、よりさらに好ましくは95モル%以上であり、実質的に100モル%であることが特に好ましい。
【0015】
上記芳香族ビニル化合物としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、β−メチルスチレン、2,6−ジメチルスチレン、2,4−ジメチルスチレン、α−メチル−o−メチルスチレン、α−メチル−m−メチルスチレン、α−メチル−p−メチルスチレン、β−メチル−o−メチルスチレン、β−メチル−m−メチルスチレン、β−メチル−p−メチルスチレン、2,4,6−トリメチルスチレン、α−メチル−2,6−ジメチルスチレン、α−メチル−2,4−ジメチルスチレン、β−メチル−2,6−ジメチルスチレン、β−メチル−2,4−ジメチルスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、2,6−ジクロロスチレン、2,4−ジクロロスチレン、α−クロロ−o−クロロスチレン、α−クロロ−m−クロロスチレン、α−クロロ−p−クロロスチレン、β−クロロ−o−クロロスチレン、β−クロロ−m−クロロスチレン、β−クロロ−p−クロロスチレン、2,4,6−トリクロロスチレン、α−クロロ−2,6−ジクロロスチレン、α−クロロ−2,4−ジクロロスチレン、β−クロロ−2,6−ジクロロスチレン、β−クロロ−2,4−ジクロロスチレン、o−t−ブチルスチレン、m−t−ブチルスチレン、p−t−ブチルスチレン、o−メトキシスチレン、m−メトキシスチレン、p−メトキシスチレン、o−クロロメチルスチレン、m−クロロメチルスチレン、p−クロロメチルスチレン、o−ブロモメチルスチレン、m−ブロモメチルスチレン、p−ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン、N−ビニルカルバゾール等が挙げられる。これらの芳香族ビニル化合物は1種単独で用いてもよく、2種以上用いてもよい。中でも、製造コストと物性バランスの観点から、スチレン、α−メチルスチレン、p−メチルスチレン、及びこれらの混合物が好ましく、スチレンがより好ましい。
【0016】
本発明の目的及び効果の妨げにならない限り、重合体ブロック(A)は芳香族ビニル化合物以外の他の不飽和単量体に由来する構造単位(以下、「他の不飽和単量体単位」と略称することがある。)を、重合体ブロック(A)中30モル%以下の割合で含有していてもよいが、好ましくは20モル%未満、より好ましくは15モル%未満、さらに好ましくは10モル%未満、よりさらに好ましくは5モル%未満、特に好ましくは0モル%である。
該他の不飽和単量体としては、例えばブタジエン、イソプレン、2,3−ジメチルブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、β−ピネン、8,9−p−メンテン、ジペンテン、メチレンノルボルネン、2−メチレンテトラヒドロフラン等からなる群から選択される少なくとも1種が挙げられる。重合体ブロック(A)が該他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。
【0017】
ブロック共重合体は、前記重合体ブロック(A)を少なくとも1つ有していればよい。ブロック共重合体が重合体ブロック(A)を2つ以上有する場合には、それら重合体ブロック(A)は、同一であっても異なっていてもよい。なお、本明細書において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、重量平均分子量、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、グラジェント、ブロック)のうち少なくとも1つが異なることを意味する。
【0018】
(重量平均分子量)
重合体ブロック(A)の重量平均分子量(Mw)は、特に制限はないが、ブロック共重合体が有する重合体ブロック(A)のうち、少なくとも1つの重合体ブロック(A)の重量平均分子量が、好ましくは3,000〜60,000、より好ましくは4,000〜50,000である。ブロック共重合体が、上記範囲内の重量平均分子量である重合体ブロック(A)を少なくとも1つ有することにより、機械強度がより向上し、成形加工性にも優れる。
なお、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量である。
【0019】
(重合体ブロック(A)の含有量)
ブロック共重合体における重合体ブロック(A)の含有量は、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、16質量%以下であることがさらに好ましく、14質量%以下であることが特に好ましい。50質量%以下であれば、適度な柔軟性を有し、tanδピークトップ強度が低下することなく制振性に優れたブロック共重合体又はその水素添加物とすることができる。また、下限値は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、6質量%以上であることがさらに好ましい。1質量%以上であれば、各種用途に好適な機械的特性及び成形加工性を有するブロック共重合体又はその水素添加物とすることができる。
なお、ブロック共重合体における重合体ブロック(A)の含有量は、H−NMR測定により求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
【0020】
[重合体ブロック(B)]
本発明のブロック共重合体を構成する重合体ブロック(B)は、共役ジエン化合物に由来する構造単位であって、下記式(X)で表される1種以上の脂環式骨格(X)を主鎖に含む構造単位(以下、「脂環式骨格含有単位」と略称することがある。)を有する。また、重合体ブロック(B)は、脂環式骨格(X)を含有しない共役ジエン化合物に由来する構造単位(以下、「共役ジエン単位」と略称することがある。)をも含有し得る。
重合体ブロック(B)中の脂環式骨格含有単位と共役ジエン単位の合計は、優れた制振性を発現する観点から、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上であり、実質的に100モル%であることが特に好ましい。
ブロック共重合体中に重合体ブロック(B)を2つ以上有する場合には、それら重合体ブロック(B)は、同一であっても異なっていてもよい。
【0021】
【化2】
【0022】
上記式(X)中、R〜Rは、それぞれ独立に水素原子又は炭素数1〜11の炭化水素基を示し、複数あるR〜Rはそれぞれ同一でも異なってもよい。上記炭化水素基の炭素数は、好ましくは炭素数1〜5であり、より好ましくは1〜3であり、さらに好ましくは1(すなわち、メチル基)である。また、上記炭化水素基は、直鎖又は分岐鎖であってもよく、飽和又は不飽和炭化水素基であってもよい。物性及び脂環式骨格(X)形成の観点から、R〜Rは、それぞれ独立に水素原子又はメチル基であることが特に好ましい。
なお、ブロック共重合体を水素添加した場合、上記式(X)におけるビニル基は水素添加され得る。そのため、水素添加物における脂環式骨格(X)の意味するところには、上記式(X)におけるビニル基が水素添加された骨格も含まれる。
【0023】
重合体ブロック(B)は、共役ジエン化合物に由来する構造単位であり、脂環式骨格(X)は該共役ジエン化合物に由来する。脂環式骨格(X)は後述する方法により共役ジエン化合物のアニオン重合で生成するが、用いる共役ジエン化合物に応じて少なくとも1種の脂環式骨格(X)が脂環式骨格含有単位の主鎖に含まれる。該脂環式骨格(X)が、重合体ブロック(B)に含まれる構造単位の主鎖に組み込まれていることにより、分子運動が小さくなるためガラス転移温度が上がり、室温付近でのtanδのピークトップ強度が向上して、優れた制振性を発現することができる。
【0024】
上記共役ジエン化合物としては、ブタジエン、イソプレン、ヘキサジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、ミルセン等を挙げることができる。中でも、ブタジエン、イソプレン、又はブタジエンとイソプレンとの併用が好ましい。
ブタジエンとイソプレンとを併用する場合、それらの配合比率[イソプレン/ブタジエン](質量比)に特に制限はないが、好ましくは5/95〜95/5、より好ましくは10/90〜90/10、さらに好ましくは40/60〜70/30、特に好ましくは45/55〜65/35である。なお、該混合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95〜95/5、より好ましくは10/90〜90/10、さらに好ましくは40/60〜70/30、特に好ましくは45/55〜55/45である。
【0025】
具体例として、共役ジエン化合物としてブタジエン、イソプレン、又はブタジエンとイソプレンとの併用を使用する場合の、主に生成する脂環式骨格(X)について説明する。
共役ジエン化合物としてブタジエンを単独で使用した場合、下記(i)の置換基の組み合わせを有する脂環式骨格(X)が生成される。すなわちこの場合、脂環式骨格(X)はR〜Rが同時に水素原子である脂環式骨格のみとなる。したがって、本発明は、重合体ブロック(B)が、R〜Rが同時に水素原子である1種の脂環式骨格(X)を主鎖に含む構造単位を有する、ブロック共重合体又はその水素添加物を提供することができる。
【0026】
また、共役ジエン化合物としてイソプレンを単独で使用する場合、下記(v)及び(vi)の置換基の組み合わせを有する2種の脂環式骨格(X)が主に生成される。
また、共役ジエン化合物としてブタジエンとイソプレンとを併用する場合、下記(i)〜(vi)の置換基の組み合わせを有する6種の脂環式骨格(X)が主に生成される。
(i) :R=水素原子、R=水素原子、R=水素原子
(ii) :R=水素原子、R=メチル基、R=水素原子
(iii) :R=水素原子、R=水素原子、R=メチル基
(iv) :R=メチル基、R=水素原子、R=水素原子
(v) :R=メチル基、R=メチル基、R=水素原子
(vi) :R=メチル基、R=水素原子、R=メチル基
【0027】
上記式(X)において、炭化水素基である置換基を有することによって分子運動がより小さくなり制振性がさらに向上する観点から、重合体ブロック(B)中の少なくとも1種の脂環式骨格(X)は、上記R〜Rのうち少なくとも1つが炭素数1〜11の炭化水素基である脂環式骨格(X’)であることが好ましい。中でも、共役ジエン化合物から脂環式骨格を効率よく生成させることができ、制振性及び機械的特性のバランスの観点から、該脂環式骨格(X’)における炭化水素基がメチル基であることがより好ましい。
特にR〜Rが、それぞれ独立に水素原子又はメチル基を示し、かつR〜Rが同時に水素原子でない脂環式骨格であることがより好ましい。すなわち、重合体ブロック(B)は、上記(ii)〜(vi)の置換基の組み合わせを有する脂環式骨格のうち、いずれか1種以上を主鎖に含む構成単位を有することがより好ましい。
【0028】
(重合体ブロック(B)のビニル結合量)
重合体ブロック(B)を構成する構成単位が、イソプレン単位、ブタジエン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、前記脂環式骨格(X)を形成する結合形態以外のイソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2−結合、1,4−結合を、イソプレンの場合には1,2−結合、3,4−結合、1,4−結合をとることができる。
【0029】
ブロック共重合体及びその水素添加物においては、重合体ブロック(B)中の3,4−結合単位及び1,2−結合単位の含有量(以下、単に「ビニル結合量」と称することがある。)の合計が好ましくは55〜95モル%、より好ましくは63〜95モル%、さらに好ましくは70〜95モル%である。上記範囲であれば優れた制振性を発現することができる。
ここで、ビニル結合量は、実施例に記載の方法に従って、H−NMR測定によって算出した値である。
なお、重合体ブロック(B)がブタジエンのみからなる場合には、前記の「3,4−結合単位及び1,2−結合単位の含有量」とは「1,2−結合単位の含有量」と読み替えて適用する。
【0030】
(脂環式骨格(X)含有量)
重合体ブロック(B)中には脂環式骨格(X)を主鎖に含む構造単位が含まれていればよいが、より優れた制振性の効果を得る観点から、重合体ブロック(B)中に脂環式骨格(X)を1モル%以上含有していることが好ましく、より好ましくは1.1モル%以上、さらに好ましくは1.4モル%以上、よりさらに好ましくは1.8モル%以上であり、よりさらに好ましくは4モル%以上であり、よりさらに好ましくは10モル%以上であり、特に好ましくは13モル%以上である。また、重合ブロック(B)中の脂環式骨格(X)の含有量の上限は、本発明の効果を損なわない範囲内であれば特に制限はないが、生産性の観点から、40モル%以下であることが好ましく、30モル%以下であってもよく、20モル%以下であってもよく、18モル%以下であってもよい。
さらに制振性を向上させる観点から、重合体ブロック(B)中に上記脂環式骨格(X’)を1モル%以上含有していることがより好ましく、さらに好ましくは1.3モル%以上、よりさらに好ましくは1.6モル%以上である。脂環式骨格(X’)の含有量の上限値は、上記脂環式骨格(X)の含有量の上限値と同様である。
【0031】
より具体的に、共役ジエン化合物としてイソプレンを使用する場合、ブタジエンを使用する場合、又はブタジエンとイソプレンとを併用する場合、の各場合における脂環式骨格含有量は次のとおりである。
共役ジエン化合物としてイソプレンを使用する場合において、重合体ブロック(B)中に、前記(v),(vi)の置換基の組み合わせを有する脂環式骨格(X’)が1種以上存在するときのそれらの合計含有量は、1モル%以上であることがより優れた制振性の効果を得る観点から好ましく、1.5モル%以上であることがより好ましく、幅広い温度範囲において優れた制振性の効果を得る観点から2モル%以上であることがさらに好ましく、3モル%以上であることがよりさらに好ましく、4モル%以上であることが特に好ましい。また、イソプレンを使用する場合の上記合計含有量の上限値は、前記脂環式骨格(X)の含有量の上限値と同様である。
【0032】
共役ジエン化合物としてブタジエンを使用する場合において、重合体ブロック(B)中に、脂環式骨格(X)が存在するときのその含有量は、5モル%以上であることがより優れた制振性の効果を得る観点から好ましく、10モル%以上であることがより好ましく、15モル%以上であることがさらに好ましく、20モル%以上であることがよりさらに好ましく、25モル%以上であることがよりさらに好ましく、30モル%以上であることが特に好ましい。また、ブタジエンを使用する場合の上記含有量の上限値は、前記脂環式骨格(X)の含有量の上限値と同様である。
【0033】
共役ジエン化合物としてブタジエンとイソプレンとを併用する場合において、重合体ブロック(B)中に、前記(ii),(iii),(v),(vi)の置換基の組み合わせを有する脂環式骨格(X’)が1種以上存在するときのそれらの合計含有量は、1モル%以上であることがより優れた制振性の効果を得る観点から好ましく、2モル%以上であることがより好ましく、5モル%以上であることがさらに好ましく、8モル%以上であることがよりさらに好ましく、13モル%以上であることがよりさらに好ましい。ブタジエンとイソプレンとを併用する場合の上記合計含有量の上限値は、前記脂環式骨格(X)の含有量の上限値と同様である。
また、共役ジエン化合物としてブタジエンとイソプレンとを併用する場合において、重合体ブロック(B)中に、前記(i)〜(vi)の置換基の組み合わせを有する脂環式骨格(X)が1種以上存在するときのそれらの合計含有量は、1モル%以上であることがより優れた制振性の効果を得る観点から好ましく、5モル%以上であることがより好ましい。ブタジエンとイソプレンとを併用する場合の上記合計含有量の上限値は、前記脂環式骨格(X)の含有量の上限値と同様である。
【0034】
なお、ブロック共重合体又はその水素添加物に含まれる上記脂環式骨格(X)((X’)を含む)含有量は、ブロック共重合体の13C−NMR測定により、重合体ブロック(B)中の脂環式骨格(X)由来の積分値から求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
【0035】
また、本発明のブロック共重合体又はその水素添加物は、重合体ブロック(B)の水素添加率が0モル%以上50モル%未満の場合、脂環式骨格(X)に結合したビニル基と主鎖に結合したビニル基との含有モル比を特定することができる。
例えば、前記(ii),(iii),(v),(vi)の置換基の組み合わせを有する脂環式骨格(X’)では、該脂環式骨格(X’)に結合したビニル基末端の炭素原子(下記化学式の(a))の13C−NMRでのケミカルシフトは107〜110ppm付近に現れ、主鎖に結合したビニル基末端の炭素原子(下記化学式の(b))の13C−NMRでのケミカルシフトは110〜116ppm付近に現れる。そして、水素添加率が0〜40モル%の場合、13C−NMRで測定されるピーク面積比[ケミカルシフト値107〜110ppmのピーク面積]/[ケミカルシフト値110〜116ppmのピーク面積]が通常0.01〜3.00の範囲となり、より優れた制振性を発現できる観点から、該面積比は好ましくは0.01〜1.50、より好ましくは0.01〜1.00、さらに好ましくは0.01〜0.50、よりさらに好ましくは0.01〜0.20となる。
【0036】
【化3】

