(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0014】
図1には研磨モジュール106の平面図が描かれており、研磨モジュール106は、カリフォルニア州Santa Claraに所在するApplied Materials, Inc.が製造する、REFLEXION
(R) Chemical Mechanical Polisherの一部分である。本書に記載の実施形態は、この研磨システムで使用されうる。しかし当業者は、有利には、本書で教示され、本書に記載されている実施形態を、研磨材料、特にロール形態の研磨材料を利用する、他の製造業者によって作製される他の化学機械研磨装置で用いられるよう、適合させうる。
【0015】
研磨モジュール106は一般的に、搬入ロボット104と、コントローラ108と、移送ステーション136と、プラテンアセンブリ132などの複数の処理ステーション又は研磨ステーションと、ベース140と、複数の研磨ヘッド又はキャリアヘッド152(
図1には1つだけ示されている)を支持するカルーセル134とを、備える。一般的に、搬入ロボット104は、研磨モジュール106とファクトリインターフェース102(図示せず)との間での基板122の移送を容易にするために、それらの近位に配置される。
【0016】
移送ステーション136は一般的に、移送ロボット146と、投入バッファ142と、排出バッファ144と、ロードカップアセンブリ148とを、含む。投入バッファステーション142は、搬入ロボット104から基板122を受容する。移送ロボット146が、投入バッファステーション142からロードカップアセンブリ148へと基板122を移動させ、ロードカップアセンブリ148において、基板122はキャリアヘッド152に移されうる。
【0017】
上述の研磨モジュール106の制御を容易にするために、コントローラ108は、中央処理装置(CPU)110と、サポート回路146と、メモリ112とを備える。CPU110は、様々な研磨装置、ドライバ、ロボット、及びサブプロセッサを制御するために工業環境で使用可能な、任意の形態のコンピュータプロセッサの1つでありうる。メモリ112は、CPU110に接続される。メモリ112又はコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、フロッピーディスク、ハードディスク、或いは、その他の、ローカル又は遠隔の任意の形態のデジタルストレージといった、容易に入手可能なメモリのうちの一又は複数でありうる。サポート回路114は、従来型の様態でプロセッサをサポートするように、CPU110に接続される。上記の回路は、キャッシュ、電源、クロック回路、入出力回路、サブシステムなどを含む。
【0018】
一般的に、カルーセル134は複数のアーム150を有し、複数のアーム150はそれぞれ、キャリアヘッド152のうちの1つを支持する。
図1に描かれているアーム150のうちの2つは、移送ステーション、及び、プラテンアセンブリ132のうちの1つの上に配置された平坦化用物品又は研磨用物品123が視認できるように、透視画法で示されている。カルーセル134は、プラテンアセンブリ132と移送ステーション136との間でキャリアヘッド152が移動しうるように、割り出し可能(indexable)である。
【0019】
典型的には、化学機械研磨プロセスは、プラテンアセンブリ132上に支持されている研磨用物品123に対して、キャリアヘッド142に保持された基板122を移動させることによって、各プラテンアセンブリ132において実施される。研磨用物品123は、滑らかな表面、テクスチャ加工された(textured)表面、研磨材を含有する表面、又はそれらの組み合わせを有しうる。加えて、研磨用物品123は、研磨面の端から端まで進みうるか、又は、研磨面に取り外し可能に固定されうる。典型的には研磨用物品123は、真空、機械的クランプ、又は他の保持方法によって、プラテンアセンブリ132に取り外し可能に固定される。
【0020】
研磨用物品123の実施形態は、本書に記載の実施形態による三次元(3D)印刷プロセスで作り出されるポリマー材料を含みうる。研磨用物品123は、ナノサイズのフィーチャ(例えば、約10ナノメートル〜約200ナノメートルのサイズを有するポリマーマトリクスの中の粒子、及び/或いは、離散領域又は離散ドメイン)を含みうる。研磨プロセスは、基板122の研磨を支援するために流体ノズル154によってパッド表面に供給される、研磨材粒子を含有するスラリを利用しうる。流体ノズル154は、図示しているようにプラテンアセンブリ132がない位置へ、及び、プラテンアセンブリ132の各々の上方の位置へと、図示されている方向に回転しうる。
【0021】
本書で説明している3D印刷は、様々な3D堆積又は3D印刷のプロセスの中でも特に、ポリジェット堆積、インクジェット印刷、熱溶解積層(fused deposition modeling)、バインダ噴射、粉末ベッド溶解、選択的レーザ焼結、ステレオリソグラフィ、バット光重合デジタルライト処理、シート積層、指向性エネルギー堆積を含むが、それらに限定されるわけではない。
【0022】
図2には、プラテンアセンブリ132と、例示的な供給アセンブリ206及び巻き取りアセンブリ208との側面図が描かれており、研磨用物品123の、プラテン230に差し渡された部分を示している。一般的に、供給アセンブリ206は、供給ロール254と、プラテンアセンブリ132の両側壁218の間に配置されている、上部ガイド部材204及び下部ガイド部材205とを含む。研磨用物品123は、チューブ状部材又はダウエル(dowel)でありうるロッド255の周囲に巻き付けられうる。一般的に、巻き取りアセンブリ208は、巻き取りロール252と、両側壁218の間にいずれも配置されている、上部ガイド部材214及び下部ガイド部材216とを含む。巻き取りロール252は一般的に、研磨用物品123の使用済み部分を有し、巻き取りロール252が使用済みの研磨用物品123でいっぱいになったら空の巻き取りロールと容易に交換できるように、構成される。上部ガイド部材214は、プラテン230から下部ガイド部材216へと研磨用物品123を導くよう配置される。下部ガイド部材216は、研磨用物品123を巻き取りロール252上へと導く。プラテンアセンブリ132は、基板に実施される平坦化プロセス又は研磨プロセスの終点を検出するための光信号を送受信するよう適合した、レーザなどの光感知デバイス220も備えうる。
【0023】