【0037】
また、本発明の水素添加物については、13C−NMR測定において脂環式骨格(X)上の炭素原子由来のピークはほとんど観測されないが、前記置換基Rが炭素数1〜11の炭化水素基であり、該Rを有するビニル基由来の分岐状アルキル基と結合する該脂環式骨格(X)上の炭化原子由来のピークについては観測され得る。
これにより、本発明の水素添加物について重合体ブロック(B)の水素添加率が50〜99モル%の場合、上記Rを有するビニル基由来の分岐状アルキル基と結合する脂環式骨格(X)上の炭素原子とビニル基由来の分岐状アルキル基と結合する主鎖上の炭素原子との含有モル比を特定することも可能である。
【0038】
例えば、前記(iii),(vi)の置換基の組み合わせを有する脂環式骨格(X)では、イソプレン基と結合する脂環式骨格(X)上の炭素原子(下記化学式の(c))の13C−NMRでのケミカルシフトは50.0〜52.0ppm付近に現れ、イソプレン基と結合する主鎖上の炭素原子(下記化学式の(d))の13C−NMRでのケミカルシフトは43.0〜45.0ppm付近に現れる。そして、水素添加率が40〜99モル%の場合、13C−NMRで測定されるピーク面積比[ケミカルシフト値50.0〜52.0ppmのピーク面積]/[ケミカルシフト値43.0〜45.0ppmのピーク面積]が通常0.01〜3.00の範囲となり、より優れた制振性を発現できる観点から、該面積比は好ましくは0.01〜1.50の範囲、より好ましくは0.01〜1.00の範囲、さらに好ましくは0.01〜0.50の範囲、よりさらに好ましくは0.01〜0.25となる。
なお、上記ピーク面積比は、より詳細には実施例に記載の方法に従って測定することができる。
【0039】
【化4】

【0040】
(重量平均分子量)
ブロック共重合体が有する重合体ブロック(B)の合計の重量平均分子量は、制振性及びフィルムや積層体とする際の成形加工性等の観点から、水素添加前の状態で、好ましくは15,000〜800,000であり、より好ましくは50,000〜700,000であり、さらに好ましくは70,000〜600,000、特に好ましくは90,000〜500,000、最も好ましくは130,000〜450,000である。
【0041】
(その他の構造単位)
重合体ブロック(B)は、本発明の目的及び効果の妨げにならない限り、前記共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有していてもよい。この場合、重合体ブロック(B)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは50モル%未満、より好ましくは30モル%未満、さらに好ましくは20モル%未満、よりさらに好ましくは10モル%未満、特に好ましくは0モル%である。
該他の重合性の単量体としては、例えばスチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン、2,4−ジメチルスチレン、N−ビニルカルバゾール、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、β−ピネン、8,9−p−メンテン、ジペンテン、メチレンノルボルネン、2−メチレンテトラヒドロフラン、1,3−シクロペンタジエン、1,3−シクロヘキサジエン、1,3−シクロヘプタジエン、1,3−シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。
ブロック共重合体は、上記重合体ブロック(B)を少なくとも1つ有していればよい。ブロック共重合体が重合体ブロック(B)を2つ以上有する場合には、それら重合体ブロック(B)は、同一であっても異なっていてもよい。
【0042】
[製造方法]
(ブロック共重合体)
本発明のブロック共重合体の製造方法として、例えば、1種以上の共役ジエン化合物をモノマーとしてアニオン重合法により重合させることにより、前記脂環式骨格(X)を主鎖に含む構造単位を有する重合体ブロック(B)を形成し、重合体ブロック(A)のモノマーを添加し、また必要に応じてさらに重合体ブロック(A)のモノマー及び共役ジエン化合物を逐次添加することにより、ブロック共重合体を得ることができる。
上記アニオン重合法により脂環式骨格を生成させる方法は公知の技術を用いることができる(例えば、米国特許第3966691号明細書参照)。脂環式骨格はモノマーの枯渇によってポリマーの末端に形成され、これにさらにモノマーを逐次添加することで該脂環式骨格から再び重合を開始させることができる。そのため、モノマーの逐次添加時間、重合温度、あるいは触媒の種類や添加量、モノマーと触媒との組合せ等により、該脂環式骨格の生成の有無やその含有量を調整することができる。また、アニオン重合法では、アニオン重合開始剤、溶媒、及び必要に応じてルイス塩基を用いることができる。
【0043】
上記方法においてアニオン重合の重合開始剤として使用し得る有機リチウム化合物としては、例えばメチルリチウム、エチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、ペンチルリチウム等が挙げられる。また、重合開始剤として使用し得るジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼン等が挙げられる。
前記カップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼン、安息香酸フェニル等が挙げられる。
これらの重合開始剤及びカップリング剤の使用量は、目的とするブロック共重合体及びその水素添加物の所望とする重量平均分子量により適宜決定される。通常は、アルキルリチウム化合物、ジリチウム化合物等の開始剤は、重合に用いる重合体ブロック(A)のモノマー及び共役ジエン化合物等の単量体の合計100質量部あたり0.01〜0.2質量部の割合で用いられるのが好ましく、カップリング剤を使用する場合は、前記単量体の合計100質量部あたり0.001〜0.8質量部の割合で用いられるのが好ましい。
【0044】
溶媒としては、アニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n−ヘキサン、n−ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。また、重合反応は、通常0〜100℃、好ましくは10〜70℃の温度で、0.5〜50時間、好ましくは1〜30時間行う。
【0045】
また、共役ジエン化合物の重合の際に共触媒としてルイス塩基を添加する方法により、重合体ブロック(B)における上記脂環式骨格(X)の含有量や、3,4−結合及び1,2−結合の含有量を高めることができる。
用いることのできるルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2,2−ジ(2−テトラヒドロフリル)プロパン(DTHFP)等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N’,N’−テトラメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)、N−メチルモルホリン等のアミン類;ナトリウムt−ブチレート、ナトリムt−アミレート又はナトリウムイソペンチレート等の脂肪族アルコールのナトリウム又はカリウム塩、あるいは、ジアルキルナトリウムシクロヘキサノレート、例えば、ナトリウムメントレートのような脂環式アルコールのナトリウム又はカリウム塩等の金属塩;等が挙げられる。これらのルイス塩基は、1種単独で又は2種以上を組み合わせて用いることができる。
【0046】
ルイス塩基の添加量は、上記脂環式骨格(X)の含有量をどの程度に制御するか、並びに、前記重合体ブロック(B)が、特にイソプレン及び/又はブタジエンに由来する構造単位を含む場合には、重合体ブロック(B)を構成するイソプレン単位及び/又はブタジエン単位のビニル結合量をどの程度に制御するかにより決定される。そのため、ルイス塩基の添加量に厳密な意味での制限はないが、重合開始剤として用いられるアルキルリチウム化合物又はジリチウム化合物に含有されるリチウム1グラム原子あたり、通常0.1〜1,000モル、好ましくは1〜100モルの範囲内で用いるのが好ましい。
【0047】
共役ジエン化合物の平均フィード速度(以下、「平均ジエンフィード速度」と称すことがある。)は、脂環式骨格(X)の含有量を高める観点から、活性末端1モル当たり、150kg/h以下が好ましく、110kg/h以下がより好ましく、55kg/h以下がさらに好ましく、45kg/h以下であってもよく、30kg/h以下であってもよく、22kg/h以下であってもよい。下限値は、生産性を高める観点から、活性末端1モル当たり、1kg/h以上が好ましく、3kg/h以上がより好ましく、5kg/h以上がさらに好ましく、7kg/h以上であってもよく、10kg/h以上であってもよく、15kg/h以上であってもよい。
【0048】
上記した方法により重合を行なった後、アルコール類、カルボン酸類、水等の活性水素化合物を添加して重合反応を停止させることにより、ブロック共重合体を得ることができる。
【0049】
(水素添加物)
上記の製造方法により得られたブロック共重合体を水素添加物とする場合、不活性有機溶媒中で水添触媒の存在下に水素添加反応(水添反応)を行う。水添反応により、ブロック共重合体における重合体ブロック(B)中の共役ジエン化合物由来の炭素−炭素二重結合が水素添加され、本発明のブロック共重合体の水素添加物とすることができる。
水添反応は、水素圧力を0.1〜20MPa程度、好ましくは0.5〜15MPa、より好ましくは0.5〜5MPa、反応温度を20〜250℃程度、好ましくは50〜180℃、より好ましくは70〜180℃、反応時間を通常0.1〜100時間程度、好ましくは1〜50時間として実施することができる。
水添触媒としては、例えば、ラネーニッケル;Pt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、珪藻土等の単体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物等との組み合わせからなるチーグラー系触媒;メタロセン系触媒等が挙げられる。
【0050】
このようにして得られた水素添加物は、重合反応液をメタノール等に注ぐことにより凝固させた後、加熱又は減圧乾燥させるか、重合反応液をスチームと共に熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。
【0051】
各種用途に用いるに際し、上記ブロック共重合体又は水素添加物を用いるかは、各種用途において所望される性能に応じて特定することができる。同様に、水素添加物とする際の上記重合体ブロック(B)中の炭素−炭素二重結合の水素添加率をどの程度にするかは、各種用途において所望される性能に応じて特定することができる。
例えば、ブロック共重合体が未水添及び水素添加物の水素添加率が低い程、架橋が生じやすくなるため、架橋発泡成形することによって、強度の高い発泡成形体を成形することが可能である。また、水素添加物の水素添加率が高い程、耐熱性や耐候性が向上した水素添加物とすることが可能である。
【0052】
したがって、本発明は、重合体ブロック(B)の水素添加率が0モル%以上(すなわち、未水添の場合も含む。)50モル%未満であるブロック共重合体又はその水素添加物を提供し、また、重合体ブロック(B)の水素添加率が50〜99モル%である水素添加物をも提供する。
なお、上記水素添加率は、重合体ブロック(B)中の共役ジエン化合物及び脂環式骨格(X)由来の構造単位中の炭素−炭素二重結合の含有量を、水素添加後のH−NMR測定によって求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
【0053】
(重合体ブロック(A)と重合体ブロック(B)の結合様式)
ブロック共重合体は、重合体ブロック(A)と重合体ブロック(B)とが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合様式のいずれでもよい。中でも、重合体ブロック(A)と重合体ブロック(B)の結合形式は直鎖状であることが好ましく、その例としては重合体ブロック(A)をAで、また重合体ブロック(B)をBで表したときに、A−Bで示されるジブロック共重合体、A−B−A又はB−A−Bで示されるトリブロック共重合体、A−B−A−Bで示されるテトラブロック共重合体、A−B−A−B−A又はB−A−B−A−Bで示されるペンタブロック共重合体、(A−B)nZ型共重合体(Zはカップリング剤残基を表し、nは3以上の整数を表す)等を挙げることができる。中でも、直鎖状のトリブロック共重合体、又はジブロック共重合体が好ましく、A−B−A型のトリブロック共重合体が、柔軟性、製造の容易性等の観点から好ましく用いられる。
【0054】
ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来、厳密にはY−Z−Y(Zはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA−B−Z−B−A(Zはカップリング剤残基を表す)と表記されるべきブロック共重合体はA−B−Aと表記され、トリブロック共重合体の一例として取り扱われる。
【0055】
(重合体ブロック(A)及び(B)の含有量)
ブロック共重合体において、本発明の目的及び効果の妨げにならない限り、前記重合ブロック(A)及び(B)以外の他の単量体で構成される重合ブロックを含有していてもよいが、前記重合体ブロック(A)及び前記重合体ブロック(B)の合計含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、実質的に100質量%であることが特に好ましい。90質量%以上であれば、制振性及び成形加工性に優れ、各種用途に好適に用いることのできるブロック共重合体又はその水素添加物とすることができる。
【0056】
(重量平均分子量)
ブロック共重合体及びその水素添加物のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めた重量平均分子量(Mw)は、好ましくは15,000〜800,000、より好ましくは50,000〜700,000、さらに好ましくは60,000〜600,000、よりさらに好ましくは70,000〜600,000、特に好ましくは90,000〜500,000、最も好ましくは130,000〜450,000である。ブロック共重合体及びその水素添加物の重量平均分子量が15,000以上であれば、耐熱性が高くなり、800,000以下であれば、成形性が良好となる。
【0057】
[tanδ]
(tanδのピークトップ温度及び強度)
tanδ(損失正接)は、動的粘弾測定における周波数1Hzにおける損失弾性率/貯蔵弾性率の比であり、tanδのピークトップ温度及び強度は、制振性、及びその他の物性に大きく寄与する。ここで、tanδのピークトップ強度とは、tanδのピークが最大となるときのtanδの値のことである。また、tanδのピークトップ温度とは、tanδのピークが最大となるときの温度のことである。
【0058】
本発明において、ブロック共重合体又はその水素添加物を、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmの単層シートを作製し、該単層シートを円板形状に切り出して試験片とし、該試験片を用いて、tanδのピークトップ強度及び温度を測定する。測定条件は、JIS K7244−10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度−70〜100℃、昇温速度3℃/分である。
【0059】
本発明のブロック共重合体又はその水素添加物は、上記測定により、tanδのピークトップ強度が1.0以上となり得る。より高いものでは、1.5以上、さらには1.9以上となるものもある。tanδのピークトップ強度が高い程、その温度における制振性等の物性に優れることを示し、1.0以上であれば、実使用環境下において充分な制振性を得ることができる。
また、本発明のブロック共重合体又はその水素添加物は、tanδのピークトップ温度が、好ましくは−50℃以上、より好ましくは−40℃以上、さらに好ましくは−30℃以上、よりさらに好ましくは−25℃以上であり、0℃以上であってもよい。また、上記tanδのピークトップ温度の上限は、本発明の効果を損なわない範囲であればよく、50℃以下であってもよく、40℃以下であってもよく、35℃以下であってもよい。tanδのピークトップ温度の範囲として、例えば、好ましくは−50〜50℃であり、より好ましくは−40〜40℃、さらに好ましくは−30〜30℃、よりさらに好ましくは−25〜25℃である。tanδのピークトップ温度が−50℃以上であれば、実使用環境下において充分な制振性を得ることができ、50℃以下であれば、用途に応じた硬度の要求や、接着剤又は粘着剤の用途とした際の望ましい接着性を満たすことができる。
【0060】
(tanδが1.0以上となる温度領域の最大幅)
また、本発明のブロック共重合体又はその水素添加物は、上記測定条件で測定した−70〜100℃におけるtanδが1.0以上となる一連の温度領域が存在し、該温度領域の最大幅が、好ましくは12℃以上であり、より好ましくは13℃以上であり、さらに好ましくは15℃以上、よりさらに好ましくは17℃以上である。
前述のとおり、重合体ブロック(B)の構造単位において前記脂環式骨格(X)が主鎖に組み込まれており、さらに高いビニル結合量を有し得ることにより、分子運動が小さくなるためガラス転移温度が上昇し、温度変化に対してガラス転移がなだらかになる。これにより、本発明のブロック共重合体又はその水素添加物のtanδが1以上を示す温度範囲が広くなり、広い温度範囲で制振性を示すことが可能となる。tanδが1.0以上となる温度領域の最大幅が12℃以上、さらには13℃以上であれば、実使用環境下においてより優れた制振性を得ることができる。
【0061】
<樹脂組成物>
本発明のブロック共重合体又はその水素添加物は、他の樹脂材料との相容性が良好であることから、ブロック共重合体又はその水素添加物を含有する樹脂組成物を提供する。
上記他の樹脂材料としては、特に制限はなく熱硬化性樹脂及び熱可塑性樹脂等の樹脂が挙げられ、相容性及び成形加工性の観点から熱可塑性樹脂(熱可塑性エラストマーを含む)であることが好ましい。
上記熱可塑性樹脂としては、オレフィン系樹脂、スチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、イソブチレン−イソプレン共重合ゴム、及びポリウレタン系熱可塑性エラストマー等が挙げられ、これらの熱可塑性樹脂は、1種単独で又は2種以上を組み合わせて用いることができる。
【0062】
オレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン−1、ポリヘキセン−1、ポリ−3−メチル−ブテン−1、ポリ−4−メチル−ペンテン−1、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、オレフィン系動的架橋熱可塑性エラストマー(TPV)等が挙げられる。
また、上記ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンなどのエチレンの単独重合体;エチレン/ブテン−1共重合体、エチレン/ヘキセン共重合体、エチレン/ヘプテン共重合体、エチレン/オクテン共重合体、エチレン/4−メチルペンテン−1共重合体、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、エチレン/アクリル酸エステル共重合体、エチレン/メタクリル酸共重合体、エチレン/メタクリル酸エステル共重合体、エチレン−プロプレン−ジエン共重合体ゴム(EPDM)、エチレン−酢酸ビニル共重合体(EVA)などのエチレン系共重合体が挙げられる。
上記ポリプロピレンとしては、ホモポリプロピレン、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、プロピレン−ブテンランダム共重合体、プロピレン−エチレン−ブテンランダム共重合体、プロピレン−ペンテンランダム共重合体、プロピレン−ヘキセンランダム共重合体、プロピレン−オクテンランダム共重合体、プロピレン−エチレン−ペンテンランダム共重合体、プロピレン−エチレン−ヘキセンランダム共重合体などが挙げられる。また、これらのポリプロピレンに、アクリル酸、メタクリル酸、クロトン酸などの不飽和モノカルボン酸;マレイン酸、シトラコン酸、イタコン酸などの不飽和ジカルボン酸;それら不飽和モノカルボン酸又は不飽和ジカルボン酸のエステル、アミド又はイミド;無水マレイン酸、無水シトラコン酸、無水イタコン酸などの不飽和ジカルボン酸無水物などの変性剤をグラフト共重合した変性ポリプロピレン系樹脂を用いることもできる。
【0063】
スチレン系樹脂としては、ポリスチレン、ポリメチルスチレン、ポリジメチルスチレン、ポリt−ブチルスチレン等のポリアルキルスチレン;ポリクロロスチレン、ポリブロモスチレン、ポリフルオロスチレン、ポリフルオロスチレン等のポリハロゲン化スチレン;ポリクロロメチルスチレン等のポリハロゲン置換アルキルスチレン;ポリメトキシスチレン、ポリエトキシスチレン等のポリアルコキシスチレン;ポリカルボキシメチルスチレン等のポリカルボキシアルキルスチレン;ポリビニルベンジルプロピルエーテル等のポリアルキルエーテルスチレン;ポリトリメチルシリルスチレン等のポリアルキルシリルスチレン;ポリ(ビニルベンジルジメトキシホスファイド)、アクリロニトリル−ブタジエン−スチレン共重合体等が挙げられる。
【0064】
ポリフェニレンエーテル系樹脂としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジプロピル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジメトキシ−1,4−フェニレン)エーテル、ポリ(2,6−ジクロロメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジブロモメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジフェニル−1,4−フェニレン)エーテル、ポリ(2,6−ジトリル−1,4−フェニレン)エーテル、ポリ(2,6−ジクロロ−1,4−フェニレン)エーテル、ポリ(2,6−ジベンジル−1,4−フェニレン)エーテル、ポリ(2,5−ジメチル−1,4−フェニレン)エーテル等が挙げられる。
【0065】
ポリカーボネート系樹脂としては、脂肪族ポリカーボネート及び芳香族ポリカーボネートのいずれでもよい。例えば、ビスフェノールA、ヒドロキノン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4−ジヒドロキシジフェニルメタン、ビス(2−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシフェニル)メタン等の2価のフェノール類と、ホスゲン、ハロゲンホルメート、カーボネートエステル等のカーボネート前駆体とから製造されるポリカーボネート系樹脂が挙げられる。
【0066】
ポリアミド系樹脂としては、ポリカプロアミド(ナイロン6)、ポリウンデカンアミド(ナイロン11)、ポリラウリルラクタム(ナイロン12)、ポリヘキサメチレンアジバミド(ナイロン6,6)、ポリヘキサメチレンセバカミド(ナイロン6,12)等の単独重合体、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/アミノウンデカン酸共重合体(ナイロン6/11)、カプロラクタム/ω−アミノノナン酸共重合体(ナイロン6,9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/6,6)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/6,6/6,12)等の共重合体等が挙げられる。
【0067】
ポリウレタン系熱可塑性エラストマーとしては、ハードセグメントとして低分子ポリオールとイソシアネートの反応で得られるポリウレタンと、ソフトセグメントとして高分子ポリオールとイソシアネートの反応で得られるポリウレタンとの、直鎖状のマルチブロックコポリマー等が挙げられる。低分子ポリオールとしては脂肪族ジオール、脂環式ジオール、及び芳香族ジオールのいずれであってもよく、高分子ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール、及びポリカーボネートポリオール等が挙げられ、イソシアネートとしては脂肪族ジイソシアネート、脂環式ジイソシアネート、及び芳香族ジイソシアネートのいずれであってもよい。
【0068】
ブロック共重合体又はその水素添加物を(I)成分とし、オレフィン系樹脂、スチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、イソブチレン−イソプレン共重合ゴム、及びポリウレタン系熱可塑性エラストマーから選ばれる少なくとも1種を(II)成分として、該(I)成分と該(II)成分との含有割合[(I)/(II)]は、質量比で、好ましくは1/99〜99/1、より好ましくは3/97〜80/20、さらに好ましくは3/97〜50/50、特に好ましくは5/95〜20/80である。(I)成分及び(II)成分の含有割合は、制振性、機械的特性、成形加工性等の観点から調整すればよい。(I)成分の含有割合を増やすことにより、制振性がより向上する傾向にある。また、(II)成分の含有割合を小さく抑えることにより、機械的特性及び成形加工性の低下を抑制し、且つ、(II)成分が樹脂組成物からブリードアウトするのを抑制しやすくなる。
【0069】
ブロック共重合体又はその水素添加物は、特に用途に制限されずに、本発明の効果を損なわない範囲で、上記(II)成分以外の重合体と混合して用いてもよい。
このような重合体としては、例えば、ポリフェニレンサルファイド系樹脂;ポリアセタール系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ポリアクリル酸メチル、ポリメタクリル酸メチルなどのアクリル系樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマーなどのポリオキシメチレン系樹脂;エチレン−プロピレン共重合体ゴム(EPM);スチレン−ブタジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム又はその水素添加物又はその変性物;天然ゴム;合成イソプレンゴム、液状ポリイソプレンゴム及びその水素添加物又は変性物;クロロプレンゴム;アクリルゴム;ブチルゴム;アクリロニトリル−ブタジエンゴム;エピクロロヒドリンゴム;シリコーンゴム;フッ素ゴム;クロロスルホン化ポリエチレン;ウレタンゴム;ポリウレタン系エラストマー;ポリアミド系エラストマー;スチレン系エラストマー;ポリエステル系エラストマー;軟質塩化ビニル樹脂などが挙げられる。これら重合体は、1種単独で又は2種以上を組み合わせて用いることができる。
ブロック共重合体又はその水素添加物と上記(II)成分以外の重合体との含有割合は、上記質量比[(I)/(II)]と同様の含有割合とすることが好ましく、該含有割合の好ましい範囲も同様である。
また、ブロック共重合体又はその水素添加物と上記(II)成分と(II)成分以外の重合体とを混合してもよい。ブロック共重合体又はその水素添加物と上記(II)成分及び(II)成分以外の重合体との含有割合は、上記質量比[(I)/(II)]と同様の含有割合とすることが好ましく、該含有割合の好ましい範囲も同様である。
【0070】
(各種添加剤)
樹脂組成物は、本発明の効果を損なわない範囲であれば、(I)成分及び(II)成分以外にさらに各種添加剤を含有するものであってもよい。かかる添加剤としては、例えば加工助剤、補強剤、充填剤、可塑剤、連通気泡剤、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、滑剤、帯電防止剤、防菌剤、防かび剤、分散剤、着色剤、発泡剤、発泡助剤、難燃剤、撥水剤、防水剤導電性付与剤、熱伝導性付与剤、電磁波シールド性付与剤、蛍光剤、結晶核剤等が挙げられる。上記充填剤としては、例えばタルク、クレー、マイカ、ケイ酸カルシウム、ガラス、ガラス中空球、ガラス繊維、炭酸カルシウム、炭酸マグネシウム、塩基性炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、ホウ酸亜鉛、ドーソナイト、ポリリン酸アンモニウム、カルシウムアルミネート、ハイドロタルサイト、シリカ、珪藻土、アルミナ、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、酸化スズ、酸化アンチモン、バリウムフェライト、ストロンチウムフェライト、カーボンブラック、グラファイト、炭素繊維、活性炭、炭素中空球、チタン酸カルシウム、チタン酸ジルコン酸鉛、炭化ケイ素、雲母などの無機フィラー;木粉、でんぷんなどの有機フィラー;有機顔料などが挙げられる。
さらに樹脂組成物は、特に用途に制限されずに、本発明の効果が損なわれない範囲において、水添クマロン・インデン樹脂、水添ロジン系樹脂、水添テルペン樹脂、脂環族系水添石油樹脂などの水添系樹脂;オレフィン及びジオレフィン重合体からなる脂肪族系樹脂などの粘着付与樹脂;水添ポリイソプレン、水添ポリブタジエン、ブチルゴム、ポリイソブチレン、ポリブテン、ポリオレフィン系エラストマーなどの他の重合体を添加剤として混合して用いてもよい。
樹脂組成物における上記添加剤の含有量に特に制限はなく、当該添加剤の種類や樹脂組成物の用途などに応じて適宜調整することができる。樹脂組成物が上記添加剤を含有する場合、上記添加剤の含有量は樹脂組成物の全量100質量%に対して、例えば50質量%以下、45質量%以下、30質量%以下、20質量%以下であってもよく、また、0.01質量%以上、0.1質量%以上、1質量%以上、3質量%以上であってもよい。
【0071】
(樹脂組成物の製造方法)
本発明の樹脂組成物の調製方法に特に制限はなく、公知の手段を利用して調製することができる。例えば、上記(I)成分及び(II)成分、必要に応じて各種添加剤をヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いて混合することによって製造するか、又はその後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等の混練機を用いて80〜250℃で溶融混練することにより、本発明の樹脂組成物を調製することができる。
また、各成分[少なくとも(I)成分及び(II)成分]が可溶な溶媒に各成分を溶解させて混合し、溶媒を除去することによって樹脂組成物を調製することもできる
また、発泡させる場合には、例えば、樹脂組成物に発泡剤をドライブレンドした樹脂組成物を、所望の形状をしたキャビティを備えた金型内に射出発泡成形することにより得られる。
【0072】
<用途>
前述した本発明のブロック共重合体又はその水素添加物は、各種用途に使用することができる。その際、ブロック共重合体又はその水素添加物は単独で使用してもよく、前述の樹脂組成物において例示した各種添加剤を混合した組成物としても使用することができる。
また同様に、前述した本発明の樹脂組成物も、各種用途に使用することができる。
【0073】
本発明のブロック共重合体又はその水素添加物は、制振性に優れ、粘接着性等の物性も発現し得ることから各種用途に用いることができる。そのため、本発明は、本発明のブロック共重合体あるいはその水素添加物、又は樹脂組成物を用いた制振材、フィルム又はシート、接着剤又は粘着剤等も提供する。
また、本発明のブロック共重合体あるいはその水素添加物、又は樹脂組成物を含有してなるX層と、該X層の少なくとも一方の面に積層されたY層とを有する積層体も提供することができる。該積層体としては、例えば合わせガラスが好適であり、上記X層を合わせガラス用中間膜とし、上記Y層をガラスとする合わせガラスとすることで、優れた制振性のみならず、優れた遮音性も期待できる。
またY層としては、上記ガラス層以外に、各種用途に応じて適宜選択すればよいが、例えば、本発明のブロック共重合体及びその水素添加物以外の熱可塑性樹脂を含有してなる層等が挙げられる。該熱可塑性樹脂としては、ポリビニルアセタール樹脂、アイオノマー、エチレン−酢酸ビニル共重合体、ウレタン樹脂、ポリアミド樹脂等が挙げられる。
【0074】
その他の用途として、吸音材、遮音材、ダムラバー、靴底材料、床材、ウェザーストリップ、フロアマット、ダッシュインシュレーター、ルーフライニング、ドアパネル、エンジンヘッドカバー、ドアホールシール、フェンダーライナー等が挙げられ、これら用途にも有用である。
また本発明のブロック共重合体あるいはその水素添加物、又は樹脂組成物は、自動車分野における、例えばサーモスタットハウジング、ラジエータータンク、ラジエーターホース、ウォーターアウトレット、ウォーターポンプハウジング、リアジョイント等の冷却部品;インタークーラータンク、インタークーラーケース、ターボダクトパイプ、EGRクーラーケース、レゾネーター、スロットルボディ、インテークマニホールド、テールパイプ等の吸排気系部品;燃料デリバリーパイプ、ガソリンタンク、クイックコネクタ、キャニスター、ポンプモジュール、燃料配管、オイルストレーナー、ロックナット、シール材等の燃料系部品;マウントブラケット、トルクロッド、シリンダヘッドカバー等の構造部品;ベアリングリテイナー、ギアテンショナー、ヘッドランプアクチュエータギア、HVACギア、スライドドアローラー、クラッチ周辺部品等の駆動系部品;エアブレーキチューブ等のブレーキ系統部品;エンジンルーム内のワイヤーハーネスコネクタ、モーター部品、センサー、ABSボビン、コンビネーションスイッチ、車載スイッチ、電子制御ユニット(ECU)ボックス等の車載電装部品;スライドドアダンパー、ドラミラーステイ、ドアミラーブラケット、インナーミラーステイ、ルーフレール、エンジンマウントブラケット、エアクリーナーのインレートパイプ、ドアチェッカー、プラチェーン、エンブレム、クリップ、ブレーカーカバー、カップホルダー、エアバック、フェンダー、スポイラー、ラジエーターサポート、ラジエーターグリル、ルーバー、エアスクープ、フードバルジ、バックドア、フューエルセンダーモジュール、フロアマット、インストルメントパネル、ダッシュボード、ダッシュインシュレーター、ダムラバー、ウェザーストリップ、タイヤ等の内外装部品等に用いることもできる。
また、家電分野におけるテレビ、ブルーレイレコーダーやHDDレコーダー等の各種レコーダー類、プロジェクター、ゲーム機、デジタルカメラ、ホームビデオ、アンテナ、スピーカー、電子辞書、ICレコーダー、FAX、コピー機、電話機、ドアホン、炊飯器、電子レンジ、オーブンレンジ、冷蔵庫、食器洗い機、食器乾燥機、IHクッキングヒーター、ホットプレート、掃除機、洗濯機、充電器、ミシン、アイロン、乾燥機、電動自転車、空気清浄機、浄水器、電動歯ブラシ、照明器具、エアコン、エアコンの室外機、除湿機、加湿機等の各種電気製品における、シール材、接着剤、粘着剤、パッキン、Oリング、ベルト、防音材等に利用可能である。
【実施例】
【0075】
以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
【0076】
<ブロック共重合体及び水素添加物>
後述の実施例及び比較例で得られたブロック共重合体又は水素添加物の物性評価方法を示す。
(1)重合体ブロック(A)の含有量
水添前のブロック共重合体をCDClに溶解してH−NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、スチレンに由来するピーク強度とジエンに由来するピーク強度の比から重合体ブロック(A)の含有量を算出した。
【0077】
(2)重量平均分子量(Mw)
下記条件のゲルパーミエーションクロマトグラフィー(GPC)測定により、ブロック共重合体又は水素添加物のポリスチレン換算の重量平均分子量(Mw)を求めた。
(GPC測定装置及び測定条件)
・装置 :GPC装置「HLC−8020」(東ソー株式会社製)
・分離カラム :東ソ−株式会社製の「TSKgel GMHXL」、「G4000HXL」及び「G5000HXL」を直列に連結した。
・溶離液 :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
【0078】
(3)重合体ブロック(B)における水素添加率
H−NMR測定によって求めた。
・装置:核磁気共鳴装置「ADVANCE 400 Nano bay」(Bruker社製)
・溶媒:CDCl
【0079】
(4)重合体ブロック(B)におけるビニル結合量
水添前のブロック共重合体をCDClに溶解してH−NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行った。イソプレン及び/又はブタジエン由来の構造単位の全ピーク面積と、イソプレン構造単位における3,4−結合単位及び1,2−結合単位、ブタジエン構造単位における1,2−結合単位、又は、イソプレンとブタジエンの混合物に由来する構造単位の場合はそれぞれの前記結合単位に対応するピーク面積の比からビニル結合量(3,4−結合単位と1,2−結合単位の含有量の合計)を算出した。
【0080】
(5)重合体ブロック(B)中の脂環式骨格(X)の含有量
水添前のブロック共重合体600mg及びCr(acac)40mgをCDCl4mlに溶解して10mmNMRチューブを用いて定量13C−NMR測定(パルスプログラム:zgig、Inverse gated 1H decoupling法) [装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、下記の方法にて重合体ブロック(B)中の脂環式骨格X、X1、及びX2それぞれの含有量を算出した。
なお、表3中、X、X1、及びX2は次の脂環式骨格を示す。
X:以下(i)〜(vi)の置換基の組み合わせを有する脂環式骨格
X1:以下(i),(iv)の置換基の組み合わせを有する脂環式骨格
X2:以下(ii),(iii),(v),(iv)の置換基の組み合わせを有する脂環式骨格
(i) :R=水素原子、R=水素原子、R=水素原子;(1,2Bd+Bd)
(ii) :R=水素原子、R=メチル基、R=水素原子;(1,2Bd+1,2Ip)
(iii) :R=水素原子、R=水素原子、R=メチル基;(1,2Bd+3,4Ip)
(iv) :R=メチル基、R=水素原子、R=水素原子;(1,2Ip+Bd)
(v) :R=メチル基、R=メチル基、R=水素原子;(1,2Ip+1,2Ip)
(vi) :R=メチル基、R=水素原子、R=メチル基;(1,2Ip+3,4Ip)
【0081】
〔算出方法〕
各ピークと由来する構造を表1−1に示す。それぞれのピークの積分値をa〜gとすると、各構造の積分値は表1−2のようになり、X,X1,X2の含有量はそれぞれ、(a+g−c)/(a+b+c−d+e/2+2f), (g−c)/(a+b+c−d+e/2+2f), a/(a+b+c−d+e/2+2f)で算出できる。
【0082】
【表1】