供給ロール254は一般的に、研磨用物品123の未使用部分を有し、供給ロール254上に配置された研磨用物品123が研磨プロセス又は平坦化プロセスによって消費されたら新たな研磨用物品123を有する別の供給ロール254と容易に交換できるように、構成される。一部の実施形態では、供給ロール254と巻き取りロール252との間に配置されている研磨用物品123の上面221に向けて電磁エネルギー215を当てるために、エネルギー源212が配置されうる。電磁エネルギー215は、エネルギーのビーム又はフラッドの形態であってよく、研磨用物品123の上面221の離散領域と選択的に相互作用(すなわち、切除及び/又は加熱)するために、使用されうる。電磁エネルギー215は、一又は複数の電子ビーム、一又は複数のレーザービーム、及びそれらの組み合わせでありうる。電磁エネルギー215は、研磨プロセスの前、研磨プロセス中、又は研磨プロセス後に、研磨用物品123の上面221を調整するために使用されうる。一部の実施形態では、電磁エネルギー215は、研磨プロセスを微調整するために、研磨中に研磨用物品123の上面221を調整するのに利用される。
【0024】
研磨用物品123の上面221は一般的に、バッキングパッドアセンブリ226の端から端まで、X方向に、研磨用物品123を制御可能に進ませるよう構成される。研磨用物品123は一般的に、供給アセンブリ206に連結されたモータ222と、巻き取りアセンブリ208に連結されたモータ224との間で力のバランスを取ることで、プラテン230に対して移動する。ラチェット機構及び/又はブレーキシステム(図示せず)が、バッキングパッドアセンブリ226に対して研磨用物品123を留め置くために、供給アセンブリ206と巻き取りアセンブリ208の一方又は両方に連結されうる。プラテン230は、X方向及び/又はY方向に概して直角な回転軸の周囲でプラテンアセンブリ132を回転させる回転アクチュエータ228に、動作可能に連結されうる。真空システム232が、アクチュエータ228とバッキングパッドアセンブリ226との間に連結されうる。真空システム232は、プラテン230上に研磨用物品123の位置を定めるために使用されうる。真空システム232は、バッキングパッドアセンブリ226の下に配置されたプレート236内に形成された、チャネル234を含みうる。バッキングパッドアセンブリ226は、サブパッド238及びサブプレート240であって、各々がそれらを貫通して形成された開口242を有し、開口242はチャネル234及び真空源244と流体連通している、サブパッド238及びサブプレート240とを含みうる。サブパッド238は、典型的には、ポリカーボネートなどのプラスチックであるか、又は、ポリウレタンで形成される。一般的に、サブパッド238の硬度又はデュロメータ(durometer)は、特定の研磨結果を発生させるよう選ばれうる。サブパッド238は一般的に、基板の全体的な平坦化を促進するために、研磨用物品123の上面221を、基板(図示せず)の平面に平行な平面に維持する。サブプレート240は、サブパッド238の上面が、プラテン230の上面260に概して平行に維持されるように、サブパッド238とプラテン230の底部との間に配置される。
【0025】
図3Aは、
図2のプラテンアセンブリ132で使用されうる研磨用物品123を作るための、パッド製造システム300Aの一実施形態の概略等角図である。一実施形態では、パッド製造システム300Aは一般的に、送り部302と、印刷部304と、硬化部306と、パッド巻き取り部308とを含む。パッド製造システム300Aは、少なくとも2つのローラ314の間に配置されたウェブ312を含むコンベヤ310も含む。ローラ314の一方又は両方は、Aと表示された矢印で図示された方向にローラ314及び/又はウェブ312を回転させる、駆動モータ315に連結されうる。送り部302、印刷部304、硬化部306、及びパッド巻き取り部308は、コントローラ311に動作可能に連結されうる。コンベヤ310は、コントローラ311によって、連続的又は断続的に動くよう動作しうる。
【0026】
送り部302は、コンベヤ310に動作可能に連結されている、供給ロール316を含みうる。供給ロール316は、ポリマー材料、例えば二軸配向性ポリエチレンテレフタレート(BoPET)材料などの、バッキング材料317でありうる。供給ロール316は、運動制御デバイス320によって駆動されるか又は制御される送りローラ318に、配置されうる。運動制御デバイス320は、供給ロール316の引き出しスピードが駆動モータ315及び/又はウェブ312によって操作されるように、供給ロール316に所定の張力を提供するモータであってよく、かつ/又は、かかるブレーキシステムを含みうる。送り部302は、事前処理デバイス322も含みうる。事前処理デバイス322は、印刷部304での印刷に先立って、バッキング材料317上にコーティングを噴霧するか、さもなければ提供するよう、構成されうる。一部の実施形態では、事前処理デバイス322は、印刷部304での印刷に先立って、バッキング材料317を加熱するために利用されうる。
【0027】
印刷部304は、送り部302の下流に配置された3D印刷ステーション324を含む。印刷部304は、一又は複数のプリントヘッド327を利用して、バッキング材料317上にパターニングされた表面328を提供する。印刷部304は、バッキング材料317及びウェブ312に対してプリントヘッド327を移動させるために利用されうる運動制御デバイス332に連結されている、可動プラットフォーム330を含みうる。
【0028】
プリントヘッド327は、パターニングされた表面328を形成するために使用されうる印刷材料を有する、材料源325に連結されうる。印刷材料は、ポリウレタン、ポリカーボネート、フルオロポリマー、PTFE、PTFA、ポリフェニレンサルファルド(PPS)、又はそれらの組み合わせといった、ポリマー材料を含みうる。例としては、ポリビニルアルコール、ペクチン、ポリビニルピロリドン、ヒドロキシエチルセルロース、メチルセルロース、ヒドロプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ポリアクリル酸、ポリアクリルアミド、ポリエチレングリコール、ポリヒドロキシエーテルアクリライト、でんぷん、マレイン酸共重合体、ポリエチレンオキシド、ポリウレタン、及びそれらの組み合わせも含まれる。
【0029】