【0083】
(6)13C−NMRのピーク面積比
(6−1)ブロック共重合体(未水添)
実施例9〜11及び比較例1のブロック共重合体について、上記定量13C−NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃、溶媒:CDCl]を行いピーク面積比[ケミカルシフト値107〜110ppmのピーク面積]/[ケミカルシフト値110〜116ppmのピーク面積]を算出した。
(6−2)水素添加物(水添後)
実施例1〜8及び比較例2,3の水素添加物について、上記定量13C−NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃、溶媒:CDCl]を行いピーク面積比[ケミカルシフト値50.0〜52.0ppmのピーク面積]/[ケミカルシフト値43.0〜45.0ppmのピーク面積]を算出した。
なお、表3中の実施例4、5及び7において本測定結果が「0」とあるが、[ケミカルシフト値50.0〜52.0ppmのピーク面積]が小さすぎて観測不可能であったことを意味し、脂環式骨格(X)を有しないことを意味するものではない。
【0084】
(7)tanδのピークトップ温度、ピークトップ強度、tanδが1.0以上となる温度領域の最大幅、20℃及び30℃でのtanδ強度
以下の測定のため、ブロック共重合体又は水素添加物を、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmの単層シートを作製した。該単層シートを円板形状に切り出し、これを試験シートとした。
測定には、JIS K7244−10(2005年)に基づいて、平行平板振動レオメータとして、円板の直径が8mmのゆがみ制御型動的粘弾性装置「ARES−G2」(ティー・エイ・インスツルメント・ジャパン社製)を用いた。
上記試験シートによって2枚の平板間の隙間を完全に充填し、歪み量0.1%で、上記試験シートに1Hzの周波数で振動を与え、−70℃から100℃まで3℃/分の定速で昇温した。せん断損失弾性率及びせん断貯蔵弾性率の測定値に変化がなくなるまで、上記試験シートと円板の温度を保持し、tanδのピーク強度の最大値(ピークトップ強度)及び該最大値が得られた温度(ピークトップ温度)を求めた。また、tanδが1.0以上となる温度領域の最大幅、20℃及び30℃でのtanδ強度を求めた。該値が大きいほど、制振性に優れることを示す。
なお、比較例2において、tanδが1.0以上となる温度領域が存在しなかったため、該温度領域の最大幅を「0」と表記した。
【0085】
[実施例1]
水素添加物(H−TPE−1)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec−ブチルリチウムのシクロヘキサン溶液87g(sec−ブチルリチウムの実質的な添加量:9.1g)を仕込んだ。
耐圧容器内を50℃に昇温した後、スチレン(1)1.0kgを加えて1時間重合させ、容器内温度50℃で、ルイス塩基として2,2−ジ(2−テトラヒドロフリル)プロパン(DTHFP)63gを加え、イソプレン8.16kg及びブタジエン6.48kgの混合液を表2に示す平均ジエンフィード速度で、5時間かけて加えた後2時間重合させ、さらにスチレン(2)1.0kgを加えて1時間重合させることにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体を含む反応液を得た。
該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体の水素添加物(以下、H−TPE−1と称することがある)を得た。
各原料及びその使用量について表2に示した。また、前記物性評価の結果を表3に示した。
【0086】
[実施例2〜8]
水素添加物(H−TPE−2)〜(H−TPE−8)の製造
各成分及びそれらの使用量、並びに反応条件を表2に記載のとおりに変更したこと以外は実施例1と同様にして、水素添加物(H−TPE−2)〜(H−TPE−8)を製造した。また、前記物性評価の結果を表3に示した。
【0087】
[実施例9]
ブロック共重合体(TPE−9)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec−ブチルリチウムのシクロヘキサン溶液87g(sec−ブチルリチウムの実質的な添加量:9.1g)を仕込んだ。
耐圧容器内を50℃に昇温した後、スチレン(1)1.0kgを加えて1時間重合させ、容器内温度を60℃に昇温した後、ルイス塩基として2,2−ジ(2−テトラヒドロフリル)プロパン(DTHFP)63gを加え、イソプレン8.16kg及びブタジエン6.48kgの混合液を表2に示す平均ジエンフィード速度で、5時間かけて加えた後2時間重合させ、さらにスチレン(2)1.0kgを加えて1時間重合させることにより、ポリスチレン−ポリ(イソプレン/ブタジエン)−ポリスチレントリブロック共重合体を含む反応液を得た。
得られた反応混合液に、メタノール200mLを加えることによって重合反応を停止させた。得られた混合液を水洗し、次いで大量のメタノール中に再沈させることによって、スチレン−(イソプレン/ブタジエン)−スチレントリブロック共重合体(以下、TPE−9と称することがある)を得た。
各原料及びその使用量について表2に示した。また、前記物性評価の結果を表3に示した。
【0088】
[実施例10及び11]
ブロック共重合体(TPE−10)及び(TPE−11)の製造
各成分及びそれらの使用量、並びに反応条件を表2に記載のとおりに変更したこと以外は実施例9と同様にして、ブロック共重合体TPE−10及びTPE−11を製造した。また、前記物性評価の結果を表3に示した。
【0089】
[比較例1]
ブロック共重合体(TPE−1’)の製造
各成分及びそれらの使用量、並びに反応条件を表2に記載のとおりに変更したこと以外は実施例9と同様にして、ブロック共重合体TPE−1’を製造した。また、前記物性評価の結果を表3に示した。
【0090】
[比較例2及び比較例3]
水素添加物(H−TPE−2’)及び(H−TPE−3’)の製造
各成分及びそれらの使用量、並びに反応条件を表2に記載のとおりに変更したこと以外は実施例1と同様にして、水素添加物(H−TPE−2’)及び(H−TPE−3’)を製造した。また、前記物性評価の結果を表3に示した。
【0091】
【表2】
【0092】
【表3】
【0093】
実施例のブロック共重合体及びその水素添加物は、tanδのピークトップ強度が1.0以上を示し、また広い温度領域においてtanδのピークトップ温度が示されるため、制振材料として幅広い用途に好適であるといえる。特に、比較例1〜3と比較すると、実施例1〜8では20℃及び30℃のtanδ強度が比較的高く、室温付近での制振性に優れることが分かる。
また実施例から、共役ジエン化合物として、ブタジエン単独、イソプレン単独、又はブタジエンとイソプレンとの混合のいずれを用いても、ブロック共重合体又はその水素添加物の主鎖に脂環式骨格を有することにより、優れた制振性を示すことができることが分かる。さらに、実施例ではtanδが1.0以上となる一連の温度領域の最大幅が広く、幅広い温度領域において制振性に優れているといえる。
一方、比較例2の水添ブロック共重合体は、tanδのピークトップ強度が1.0未満であるが、これは主鎖に脂環式骨格を有しておらず、かつビニル結合量が比較的低いことが原因の一つと考えられる。
【0094】
<樹脂組成物>
後述の実施例及び比較例で得られた樹脂組成物の物性評価方法を示す。
(損失係数)
実施例及び比較例で得られた樹脂組成物を、射出成型機(「EC75SX」、東芝機械株式会社製)により射出成型して、縦200mm×横40mm×厚み2mmのシートを作製した。このシートを長さ200mm×幅10mm×厚み2mmに切り抜いてサンプルとした。
次に、損失係数計測システム(ブリュエルケアー社製 複素弾性係数計測装置ME3930;電磁加振器MM0002;インピーダンスボックスMH9123−D)に上記サンプルをセットした。具体的には、上記複素弾性係数計測装置の上部にサンプルの片末端を固定した。そして、周波数0〜8,000Hzの範囲で、サンプルの逆の末端に振動を与えることにより、片持ち梁法による、サンプルのダンピング試験を行い、上記末端部における加振力と加速度波形を表す加速度信号とを検出した。各サンプルについて、温度0℃、20℃、40℃で測定を行なった。
得られた加振力と、加速度信号を積分して得られた速度信号に基づいて、加振点(振動を加えたサンプルの中央部)の機械インピーダンスを求めた。そして、横軸を周波数、縦軸を上記機械インピーダンスとして得られるインピーダンス曲線を作成し、低周波数側から数えて二つ目のピーク(2nd mode)の半値全幅から、サンプルの、それぞれの温度での損失係数を求めた。
なお、損失係数の値が大きいほど制振効果が高い。
【0095】
[実施例12〜22]及び[比較例4〜6]
二軸押出機(Coperion社製「ZSK26Mc」)を用い、シリンダー温度200℃、スクリュー回転数300rpmの条件下で、表4に示す配合にしたがい、前記実施例及び比較例で得られたブロック共重合体又は水素添加物(H−TPE−1〜H−TPE−8)、(TPE−9〜TPE−11)、(TPE−1’〜H−TPE−3’)及び下記樹脂を供給して溶融混練し、樹脂組成物を得た。
得られた樹脂組成物について、前記物性評価を行い、結果を表4に示す。
また表4には、実施例及び比較例で得られた樹脂組成物の損失係数と、参考例1の樹脂単味の損失係数との差(Δ損失係数)を示す。
〈樹脂〉
・ポリプロピレン−1:「プライムポリプロF327」(MFR[230℃、荷重2.16kg(21N)]=7g/10分、株式会社プライムポリマー製)
【0096】
[参考例1]
実施例12〜22及び比較例4〜6で用いたポリプロピレンについて、前記物性評価方法に従い損失係数を測定した。その結果を表4に示す。
【0097】
【表4】