一実施形態では、ポリマー材料は、バッキング材料317上に、ベース材料として堆積されうる。形成されたポリマー材料は、開孔型又は閉孔型のポリウレタン材料を含んでよく、その内部に散在したナノスケール粒子を含みうる。この粒子は、有機ナノ粒子を含みうる。一実施形態では、ナノ粒子は、分子環又は元素環、及び/或いはナノ構造を含みうる。例としては、カーボンナノチューブ及びその他の構造や、5つの結合を有する(五方)、6つの結合を有する(六方)、又は6を上回る数の結合を有する分子炭素環などの、炭素(C)の同素体が含まれる。他の例には、フラーレン様超分子が含まれる。別の実施形態では、ナノスケール粒子は、セラミック材料、アルミナ、ガラス(例えば二酸化ケイ素(SiO
2))、及び、それらの組み合わせ又は誘導体でありうる。別の実施形態では、ナノスケール粒子は、様々な酸化物の中でも特に、チタン(IV)酸化物又は二酸化チタン(TiO
2)、ジルコニウム(IV)酸化物又は二酸化ジルコニウム(ZrO
2)、それらの組み合わせ、及びそれらの誘導体といった、金属酸化物を含みうる。
【0030】
プリントヘッド327によって形成された、パターニングされた表面328は、ウレタン、メラミン、ポリエステル、ポリスルホン、ポリビニルアセテート、フッ化炭化水素などで形成されうるポリマーマトリクス、並びに、その混合物、共重合体、及びグラフト鎖といった、複合ベース材料を含みうる。一実施形態では、ポリマーマトリクスは、ポリエーテル系液体ウレタンで形成されうるウレタンポリマーを含む。液体ウレタンは、多官能価アミン、ジアミン、トリアミン、或いは、硬化されると尿素結合と架橋されたポリマーネットワークとを形成するウレタン/尿素架橋された組成物中のヒドロキシ/アミンなどの、多官能価ヒドロキシル化合物又は混合官能性化合物と、反応しうる。
【0031】
硬化部306は、ハウジング334の内側又は外側に配置されうる、硬化デバイス333を含む。ハウジング334は、ウェブ312、及び、バッキング材料317上のパターニングされた表面328とその下を通りうるように、ウェブ312の上方に配置される。硬化デバイス333は、熱炉、紫外(UV)光放出器、又はそれらの組み合わせでありうる。一実施形態では、硬化デバイス333は、プリントヘッド327によって堆積された材料を硬化し、パターニングされた表面328を形成するために使用されうる、レーザ源336と電子ビーム放出器338の一方又は両方を含みうる。一部の実施形態では、電子ビーム放出器が利用される場合、パッド製造システム300Aは、圧力が制御可能な筐体内に配置されうる。レーザ源336及び電子ビーム放出器338は、単独で、或いは、熱エネルギー又はUVエネルギーと組み合わされて、利用されうる。一部の実施形態では、レーザ源336及び電子ビーム放出器338は、パターニングされた表面328の特定の部分をターゲットとするスポット硬化プロセスにおいて、使用されうる。レーザ源336又は電子ビーム放出器338によるスポットターゲット設定は、パターニングされた表面328の離散領域を加熱して、離散領域の表面をその周辺の部分よりも硬くしうるか、又は、離散領域の表面の圧縮性をその周辺の部分よりも低くしうる。レーザ源336は、パターニングされた表面328の部分を切除して、表面上に微細なテクスチャを作り出すためにも、使用されうる。
【0032】
パッド巻き取り部308は、研磨用物品123が巻かれうる巻き取りロール340を含む。巻き取りロール340は、パッド製造システム300Aから取り外されて、
図2のプラテンアセンブリ132における供給ロール254として利用されうる。製造中に、巻き取りロール340は、運動制御デバイス342に連結されうる。運動制御デバイス342は、巻き取りロール340の巻きスピードを制御する、モータであってよく、かつ/又は、かかるブレーキシステムを含みうる。
【0033】
図3Bは、パッド製造システム300Bという別の実施形態の概略側面図である。パッド製造システム300Bは、
図3Aのパッド製造システム300Aに類似していることがある、送り部302、印刷部304、硬化部306、及びパッド巻き取り部308を有するコンベヤ310を含む。しかし、パッド製造システム300Bは、コンベヤ310の上方で巻き取りロール340へと動くウェブ312を制御可能に引き出す、供給ロール316を含む。ウェブ312は、
図3Aで説明したバッキング材料317に類似したバッキング材料でありうる。ウェブ312の動き、並びに、コンベヤ310及び巻き取りロール340は、
図3Aで説明したパッド製造システム300Aに類似した運動制御デバイス及びコントローラによって制御されてよく、
図3Bでは、簡潔にするためにその説明を省略する。
【0034】
パッド製造システム300Bは、送り部302と印刷部304との間に配置された、オプションの事前処理部344を含む。事前処理部344は、ウェブ312上に接着層又は剥離層を形成するために使用されうる。代替的には、接着層又は剥離層は、3D印刷ステーション324を使用して、印刷部304で形成されうる。事前処理部344が使用される場合、スロット/ダイコーター346が、ウェブ312上に一又は複数の層を堆積させるために使用されうる。加えて、UV光又は加熱要素を利用する硬化ステーション348が、スロット/ダイコーター346によって堆積された材料を硬化させるために使用されうる。
【0035】
この実施形態では、3D印刷ステーション324は、プリントヘッド327のアレイを備える。プリントヘッド327は、ウェブ312上に接着層又は剥離層をオプションで形成するため、並びに、ウェブ312上にパターニングされた表面328を形成するために、使用されうる。一例では、プリントヘッド327の複数の横列及び縦列は、コンベヤ310の幅、及び、コンベヤ310の長さの一部分の範囲に広がりうる。一部の実施形態では、プリントヘッド327のうちの一又は複数は、コンベヤ310に対して可動式でありうる。プリントヘッド327は、
図3Aで説明したように、材料源325に連結されることになる。
【0036】
硬化部306は、オプションの電磁エネルギー源350と熱硬化デバイス352の一方又は両方を含みうる。電磁エネルギー源350は、
図3Aで説明したレーザ源か電磁ビーム放出器の一方、又はそれらの組み合わせでありうる。熱硬化デバイス352は、炉又はUV光アレイでありうる。
【0037】
パッド巻き取り部308は、研磨用物品123が巻かれうる巻き取りロール340を含む。巻き取りロール340は、パッド製造システム300Aから取り外されて、
図2のプラテンアセンブリ132における供給ロール254として利用されうる。
【0038】
図4Aは、
図3Aのパッド製造システム300A、又は、
図3Bのパッド製造システム300Bで使用されうる、3D印刷ステーション324の一実施形態の概略断面図である。
図4Aは、3D印刷プロセスを使用して製造される研磨用物品123の一実施形態の一部分を示している。3D印刷は、研磨層の中の特定の場所に研磨材が埋めこまれている研磨用物品を作り出すための、使いやすく、高度に制御可能なプロセスを供与する。研磨用物品123は、
図3Aのバッキング材料317、又は
図3Bのウェブ312でありうる支持体400上に、印刷されうる。
【0039】
図4Aを参照するに、研磨用物品123の少なくとも研磨層405は、3D印刷プロセスを使用して製造される。この製造プロセスでは、材料の薄層が支持体400上で漸進的に堆積され、溶解すると同時に、支持体は、Aで示す矢印に沿って(X方向に)移動する。例えば、(
図3Aの材料源325からの)パッド前駆体材料の液滴410が、液滴噴射プリンタ415のノズル326から噴射されて、複数の層420A、420B、及び422を形成しうる。上記の層は、パッド前駆体材料を含む固化された材料425を形成することが可能であり、上記の層の上に他の層を逐次的に堆積することを可能にする。液滴噴出プリンタ415はインクジェットプリンタに類似していることがあるが、インクではなくパッド前駆体材料を使用する。製造中、ノズル326がX方向とY方向の一方又は両方に平行移動しうると同時に、支持体400は、X方向に連続的又は断続的に移動する。
【0040】
一例では、第1層420Aが支持体400上に、液滴410の噴射によって堆積されうる。層420B及び422などの後続の層(それらの間の他の層については、簡潔にするために記載しない)は、固化後の第1層420A上に堆積可能である。各層が固化した後、次いで、3次元研磨層405が完全に製造されるまで、既に堆積されている層の上に新たな層が堆積される。固化は重合によって実現可能である。例えば、パッド前駆体材料の層はモノマーであってよく、このモノマーは、UV硬化よって又は熱的に、インシトゥ(その場)で重合されることが可能である。パッド前駆体材料は堆積直後に有効に硬化されうるか、又は、パッド前駆体材料の層全体が堆積されてから、この層が一度に硬化されうる。
【0041】
各層は、コンピュータ311に設定されている3D描画コンピュータプログラムに保存されたパターンに、ノズル326によって付着させられうる。各層420A、420B、及び422は、研磨層405の総厚の50%未満であるか、又はそれを下回りうる。一例では、各層420A、420B、及び422は、研磨層405の総厚の10%未満、例えば5%未満(研磨層405の総厚の約1%未満など)でありうる。一実施形態では、各層の厚さは、約30ミクロン〜約60ミクロン、又はそれを下回る厚さを、例えばナノメートル(1〜100ナノメートル等)、及びピコスケール寸法(ピコスケール((10
-12メートル)等)ですらあるオーダーで、含みうる。
【0042】
支持体400は、剛性ベース、又は、ポリテトラフルオロエチレン(PTFE)の層などの可撓性フィルムでありうる。支持体400がフィルムである場合には、支持体400は、研磨用物品123の一部を形成しうる。例えば、支持体400は、バッキング材料317、又は、バッキング材料317と研磨層405との間の層でありうる。代替的には、研磨層405は支持体400から取り外すことが可能であり、層420A及び420Bがバッキング層材料を形成しうる。
【0043】
一部の実施形態では、研磨材粒子は、パッド前駆体材料の液滴410中に分散していることがある。研磨材粒子は、層の各々の形成中に、研磨層405内に局所的に分配されうる。研磨材粒子の局所的分配は、凝集の最小化を支援しうる。一部の実施形態では、研磨材粒子は、液体熱硬化ポリマー前駆体と事前混合されうる。熱硬化ポリマー前駆体と研磨材粒子との混合物を継続的にかき混ぜることは、インクジェットプリンタで用いられるインクピグメントを均質化させるために使用される装置と同様に、粒子の凝集を防止する。加えて、この混合物を連続的にかき混ぜることで、前駆体材料における研磨材粒子のほぼ均一な分布が確保される。これにより、研磨層全体での粒子のより均一な分布をもたらすことが可能であり、そのことが、研磨均一性の向上につながりうると共に、凝集の回避にも役立ちうる。
【0044】
事前混合された混合物は、特定のパターンに従って、単一のノズル(例えばノズル326)から分配されうる。例えば、事前混合された混合物は、研磨層405の厚さ全体にわたり埋めこまれた研磨材粒子が均一に分布している均質的な研磨層405を作り出すために、均一に分配されうる。
【0045】
図4Bは、
図3Aのパッド製造システム300A、又は、
図3Bのパッド製造システム300Bで使用されうる、3D印刷ステーション324の一実施形態の概略断面図である。
図4Bでは、3D印刷プロセスを使用して製造される研磨用物品123の別の実施形態の一部分の断面図が図示されている。研磨用物品123は、CADプログラムからの指令に基づいて溝455によって隔てられた複数の構造物450を含むよう、液滴噴射プリンタ415によって形成される。構造物450及び溝455が、研磨層405を形成しうる。液滴噴射プリンタ415によって、研磨用物品123と共に副層(sub−layer)430も形成されうる。副層430は、(
図3Aに示す)バッキング材料317でありうる。例えば、副層430及び研磨層405は、液滴噴射プリンタ415によって、連続工程で製造されることもある。副層430には、異なる前駆体及び/又は異なる硬化量、例えば、異なるUV放射強度又はUV放射期間を使用することによって、研磨層405とは異なる硬度が与えられうる。他の実施形態では、副層430は、 従来型のプロセスによって製造されてから、研磨層405に固定される。例えば、研磨層405は、感圧接着剤などの薄型接着層によって、副層430に固定されうる。
【0046】
図4Bでは、ノズル435を有するプリントヘッド430Aが、純液体熱硬化ポリマー前駆体を分配するために使用されうる一方、ノズル435を有するプリントヘッド430Bは、研磨材粒子445が含有されている、液体熱硬化ポリマー前駆体又は溶融熱可塑性プラスチックに対して使用されうる。研磨材粒子445は、研磨用物品123上の選択された場所にのみ分配されうる。これらの選択された場所は、集合的に研磨材粒子の所望の印刷パターンを形成しており、液滴噴射プリンタ415を制御する電子コントローラ(例えばコントローラ311)によって後に読み込まれる、CAD適合ファイルとして保存されうる。電子制御信号は次いで、CAD適合ファイルによって特定された位置にノズル435が平行移動する場合にだけ事前混合された混合物を分配するために、液滴噴射プリンタ415に送信される。粒子445の例は、ポリエチレングリコール(PEG)、ポリエチレンオキシド(PEO)、ゼラチン、キトサン、Si