【0098】
実施例12〜22の樹脂組成物の損失係数は、0℃、20℃、及び40℃において、比較例4〜6の損失係数よりも概ね高い数値が得られており、本発明の樹脂組成物は良好な制振性を示すことが分かる。特に、20℃及び40℃において、実施例全般の損失係数は、ポリプロピレン単味よりもΔ損失係数が0.020以上高い結果が得られており、本発明の樹脂組成物は20℃及び40℃周辺において制振性に優れる傾向にあるといえる。
【0099】
[実施例23〜26]、[比較例7]及び[参考例2]
表5に示す配合に従い、実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、参考のために、ポリピロピレン−2のみの場合の測定データも参考例2として示している。
(樹脂)
・ポリピロピレン−2:「Hypro−G PP−HP12」(ホモポリプロピレン、MFR[230℃、荷重2.16kg(21N)カタログ値]=12g/10分、Entec Polymers社製)
【0100】
<樹脂組成物の物性>
(tanδ(引張、10Hz))
JIS K 7244−4(1999年)に従って、測定を行った。具体的には、得られた樹脂組成物を、射出成型機(「EC75SX」、東芝機械株式会社製)により射出成型して、縦50mm×横30mm×厚み1mmのシートを作製した。このシートを長さ30mm×幅5mm×厚1mmに切り抜いてサンプルとし、日立ハイテクサイエンス社製動的粘弾性測定装置を用いて、測定温度−80℃〜100℃、周波数10Hzの条件で、測定することにより0℃、20℃、40℃におけるtanδ強度を測定した。
(引張特性)
JIS K 7161(2014年)に従って、測定を行った。具体的には、得られた樹脂組成物を射出成型してJIS多目的試験片A1を作製し、インストロン社製万能材料試験機5566型を用いて測定することにより、引張強度[MPa]、引張破断伸び[%]及び引張弾性率[MPa]を測定した。
(硬度(Shore A))
得られた樹脂組成物を用いて、30mm×25mm×厚さ5mmのサイズの硬度測定用試験片を作製し、JIS K 6253(2012年)に準じて、デュロメータ硬度計タイプA GS−619R−G(株式会社テクロック製)を用いてデュロメータ硬さ試験を行い、ショアA硬度を測定した。
(MFR(230℃、2.16kg))
JIS K 7210(2014年)に準拠して測定した。
【0101】
【表5】