3N
4、ポリメチルメタクリレート(PMMA)などの中空粒子/ミクロスフェア(サイズは約5nm〜約50μmの)、メソ多孔性ナノ粒子、カルボキシルメチルセルロース(CMC)、マクロ多孔性ヒドロゲル、及びエマルジョンミクロスフェアといった、ポロゲンを含みうる。代替的には、共ポロゲンとして塩微粒子(NaCl)とPEGとを組み合わせることによって、リーチング技法が用いられうる。
【0047】
代替的には、液体熱硬化ポリマー前駆体を使用する代わりに、研磨材粒子445は溶融熱可塑性プラスチックと事前混合されうる。この実施形態では、研磨材粒子445との混合物は、分配に先立って、同様に継続的にかき混ぜられる。混合物が所望の印刷パターンに従って液滴噴射プリンタ415から分配された後に、混合物の溶融した部分は冷えて固化し、研磨材粒子445が定位置に固定される。この混合物を連続的にかき混ぜることで、前駆体材料における研磨材粒子445のほぼ均一な分布が確保される。これにより、研磨層全体での粒子445のより均一な分布をもたらすことが可能であり、そのことが、研磨均一性の向上につながりうると共に、凝集を最小化しうる。
【0048】
液体熱硬化ポリマー前駆体が使用される場合と同様に、熱可塑性プラスチック混合物は、均一に分配されて、研磨層405全体にわたる研磨材粒子445の均一な分布を発生させうる。代替的には、研磨材粒子を含有する熱可塑性プラスチック混合物は、CAD適合ファイルとして保存されており、かつ、液滴噴射プリンタ415を駆動させるために使用される電子コントローラによって読み出される、研磨材粒子445の所望の印刷パターンに従って、研磨層405の選択された場所にのみ分配されうる。
【0049】
研磨材粒子は、プリントヘッド430Bに連結されたノズル435から懸濁液中の研磨材粒子を分配するのではなく、プリントヘッド430Bのノズル435から粉末形態で直接分配されうる一方、プリントヘッド430Aのノズル435は、パッドポリマー前駆体を分配するために使用される。一実施形態では、このポリマー前駆体は、堆積されたポリマー材料に研磨材粒子445が分配される前に分配され、この混合物はその後に硬化される。
【0050】
3D印刷は、従来型の方法で構築された研磨用物品中に存在すると凝集する傾向がある研磨材粒子445、例えばアルミナやセリア等を使用する研磨用物品123を構築するために、部分的に役立つが、それ以外の研磨材粒子を分配し、研磨用物品123に組み入れるためにも、使用されうる。ゆえに、研磨用物品123中に組み入れられた研磨材粒子は、シリカ、セラミック酸化物、金属、及び硬性ポリマーを含みうる。
【0051】
液滴噴射プリンタ415は、固体か、中空コアを有する粒子445のいずれかである粒子445を堆積させうる。液滴噴射プリンタ415は、様々な種類の粒子を分配することもできる。一部の種類の粒子は、CMP処理中に化学反応して、研磨用物品123の一又は複数の層に所望の変化を発生させうると共に、研磨されている基板との化学反応も発生させる。CMP処理中に使用される化学反応の例は、水酸化カリウムと水酸化アンモニウムのうちの一又は複数を伴う、10〜14の塩基性pH範囲内で生じる化学過程、及び、スラリ製造業者によって使用される他の専有的な化学過程を含む。酢酸やクエン酸などの有機酸を伴う、2〜5の酸性pH範囲内で生じる化学過程も、CMP処理において使用される。過酸化水素を伴う酸化反応も、CMP処理で使用される化学反応の例である。研磨材粒子445は、機械的研磨作用を提供するためにも使用されうる。粒子445は、10ミクロン以下(例えば1ミクロン以下)などの、最大1ミリメートル、又はそれ未満のサイズを有しうる。粒子445は種々の形態を有しうる。例えば粒子445は、球形、細長形状、又は、ファセット形状でありうる。
【0052】
3D印刷手法は、研磨層405のパターンにおける厳密な公差を実現すること、及び、層毎印刷手法によって研磨層405内に埋めこまれる研磨材粒子445の分布における許容誤差を大きくすることを、可能にする。
【0053】
研磨用物品
図5A及び
図5Bには、
図2のプラテンアセンブリ132で使用されうる研磨用物品500の一実施形態が描かれている。研磨用物品500の研磨面505は、
図3A及び
図3Bのパターニングされた表面328を形成する、複数の細片部又はタイル532を備える。タイル532は、研磨材料570内に、又は研磨材料570を通って形成された、溝530によって隔てられている。研磨材料570は、バッキング材料522などのキャリアフィルムに付着していることがある。一実施形態では、少なくとも研磨面505は、
図3Aから
図4Bで説明した3D印刷プロセスによって製造されうる。研磨面505は、CMPプロセスで使用される化学的要素及び物理的要素に対する耐性で選ばれる適切な接着剤319によって、バッキング材料522に接合されうる。一部の実施形態では、バッキング材料522と接着剤319の一方又は両方が、
図3Aから
図4Bで説明した3D印刷プロセスによって製造されうる。
【0054】
複数のタイル532の各々は、研磨材料570内に研磨材料570の厚さを下回る深さに溝530を形成することによって、別のタイル532につながりうる。溝530の深さは、研磨材料570の可撓性を許容しつつ全体性を維持するよう、選択されうる。
図5A及び
図5Bに描かれた実施形態では、溝530及びタイル532は、実質的に、機械直交方向に平行であり、すなわち、供給及び巻き取りのロール方向を横断している。溝530は、スラリの保持及び基板表面への供給を強化しうる、チャネルを形成する。溝530は研磨材料570の表面張力を緩和させるためにも使用される。これにより、柔軟性が付加されて、研磨用物品500を供給ロールから引き出し、巻き取りロールに巻き付けることが容易になりうる。
【0055】
図5Aに示す実施形態では、タイル532は実質的に長方形であり、その長さは実質的に、バッキング材料522の機械直交幅である。バッキング材料522の機械直交幅の実質的に半分の長さに形成された2つの実質的に長方形のタイル532などの、他の実施形態も想定される。一実施形態では、タイル532は、研磨用物品500が光放射又は磁気放射の透過部分536を伴って製造されるように、形成されうる。透過部分536は、研磨用物品500の(機械方向の)長さに沿って形成されうる。光感知デバイス220(
図2に示す)によって放出される光放射又は磁気放射を同様に透過させるバッキング材料522が、終点検出を容易にするために使用されうる。タイル532の幅、すなわち、長さに対して実質的に垂直な寸法は、任意の寸法に形成されうる。一例としては、タイル532は、約1インチ以下の幅を有しうる。
【0056】
一部の実施形態では、研磨材料570は、第2材料520の内部に配置された第1材料515といった、複合材料を含む。第2材料520はポリマーマトリクスであってよく、第1材料515は、一実施形態においては、第1材料515に混合される微量要素でありうる。微小要素は、ポリマー材料、金属材料、セラミック材料、又はそれらの組み合わせでありうる。微量要素の少なくとも一部の平均径は約10ナノメートルでありうる。ただし、10ナノメートルよりも大きい又は小さい直径も使用されうる。微量要素は、その平均径が、実質的に同じか、或いは、種々のサイズ又は種々のサイズの混合を有して変動してよく、かつ、所望に応じてポリマーマトリクスに含浸されうる。微量要素の各々は、約0.1ミクロン〜約100ミクロンの平均距離を隔てて離間しうる。微小要素は、ポリマーベース材料全体を通じて、実質的に均一に分布しうる。
【0057】
第1材料515は、第2材料520と比較すると、エネルギー源212(
図2に示す)からのエネルギーの一又は複数のビームなどの、磁気エネルギーとの反応性が異なりうる。この異なる反応性が、研磨面505上にマイクロテクスチャを形成するために使用されうる。第1材料515と第2材料520との間で異なるこの反応性は、第1材料515が第2材料520よりも速い速度で研磨されること、又はその逆を、もたらしうる。ポリマー微量要素は、研磨用物品500の研磨面505の中にミクロンサイズ又はナノサイズのドメインを形成する、ミクロンサイズ又はナノサイズにサイズ決定された材料でありうる。微小要素の各々は、約150ミクロン〜約10ミクロン未満、又はそれを下回る平均径を含みうる。
【0058】
図6A及び
図6Bには、
図2のプラテンアセンブリ132で使用されうる、研磨用物品600という別の実施形態が描かれている。研磨用物品600は、
図3A及び
図3Bのパターニングされた表面328を形成する研磨面605を有する。研磨面605は、研磨材料670内に、又は研磨材料670を通って形成された、隣接する端から端までの溝630によって隔てられ、かつ、バッキング材料522に付着した、複数の細片部又はタイル632を備える。この実施形態では、研磨材料570は、その中に混入された、
図4Bで説明した複数の粒子445を含む。複数の細片部又はタイル632の各々は、研磨材料670内に、研磨材料670の厚さを下回る深さに溝630の各々を形成することによって、互いにつながりうる。溝630の深さは、研磨材料670の可撓性を許容しつつ全体性を維持するよう、選択されうる。代替的には、研磨材料670は、バッキング材料522を必要としないロール形態における移動を容易にする弾性率又は他の機械的属性を、示しうる。この実施形態では、複数のタイル432は、複数の溝によって形成され、接着剤319及びバッキング材料522がないロール形態で使用されうる。別の代替例としては、研磨材料570は、隔てられているか、又は離散しており、かつ、適切な接着剤519によってバッキング材料522に接合しているタイル632を、溝630が形成するように、形成されうる。図示されている実施形態では、研磨用物品600は、スラリの保持及び基板への供給を支援し、研磨用物品600の可撓性を強化するために付加される、対応する横方向の溝635を有する。
【0059】
タイル632は、効率的な研磨を容易にする、任意の形及び寸法でありうる。一実施形態では、タイル632は、研磨用物品600が光放射又は磁気放射の透過部分636を伴って製造されるように、形成されうる。透過部分636は、研磨用物品600の(機械方向の)長さに沿って形成されうる。光感知デバイス220(
図2)によって放出される光放射は磁気放射を同様に透過させるバッキング材料522が、終点検出を容易にするために使用されうる。
【0060】
図7A及び
図7Bには、
図2のプラテンアセンブリ132で使用されうる研磨用物品700という別の実施形態が描かれている。研磨用物品700は、
図3A及び
図3Bのパターニングされた表面328を形成する研磨面705を有する。研磨面705は、研磨材料570内に形成された複数のポア732を含む。研磨材料570は、CMPプロセスで使用される化学的要素及び物理的要素に対する耐性で選ばれる適切な接着剤519によって、バッキング材料522に接合されうる。研磨用物品123内のポア732は、実質的に円形又は楕円形であるが、円錐、又は、中空の円錐台、すなわち実質的に平行な2平面間の円錐といった、他の環状の幾何形状を含みうる。他の実施形態においてと同様に、横方向部分736は、光感知デバイス220(
図2)による基板のモニタリングを可能にするよう、透過性でありうる。
【0061】
一実施形態では、ポア732は、スラリの保持を強化し、研磨用物品700の巻きを支援するようサイズ決定され、かつ/又は離間している、中空(すなわち空間)でありうる。他の実施形態では、ポア732は、研磨材料570(第2材料712)とは異なる第1材料710で、少なくとも部分的に充填されうる。第1材料710は、第2材料712と比較すると、硬化方法に対する反応性が異なっている、ポリマー材料でありうる。例えば、第2材料712はUVエネルギーで硬化可能でありうるが、第1材料710は、UVエネルギーによる影響をあまり受けない。しかし第1材料710は、一実施形態では、熱的に硬化されうる。一実施形態では、研磨用物品700は、第1材料710と第2材料712とを使用して、別様に硬化されうる。別様な硬化の一例では、研磨用物品700の第1材料71及び第2材料712が、第1材料710を硬化させないUVエネルギーで硬化されうる。これにより、第2材料712は第1材料710よりも硬くなりうる。第1材料710は第2材料712よりも粘性が高くなることから、第1材料710が、研磨用物品700に圧縮性及び/又は可撓性を付加しうる。
【0062】
一実施形態では、第1材料710は、熱的に硬化されて、第1材料710を内部に有するポア732をより固くするが、第2材料712よりは柔らかく、圧縮性が高い。別の実施形態では、ポア732内の第1材料710は、基板研磨プロセス中に摩擦によって発生する熱によって、熱的に硬化される。この実施形態では、第1材料710は、硬化されて第2材料712よりも硬くなり、ひいては、周辺の第2材料712よりも硬い、研磨面705上のドメインを形成しうる。