【0102】
表5に示すように、実施例23〜26の樹脂組成物は、比較例7の樹脂組成物や、参考例2に比べて、引張破断伸び、引張弾性率、硬度が高く、また、比較例7の樹脂組成物に比べて、引張強度及びMFRの値が大きい。また、実施例23〜26の樹脂組成物は、力学物性に優れていることに加えて、比較例7の樹脂組成物や参考例2に比べて、0℃〜40℃の温度範囲においてtanδの値が大きく、低温から比較的高温までの広い温度範囲で高い制振性を示すことがわかる。
【0103】
[実施例27〜31]及び[比較例8]
表6に示す配合に従い、実施例12と同様の方法により樹脂組成物(粘接着材)を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。
(粘着付与樹脂)
「アルコンP−125」、荒川化学工業株式会社製
(可塑剤)
「ダイアナプロセスオイルPW−32」、水添パラフィン系オイル、40℃における動粘度:31mm/s、出光興産株式会社製
【0104】
(tanδ(せん断、1Hz))
JIS K7244−10(2005年)に従って、測定を行った。具体的には、得られた樹脂組成物を、射出成型機(「EC75SX」、東芝機械株式会社製)により射出成型して、縦50mm×横30mm×厚み1mmのシートを作製した。このシートを直径8mmの円板形状に切り出したものをサンプルとし、ゆがみ制御型動的粘弾性装置「ARES−G2」(TAインスツルメント社製)を使用し、直径8mmの平面プレートに前記サンプルを挟み、歪み量0.1%、周波数1Hzで振動を与え、−70℃から100℃まで3℃/分で昇温して測定することにより0、20、40℃におけるtanδ強度を測定した。
(40℃剥離強度)
長さ75mm×幅25mm×厚さ1mmのSUS板と得られた樹脂組成物のシートと、厚さ50μmのポリエチレンテレフタレートシートをこの順で重ね、外寸200mm×200mm、内寸150mm×150mm、厚さ2mmの金属製スペーサーの中央部に配置した。この重ねたシートと金属製スペーサーをポリテトラフルオロエチレン製シートで挟み、さらに外側から金属板で挟み、圧縮成型機を用いて、160℃の温度条件化、荷重20kgf/cmで3分間圧縮成型することで、PET/上記得られた樹脂組成物/SUS板からなる積層体を得た。
上記積層体について、インストロン社製「インストロン5566」を使用して、JIS K 6854−2(1999年)に準じて、接触角度180°、引張速度100mm/minの条件で40℃での剥離接着強さ試験を行い、接着強さ(剥離強度)を測定した。
【0105】
【表6】

【0106】
表6から、実施例27〜31の樹脂組成物は比較例8の樹脂組成物よりも、0℃〜40℃で高いtanδを示し、また40℃での剥離強度に優れる。よって、実施例27〜31の樹脂組成物は、幅広い温度範囲において制振性を備える粘接着剤として好適に使用できる。
【0107】
[実施例32〜37]及び[比較例9]
表7に示す配合に従い、実施例12と同様の方法により樹脂組成物(オイルゲル)を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。
(可塑剤)
「ダイアナプロセスオイルPW−32」、水添パラフィン系オイル、40℃における動粘度:31mm/s、出光興産株式会社製
<樹脂組成物の物性>
(tanδ(せん断、1Hz))
表6に示した「tanδ(せん断、1Hz)」と同様の方法で測定した。
【0108】
【表7】

【0109】
表7から、実施例32〜37の樹脂組成物は比較例9の樹脂組成物よりも、室温領域を含む0℃〜40℃でのtanδが高いため、制振性及び衝撃吸収性に優れていることがわかる。よって、実施例32〜37の樹脂組成物は靴底のクッション材等に適していることがわかる。
【0110】
[実施例38〜43]、[比較例10]及び[参考例3]
表8に示す配合に従い、実施例12と同様の方法により樹脂組成物(ガラス繊維強化ポリプロピレン組成物)を得た。なお、ガラス繊維は押出機中途からサイドフィードした。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、ポリプロピレン−3、ポリプロピレン−4及びガラス繊維のみからなる樹脂組成物の測定値も参考例3として示している。
(樹脂)
・ポリピロピレン−3:「プライムポリプロJ705UG」、ブロックポリプロピレン、株式会社プライムポリマー製
・ポリピロピレン−4:「アドマーQE840」、三井化学株式会社製
(ガラス繊維)
「T−480」、チョップドストランド、日本電気硝子株式会社製
【0111】
<樹脂組成物の物性>
(損失係数)
得られた樹脂組成物を、射出成型機(「EC75SX」、東芝機械株式会社製)により射出成型して、縦200mm×横40mm×厚み2mmのシートを作製した。このシートを長さ200mm×幅10mm×厚み2mmに切り抜き、中央部にα-シアノアクリレートを主成分とする接着剤を用いてコンタクトチップを接着することでサンプルとした。
次に、損失係数計測システム(ブリュエルケアー社製 加振器4809型;インピーダンスヘッド80001型)に上記サンプルをセットした。
インピーダンスヘッドに内蔵された加振力検出器の先端部に、上記サンプルの中央部に接着したコンタクトチップを取り付けた。周波数0〜8,000Hzの範囲で前記積層体の中央部に振動を与え、この点の加振力と加速度波形を検出することで、中央加振法によるダンピング試験を行い、上記中央部における加振力と加速度波形を表す加速度信号とを検出した。各サンプルについて、温度0℃、20℃、40℃、60℃、80℃、100℃で測定を行なった。
得られた加振力と、加速度信号を積分して得られた速度信号に基づいて、加振点(振動を加えたサンプルの中央部)の機械インピーダンスを求めた。そして、横軸を周波数、縦軸を上記機械インピーダンスとして得られるインピーダンス曲線を作成し、低周波数側から数えて二つ目のピーク(2nd mode)の半値全幅から、サンプルの、それぞれの温度での損失係数を求めた。
なお、損失係数の値が大きいほど制振効果が高い。
【0112】
(引張特性)
表5に示した引張特性の測定方法と同様の方法で、引張強度[MPa]、引張破断伸び[%]を測定した。
(曲げ特性)
得られた樹脂組成物を、射出成型機(「EC75SX」、東芝機械株式会社製)により射出成型してJIS多目的試験片A1を作製し、その中央部(80×10×t4mm)を使用した。JIS K 7171(2016年)に基づき、万能試験機(インストロン社製、5566型)を用いて曲げ強度試験を行い、曲げ強さ[MPa]、曲げ弾性率[MPa]を測定した。
【表8】
【0113】
表8から、実施例38〜43の樹脂組成物は、比較例10の樹脂組成物に比べて、引張強度及び曲げ強さの値が大きい。実施例38〜43の樹脂組成物は、参考例3の樹脂組成物に比べて、引張破断伸びの値が同等か大きい。加えて、実施例38〜43の樹脂組成物は、40℃〜100℃の幅広い温度範囲における損失係数の値が大きく、広い温度範囲で高い制振性を示すことがわかる。特に、実施例38及び41の樹脂組成物は、比較例10や参考例3の樹脂組成物に比べて、0℃及び20℃においても損失係数の値が大きく、低温でも高い制振性を示すことがわかる。
【0114】
[実施例44〜47]、[比較例11]及び[参考例4]
表9に示す配合に従い、実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、ポリエチレンのみの場合の測定値も参考例4として示している。
(樹脂)
・ポリエチレン:「Hypel PEHD 8」(高密度ポリエチレン、MFR[190℃、荷重2.16kg(21N)カタログ値]6.6/10分、Entec Polymers社製)
【0115】
<樹脂組成物の物性>
(tanδ(引張、10Hz))
表5に示した「tanδ(引張、10Hz)」と同様の方法で測定した。
(引張特性)
表5に示した引張特性の測定方法と同様の方法で、引張強度[MPa]、引張破断伸び[%]を測定した。
(硬度(Shore A))
表5に示した「硬度(Shore A)」と同様の方法で測定した。
(MFR(190℃、2.16kg))
JIS K 7210(2014年)に準拠して測定した。
【0116】
【表9】

【0117】
表9から、実施例44〜47の樹脂組成物は、比較例11の樹脂組成物や、参考例4に比べて、引張強度及び引張破断伸びが大きく、硬度が同等か大きい。また、実施例44〜47の樹脂組成物は、比較例11の樹脂組成物に比べて、MFRの値が大きい。加えて、実施例44〜47の樹脂組成物は、0℃〜40℃の温度範囲において、比較例11や参考例4に比べてtanδの値が大きく、低温から比較的高温までの幅広い温度領域で高い制振性を示すことがわかる。
【0118】
[実施例48〜52]、[比較例12]及び[参考例5]
エチレン−プロピレン−ジエン共重合体(EPDM)、エチレン−酢酸ビニル共重合体(EVA)、前述で得られた水素添加物、充填剤1及び2、並びに可塑剤を表10に示す配合組成の割合で、ニーダーを用いて、温度120℃で溶融混合してマスターバッチを得た。
次いで、得られたマスターバッチに、表10に示す配合組成の割合で、架橋剤及び発泡剤を加え、ロール温度110℃でロール混練して樹脂組成物を得た。
得られた樹脂組成物を、厚さ10mmの金型を用いて164℃で15分間プレス処理して発泡成形体を得た。
得られた樹脂組成物(発泡成形体)について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、水素添加物及びEVAを含まない場合の測定値も参考例5として示している。
【0119】
(樹脂)
・エチレン−プロピレン−ジエン共重合体ゴム(EPDM):「エスプレン501A」、住友化学株式会社製
・エチレン−酢酸ビニル共重合体(EVA):「ウルトラセン640」、東ソー株式会社製
(架橋剤)
・パーオキサイド系架橋剤(「パーカドックス14/40」、化薬アクゾ株式会社製)〔ビス(t−ブチルジオキシイソプロピル)ベンゼン(40質量%)、炭酸カルシウム(55.3質量%)、無晶シリカ希釈品(4.7質量%)からなる混合物〕
(発泡剤)
・アゾジカルボンアミド系複合発泡剤(「セルマイクCAP−500」、三協化成株式会社製)(分解温度155℃、ガス量:160mL/g)
(充填剤)
・充填剤1:炭酸カルシウム
・充填剤2:カーボンブラック
(可塑剤)
・「ダイアナプロセスオイルPW−380」、パラフィン系オイル、40℃における動粘度:381.6mm/s、出光興産株式会社製
【0120】
<樹脂組成物の物性>
(tanδ(引張、10Hz))
表5に示した「tanδ(引張、10Hz)」と同様の方法で測定した。
【0121】
【表10】