【0063】
他の実施形態では、第1材料710は、第2材料712と比較すると、エネルギー源212(
図2に示す)からのエネルギーの一又は複数のビームなどの、磁気エネルギーとの反応性が異なりうる。この異なる反応性が、研磨面705上にマイクロテクスチャを形成するために使用されうる。第1材料710と第2材料712との間で異なるこの反応性は、第1材料710が第2材料712よりも速い速度で研磨されること、又はその逆を、もたらしうる。ポア732は、研磨用物品700の研磨面705の中にミクロンサイズ又はナノサイズのドメインを形成する、ミクロンサイズ又はナノサイズにサイズ決定された材料でありうる。一実施形態では、ポア732は、約150ミクロン〜約10ミクロン未満、又はそれを下回る平均径を含みうる。
【0064】
研磨用物品123、500、600、又は700の上記の実施形態では、バッキング材料317又は522は、3D印刷プロセスによって、又は、3D印刷プロセスにおけるベース材料として形成されうる、ポリエステルフィルム、例えば二軸配向性ポリエチレンテレフタレート又はポリエチレンテレフタレートなどの、プラスチック材料である。バッキング材料317又は522は、約0.002インチ(50.8μm)〜約0.012インチ(304.8μm)、例えば約0.004インチ(101.6μm)の厚さで、提供されうる。パターニングされた表面328及び研磨材料570、670、又は770は、ショアDスケールで約20〜80の範囲内の硬度を有するポリマー材料でありうる。一実施形態では、研磨用物品123の厚さは、約0.019インチ(482.6μm)から約0.060インチ(1,524μm)までである。
【0065】
図8は、
図2のプラテンアセンブリ132で研磨用物品123として使用されうる研磨用物品800の概略的な透視断面図である。研磨用物品800は、硬性フィーチャ804が混入された軟性材料で形成されたベース材料層でありうる、複合パッド本体802を含む。複合パッド本体802は、3D印刷によって形成されうる。複数の盛り上がったフィーチャ806は、硬性フィーチャ804を少なくとも部分的に囲んでいる、軟性材料805の一又は複数の層を含みうる。一実施形態では、硬性フィーチャ804は、約40ショアDスケール〜約90ショアDスケールの硬度を有しうる。軟性材料805、並びに複合パッド本体802の残部は、約26ショアAスケールから約95ショアAスケールまでの硬度値を有しうる。
【0066】
複合パッド本体802は複数の層を含み、各層は、3Dプリンタによって堆積されうる、軟性材料805の第1材料領域と、硬性フィーチャ804の第2材料領域とを含む。複数の層は次いで、例えば、UV光によって、熱源によって、又は電磁エネルギーによって硬化されて、固化し、所望の硬度に到達しうる。堆積及び硬化の後に、硬性フィーチャ804及び軟性材料805は、1つにまとめられて、一体型の複合パッド本体802を形成する。
【0067】
軟性材料805が低い硬度値と低いヤング率の値とを有する第1材料で形成されうる一方、硬性フィーチャ804は、高い高度値と高いヤング率の値を有する第2材料で形成されうる。
【0068】
硬性フィーチャ804は、ポリマー材料(例えば、ポリウレタン、アクリレート、エポキシ、アクリロニトリルブタジエンスチレン(ABS)、ポリエーテルイミド、ポリアミド、メラミン、ポリエステル、ポリスルホン、ポリビニルアセテート、フッ化炭化水素など)、及びその混合物、共重合体、及びグラフト鎖で、形成されうる。一実施形態では、硬性フィーチャは、ポリエーテルケトン(PEEK)、ポリフェニルスルホン(PPS)、ポリオキシメチレン(POM)等といった、模擬(simulating)プラスチック3D印刷材料で形成されうる。硬性フィーチャは、硬性フィーチャになるよう操作されうる前駆体材料及び/又はウレタンによっても、もたらされうる。一実施形態では、研磨材粒子は、研磨を強化するために、硬性フィーチャ604内に埋め込まれうる。研磨材粒子は、セリア、アルミナ、シリカ、又はそれらの組み合わせなどの金属酸化物、重合体、金属間化合物、或いはセラミックでありうる。
【0069】
軟性材料805は、エラストマ材料、例えばポリウレタンエラストマで形成されうる。一実施形態では、軟性材料805は、ポリブタジエン、イソプレン、クロロプレン、EPDMなどといった、ゴム様3D印刷材料で形成されうる。弾性特性は、ゴム状になって弾性特性を提供するよう操作されうる前駆体材料及び/又はウレタンによっても、提供されうる。
【0070】
一実施形態では、盛り上がったフィーチャ806は、直線的なパターン、長方形のパターン、或いは、同心リング又は線状のパターンでありうる。溝818が、盛り上がったフィーチャ806の間に形成される。研磨中に、盛り上がったフィーチャ806の上面808が、基板と接するパターニングされた表面251になると共に、溝818は研磨流体を保持する。
【0071】
一実施形態では、盛り上がったフィーチャ806の幅は、約250ミクロン〜約2ミリメートルでありうる。盛り上がったフィーチャ806の間のピッチは、約0.5ミリメートル〜約5ミリメートルでありうる。盛り上がったフィーチャ806の各々は、約250ミクロン〜約2ミリメートルの幅を有してよく、同じピッチを含みうるか、又は、この幅及び/又はピッチが研磨用物品800の半径全体において変動して、硬度が異なる複数のゾーンを提供しうる。
【0072】
本開示の複合研磨用物品800は、他の研磨用物品と比較して、いくつかの利点を有している。従来型の研磨用物品は一般的に、基板を研磨するための所望の硬度又はヤング率を得るために、テクスチャ加工された研磨面、及び/又は、泡状物質などの軟性材料で形成されたサブパッドによって支持された研磨材料を有する、研磨層を含む。3D印刷を使用することで、様々なヤング率の材料を選択するか、フィーチャの寸法を調節するか、又は、種々のフィーチャの配置を変動させることによって、サブパッドを使用することなく、複合パッド本体802において望ましい硬度又はヤング率を実現しうる。したがって研磨用物品800は、サブパッドをなくすことによって、所有コストを低減させる。加えて、研磨用物品800の硬度及び研磨性が、種々の硬度及び研磨性を有する混合特性によって微調整され、したがって、研磨性能が向上しうる。
【0073】
本開示による複合研磨用物品は、パターンの変動及び/又はフィーチャサイズの変動により、硬性フィーチャ604などの表面フィーチャ、及び、軟性材料805などのベース材料の全体で変動可能なヤング率を有しうる。研磨パッド全体のヤング率は、所望の特性を実現するために、対称又は非対称であってよく、均一又は不均一でありうる。盛り上がったフィーチャ806のパターニングは、所望の特性に従って、径方向、同心円状、長方形、又は無作為でありうる。
【0074】
盛り上がったフィーチャ806の外表面808は、硬性フィーチャ804よりも柔らかいか、又は弾性が高いポリマー材料で形成される。一実施形態では、盛り上がったフィーチャ806の外表面808は、ベース材料層802と同じ材料で形成されうる。一部の実施形態では、盛り上がったフィーチャ806は、その中に埋めこまれた硬性フィーチャ804を含む。埋めこまれた硬性フィーチャ804は、研磨のために求められる硬度及び剛性を提供する。外表面808の軟性ポリマー層は、不具合を減少させ、研磨されている基板の平坦化を改善しうる。代替的には、軟性ポリマー材料は、本開示の他の研磨パッドの表面上に印刷されて、同じ利点を提供しうる。
【0075】
図9は、
図5Aで説明した電磁放射透過部分536に類似した観察窓910を有する研磨パッド900の、概略的な透視断面図である。研磨パッド900は、
図2のプラテンアセンブリ132で研磨用物品123として、並びに、本書で説明している研磨パッドの他の実施形態として、使用されうる。複合パッド本体902は、一又は複数の硬性フィーチャ904と、一又は複数の弾性フィーチャ906とを含む。硬性フィーチャ604及び弾性フィーチャ606は、境界で1つにまとめられて、複合パッド本体602を形成する離散フィーチャであり、軟性材料805と硬性材料804とを有する上述の材料を含みうる。
【0076】
研磨パッド900は、一又は複数の弾性フィーチャ906と、弾性フィーチャ906から延在している複数の硬性フィーチャ904とを含みうる。一実施形態では、硬性フィーチャ904は、約40ショアDスケール〜約90ショアDスケールの硬度を有しうる。弾性フィーチャ906は、約26ショアAスケールから約95ショアAスケールまでの硬度値を有しうる。硬性フィーチャ904は、本開示により、任意の適切なパターンに配置されうる。
【0077】
観察窓910は、透明材料で形成されて、研磨されている基板のモニタリングを提供しうる。観察窓910は、弾性フィーチャ906又は硬性フィーチャ904を貫通して形成されうる。一実施形態では、観察窓910は、透明な3D印刷フォトポリマ―で形成されうる。一実施形態では、観察窓910は、UV透過性のポリウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリメチルメタクリレート(PMMA)で形成されうる。
【0078】
図10は、バッキング層1006を含む研磨用物品600の概略断面図である。研磨パッド1000は、
図2のプラテンアセンブリ132で研磨用物品123として、並びに、本書で説明している研磨パッドの他の実施形態として、使用されうる。研磨パッド1000は、ベース材料層1004と、ベース材料層1004から突出している、複数の表面フィーチャ1002とを含む。研磨パッド1000は、バッキング層1006がベース材料層1004に取り付けられていることを除いて、上述の研磨用物品500、600、700、800、又は900に類似していることがある。バッキング層1006は、研磨用物品1000に圧縮性を提供しうる。バッキング層1006は、一実施形態では、80ショアAスケール未満の硬度値を有しうる。
【0079】
一実施形態では、バッキング層1006は、ボイドを有するポリウレタン又はポリシリコンなどのオープンセル又はクローズセルの泡状物質で形成されてよく、そのため、加圧下ではセルがつぶれ、バッキング層1006が圧縮される。別の実施形態では、バッキング層1006は、天然ゴム、エチレンプロピレンジエンモノマー(EPDM)ゴム、ニトリル、又はポリクロロプレン(ネオプレン)で形成されうる。
【0080】
図11は、複数のゾーンを有する研磨用物品1100の概略断面図である。研磨用物品1100は、研磨中に基板121の中央区域に接する領域内に、基板121の外縁部分に接する領域とは異なる特性を有するよう、設計されうる。
図11は、研磨用物品1100に対して基板121を配置する、キャリアヘッド152を概略的に示している。一実施形態では、研磨用物品1100は、バッキング層1104上に配置された複合パッド本体1102を含みうる。複合パッド本体1102は、3D印刷プロセスによって製造されうる。
図11に示しているように、研磨パッド1100は、その半径方向に沿った外側エッジゾーン1106と内側エッジゾーン1108、及び中央ゾーン1110に区分されうる。外側エッジゾーン1106と内側エッジゾーン1108が、研磨中に基板114のエッジ領域に接する一方、中央ゾーン1110は、研磨中に基板114の中央領域に接している。
【0081】
研磨パッド1100は、エッジ研磨品質を向上させるために、エッジゾーン1106、1108では、中央ゾーン1110と比較して、異なる率(modulus)を有する。一実施形態では、エッジゾーン1106、1108は、中央ゾーン1110よりも低いヤング率を有しうる。
【0082】
図12は、
図11の研磨用物品1100の部分拡大断面図であり、エッジゾーン1106及び内側エッジゾーン1108の例示的な設計を示している。エッジゾーン1106は、ベース材料層1206と複数の表面フィーチャ1202とを含む。表面フィーチャ1204は、ベース材料層1206よりも硬い材料で形成されうる。内側エッジゾーン1108は、ベース材料層1208と複数の表面フィーチャ1204とを含む。表面フィーチャ1202は、ベース材料層1208よりも硬い材料で形成されうる。一実施形態では、中央ゾーン1108は、ベース材料層1208の下にロッキング層1210を含みうる。ロッキング層1210は、硬性材料で形成されうる。複数の表面フィーチャ1204は、安定性を向上させるために、ロッキング層1210上に印刷されうる。
図12に示しているように、内側エッジゾーン1108内の表面フィーチャ1202は、外側エッジゾーン1106内の表面フィーチャ1204よりもサイズが大きい。一実施形態では、エッジゾーン1106内の表面フィーチャ1204のピッチは、内側エッジゾーン1108内の表面フィーチャ1202のピッチよりも狭くなりうる。
【0083】
以上の説明は本開示の実施形態を対象としているが、本開示の基本的な範囲を逸脱することなく本開示の他の実施形態及び更なる実施形態が考案されてよく、本開示の範囲は、以下の特許請求の範囲によって定められる。