【0122】
表10から、実施例48〜52の樹脂組成物は、比較例12の樹脂組成物や、参考例5の樹脂組成物に比べて、0℃〜40℃の温度範囲においてtanδの値が大きく、低温から比較的高温までの広い温度範囲で高い制振性を示すことがわかる。
【0123】
[実施例53〜56]、[比較例13]及び[参考例6]
表11に示す配合に従い、シリンダー温度を230℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、TPVのみの場合の測定値も参考例6として示している。
(樹脂)
・オレフィン系動的架橋熱可塑性エラストマー(TPV):「サントプレン201−55」、エクソンモービル社製
【0124】
<樹脂組成物の物性>
(tanδ(引張、10Hz))
表5に示した「tanδ(引張、10Hz)」と同様の方法で測定した。
(引張特性)
表5に示した引張特性の測定方法と同様の方法で、引張強度[MPa]、引張破断伸び[%]を測定した。
(硬度(Shore A))
表5に示した「硬度(Shore A)」と同様の方法で測定した。
(MFR(230℃、2.16kg))
JIS K 7210(2014年)に準拠して測定した。
【0125】
【表11】
【0126】
表11から、実施例53〜56の樹脂組成物は、比較例13の樹脂組成物に比べて、引張強度の値が大きい。また、実施例53〜56の樹脂組成物は、比較例13の樹脂組成物及び参考例6に比べて、引張破断伸び及びMFRの値が大きい。加えて、実施例53〜56の樹脂組成物は、比較例13や参考例6に比べて0℃〜40℃の温度範囲においてtanδの値が大きく、低温から比較的高温までの幅広い温度領域で高い制振性を示すことがわかる。
【0127】
[実施例57〜60]、[比較例14]及び[参考例7]
表12に示す配合に従い、シリンダー温度を230℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、ABSのみの場合の測定値も参考例7として示している。
(樹脂)
・アクリロニトリル−ブタジエン−スチレン共重合体(ABS):「テクノABS110N」、テクノUMG株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した損失係数の測定方法と同様の方法で、温度0℃、20℃、40℃で測定を行なった。
【0128】
【表12】

【0129】
表12から、実施例57〜60の樹脂組成物は、比較例14の樹脂組成物や、参考例7に比べて、0℃〜40℃の温度範囲において、損失係数の値が比べて大きく、低温から比較的高温までの幅広い温度範囲で高い制振性を示すことがわかる。
【0130】
[実施例61〜64]、[比較例15]及び[参考例8]
表13に示す配合に従い、シリンダー温度を250℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、ナイロン6のみの場合の測定値も参考例8として示している。
(樹脂)
・ナイロン6:「UBEナイロン1013B」、宇部興産株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した損失係数の測定方法と同様の方法で、温度0℃、20℃、40℃で測定を行なった。
【0131】
【表13】

【0132】
表13から、実施例61〜64の樹脂組成物は、比較例15の樹脂組成物や、参考例8に比べて、0℃〜40℃の温度範囲における損失係数の値が大きく、低温から比較的高温までの広い温度範囲で高い制振性を示すことがわかる。
【0133】
[実施例65〜68]、[比較例16]及び[参考例9]
表14に示す配合に従い、シリンダー温度を270℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、PBTのみの場合の測定値も参考例9として示している。
(樹脂)
・ポリブチレンテレフタレート(PBT):「トレコン1401X31」、東レ株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した損失係数の測定方法と同様の方法で、温度0℃、20℃、40℃で測定を行なった。
【0134】
【表14】

【0135】
表14に示すように実施例65〜68の樹脂組成物は、比較例16の樹脂組成物や、参考例9に比べて、20℃〜40℃の温度範囲における損失係数の値が大きく、実使用に適した温度範囲で高い制振性を示すことがわかる。特に、実施例65及び67の樹脂組成物は、比較例16の樹脂組成物や参考例9に比べて、0℃においても損失係数の値が大きく、低温でも高い制振性を示すことがわかる。
【0136】
[実施例69〜72]、[比較例17]及び[参考例10]
表15に示す配合に従い、シリンダー温度を280℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、ポリカーボネートのみの場合の測定値も参考例10として示している。
(樹脂)
・ポリカーボネート:「ユーピロンS−3000」、三菱エンジニアリングプラスチック株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した損失係数の測定方法と同様の方法で、温度0℃、20℃、40℃で測定を行なった。
【0137】
【表15】

【0138】
表15から、実施例69〜72の樹脂組成物は、比較例17の樹脂組成物や、参考例10に比べて、0℃〜40℃の温度範囲における損失係数の値が同等か大きく、低温から比較的高温までの広い温度範囲で高い制振性を示すことがわかる。
【0139】
[実施例73〜76]、[比較例18]及び[参考例11]
表16に示す配合に従い、実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、POMのみの場合の測定値も参考例11として示している。
(樹脂)
・ポリアセタール(POM):「ジュラコンM90−44」、ポリプラスチック株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した「損失係数」と同様の方法で測定した。
【0140】
【表16】

【0141】
表16に示すように、実施例73〜76の樹脂組成物は、比較例18の樹脂組成物や、参考例11に比べて、20℃〜100℃の温度範囲において、損失係数の値が同等か大きく、幅広い温度範囲で高い制振性を示すことがわかる。特に、実施例73及び75の樹脂組成物は、比較例18の樹脂組成物や参考例11に比べて、0℃においても損失係数の値が大きく、低温でも高い制振性を示すことがわかる。
【0142】
[実施例77〜80]、[比較例19]及び[参考例12]
表17に示す配合に従い、シリンダー温度を250℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、PPE及びポリスチレンのみを用いて作製した樹脂組成物の測定値も参考例12として示している。
(樹脂)
・ポリフェニレンエーテル(PPE):「NORYL640」、SABICイノベーションプラスチックス社製
・ポリスチレン:「トーヨースチロールG210C」、東洋スチレン株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した「損失係数」と同様の方法で測定した。
【0143】
【表17】

【0144】
表17から、実施例77〜80の樹脂組成物は、比較例19の樹脂組成物や、参考例12の樹脂組成物に比べて、20℃〜100℃の温度範囲における損失係数の値が大きく、幅広い温度範囲で高い制振性を示すことがわかる。特に、実施例77及び79の樹脂組成物は、比較例19の樹脂組成物や参考例12に比べて、0℃においても損失係数の値が大きく、低温でも高い制振性を示すことがわかる。
【0145】
[実施例81〜84]、[比較例20]及び[参考例13]
表18に示す配合に従い、シリンダー温度を270℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、ナイロン6、PPE及び無水マレイン酸のみを用いて作製した樹脂組成物の測定値も参考例13として示している。
(樹脂)
・ナイロン6:「UBEナイロン1013B」、宇部興産株式会社製
・ポリフェニレンエーテル(PPE):「NORYL640」、SABICイノベーションプラスチックス社製
<樹脂組成物の物性>
(損失係数)
表8に示した損失係数の測定方法と同様の方法で、温度0℃、20℃、40℃で測定を行なった。
【0146】
【表18】

【0147】
表18から、実施例81〜84の樹脂組成物は、比較例20の樹脂組成物や、参考例13の樹脂組成物に比べて、20℃〜40℃の温度範囲における損失係数の値が大きく、実使用に適した温度範囲で高い制振性を示すことがわかる。特に、実施例81及び83の樹脂組成物は、比較例20や参考例13に比べて、0℃においても損失係数の値が大きく、低温でも高い制振性を示すことがわかる。
【0148】
[実施例85〜89]、[比較例21]及び[参考例14]
表19に示す配合に従い、シリンダー温度を300℃に変更したこと以外は実施例12と同様の方法により樹脂組成物を得た。
得られた樹脂組成物について、後述の測定方法に従って物性評価を行った。なお、表には参考のため、PPSのみの場合の測定値も参考例14として示している。
(樹脂)
・ポリフェニレンサルファイド(PPS):「トレリナA900」、東レ株式会社製
<樹脂組成物の物性>
(損失係数)
表8に示した損失係数の測定方法と同様の方法で、温度0℃、20℃、40℃、60℃で測定を行なった。
【0149】
【表19】

【0150】
表19に示すように、実施例85〜89の樹脂組成物は、比較例21の樹脂組成物や、参考例14に比べて、0℃〜60℃の温度範囲における損失係数の値が大きく、低温から高温までの幅広い温度範囲で高い制振性を示すことがわかる。
【産業上の利用可能性】
【0151】
本発明のブロック共重合体、その水素添加物、及び樹脂組成物は、制振材、遮音材、靴底材料、床材、ギア、ギアボックス、制振塗料、接着剤又は粘着剤等として有用である。さらに、自動車部品として、例えば、サーモスタットハウジング、ラジエータータンク、ラジエーターホース、ウォーターアウトレット、ウォーターポンプハウジング、リアジョイント等の冷却部品;インタークーラータンク、インタークーラーケース、ターボダクトパイプ、EGRクーラーケース、レゾネーター、スロットルボディ、インテークマニホールド、テールパイプ等の吸排気系部品;燃料デリバリーパイプ、ガソリンタンク、クイックコネクタ、キャニスター、ポンプモジュール、燃料配管、オイルストレーナー、ロックナット、シール材等の燃料系部品;マウントブラケット、トルクロッド、シリンダヘッドカバー等の構造部品;ベアリングリテイナー、ギアテンショナー、ヘッドランプアクチュエータギア、HVACギア、スライドドアローラー、クラッチ周辺部品等の駆動系部品;エアブレーキチューブ等のブレーキ系統部品;エンジンルーム内のワイヤーハーネスコネクタ、モーター部品、センサー、ABSボビン、コンビネーションスイッチ、車載スイッチ、電子制御ユニット(ECU)ボックス等の車載電装部品;スライドドアダンパー、ドラミラーステイ、ドアミラーブラケット、インナーミラーステイ、ルーフレール、エンジンマウントブラケット、エアクリーナーのインレートパイプ、ドアチェッカー、プラチェーン、エンブレム、クリップ、ブレーカーカバー、カップホルダー、エアバック、フェンダー、スポイラー、ラジエーターサポート、ラジエーターグリル、ルーバー、エアスクープ、フードバルジ、バックドア、フューエルセンダーモジュール、フロアマット、インストルメントパネル、ダッシュボード、ダッシュインシュレーター、ダムラバー、ウェザーストリップ、タイヤ等の内外装部品等として有用である。
また、家電分野におけるテレビ、ブルーレイレコーダーやHDDレコーダー等の各種レコーダー類、プロジェクター、ゲーム機、デジタルカメラ、ホームビデオ、アンテナ、スピーカー、電子辞書、ICレコーダー、FAX、コピー機、電話機、ドアホン、炊飯器、電子レンジ、オーブンレンジ、冷蔵庫、食器洗い機、食器乾燥機、IHクッキングヒーター、ホットプレート、掃除機、洗濯機、充電器、ミシン、アイロン、乾燥機、電動自転車、空気清浄機、浄水器、電動歯ブラシ、照明器具、エアコン、エアコンの室外機、除湿機、加湿機等の各種電気製品における、接着剤又は粘着剤、シール材、パッキン、Oリング、ベルト、防音材等としても有用である。