【実施例】
【0018】
以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
【0019】
実施例1:軽希土類元素(Nd,Pr)と重希土類元素(Dy)の分離(その1)
(工程1)
R−Fe−B系永久磁石の製造工程中に発生した約10μmの粒径を有する磁石加工屑(自然発火防止のため水中で7日間保管したもの)に対し、吸引ろ過することで脱水してからロータリーキルンを用いて燃焼処理することで酸化処理を行った。こうして酸化処理を行った磁石加工屑のICP分析(使用装置:島津製作所社製のICPV−1017)の結果を表1に示す。
【0020】
【表1】
【0021】
次に、酸化処理を行った磁石加工屑50gとカーボンブラック(東海カーボン社製のファーネスブラック、以下同じ)10gを混合し、カーボンブラック10gを予め底面に敷き詰めた寸法が内径50mm×深さ50mm×肉厚10mmの炭素るつぼ(黒鉛製)に収容した後、電気炉を用い、工業用アルゴンガス雰囲気(酸素含有濃度:0.2ppm、流量:10L/分。以下同じ)中で1450℃まで10℃/分で昇温してから1時間熱処理した。その後、炉内の加熱を停止し、炉内の工業用アルゴンガス雰囲気を維持したまま、炭素るつぼを室温まで炉冷した。炉冷を終了した後、炭素るつぼ内には、互いに独立かつ密接して存在する2種類の塊状物(塊状物Aと塊状物B)が存在した。塊状物Aと塊状物BのそれぞれのSEM・EDX分析(使用装置:日立ハイテクノロジーズ社製のS800、以下同じ)を行ったところ、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素の酸化物であった。塊状物BのSEM・EDX分析の結果(Nd,Pr,Dyのみ)を表2に示す(鉄は検出限界以下、以下同じ)。なお、塊状物Bの主成分である希土類元素の酸化物は、軽希土類元素(Nd,Pr)と重希土類元素(Dy)の複合酸化物ないし酸化物の混合物であることを、別途に行ったX線回析分析(使用装置:ブルカー・エイエックスエス社製のD8 ADVANCE、以下同じ)において確認した。
【0022】
【表2】
【0023】
(工程2)
工程1で得た希土類元素の酸化物を主成分とする塊状物Bを、瑪瑙製の乳鉢と乳棒で粉砕し、ステンレス製の篩を用いて粒径が125μm未満の粉末を得る操作を複数回行うことで、約1kgの塊状物Bの粉末を調製した。こうして調製した塊状物Bの粉末75gを、濃度が1.0mol/Lの塩酸1Lに加え、80℃で6時間撹拌した後、残渣をろ過することで、塊状物Bの塩酸溶液を得た。
【0024】
(工程3)
工程2で得た塊状物Bの塩酸溶液1Lに、シュウ酸二水和物130gを加え、室温で2時間撹拌することで、水分を多量に含む白色粉末の沈殿物(軽希土類元素と重希土類元素のシュウ酸塩)を約100g得た。
【0025】
(工程4)
工程3で得た沈殿物を、アルミナるつぼに収容し、大気雰囲気で900℃で2時間焼成することで、茶色の焼成物を65.5g得た。この焼成物のSEM・EDX分析の結果(Nd,Pr,Dyのみ)を表3に示す。なお、この焼成物は、軽希土類元素と重希土類元素の複合酸化物ないし酸化物の混合物であることを、別途に行ったX線回析分析において確認した。
【0026】
【表3】
【0027】
(工程5)
60℃に加熱した濃度が1.0mol/Lの塩酸100mLに、溶解上限量の1.1倍〜1.5倍に相当する量の工程4で得た焼成物を添加して撹拌した。なお、用いる塩酸に対する工程4で得た焼成物の溶解上限量(6.55g)は、塩酸に焼成物を少量ずつ溶解することで実験的に求めた。
【0028】
(工程6)
工程5における撹拌を開始してから2時間後、残渣をろ過することで、塩酸溶液と残渣を分離した。得られた塩酸溶液100mLにシュウ酸二水和物13gを加えて室温で2時間撹拌することで白色の沈殿物を得、この沈殿物を大気雰囲気で900℃で2時間焼成することで焼成物を得た。また、得られた残渣を大気雰囲気で900℃で2時間焼成することで焼成物を得た。塩酸溶液由来の焼成物と残渣由来の焼成物のそれぞれの重量とSEM・EDX分析の結果(Nd,Pr,Dyのみ)を表4と表5に示す。また、塩酸溶液由来の焼成物の重量にSEM・EDX分析による含有比率を乗じて算出される塩酸溶液由来の焼成物に含まれる各希土類元素の量(a)と、残渣由来の焼成物の重量にSEM・EDX分析による含有比率を乗じて算出される残渣由来の焼成物に含まれる各希土類元素の量(b)から、各希土類元素の残渣への残留率((b/(a+b))×100)を調べた結果(残渣由来の焼成物に含まれる各希土類元素の量は残渣に含まれる各希土類元素の量に相当)を
図1に示す(図中の△はNd、○はPr、□はDyを示す)。
【0029】
【表4】
【0030】
【表5】
【0031】
表4、表5、
図1から明らかなように、工程5で得た塩酸溶液には軽希土類元素であるNdとPrが多く含まれる一方、残渣には重希土類元素であるDyが多く含まれ、塩酸溶液と残渣を分離することで、軽希土類元素リッチな含有物と重希土類元素リッチな含有物をそれぞれ塩酸溶液と残渣として得ることができることがわかった。また、工程5における工程4で得た焼成物の添加量を多くするほど、重希土類元素の残渣への残留率が向上したが、残留率の向上は、添加量を溶解上限量の1.5倍にした時点でプラトーにほぼ達し、少なくとも添加量を溶解上限量の2.0倍にするまでは向上した残留率がほぼ維持された。焼成物を添加する塩酸の濃度が、軽希土類元素と重希土類元素の分離性にどのような影響を与えるのか、容量が同じで各種の濃度の塩酸を用い、焼成物の添加量を各塩酸の溶解上限量の1.1倍とし、上記と同様にして各希土類元素の残渣への残留率を調べることで評価した(焼成物は別ロットのものを使用)。結果を
図2に示す(図中の△はNd、○はPr、□はDyを示す)。
図2から明らかなように、濃度が0.6mol/Lの塩酸を用いた場合、軽希土類元素とともに重希土類元素も溶解してしまい、軽希土類元素リッチな含有物と重希土類元素リッチな含有物を得ることができなかったが、塩酸の濃度を濃くすると、重希土類元素の残渣への残留率が向上することによる軽希土類元素と重希土類元素の分離性の向上が認められ、この向上した分離性は濃度が2.0mol/Lの塩酸を用いた場合においても認められた。なお、工程5における塩酸の温度の違いによる軽希土類元素と重希土類元素の分離性の違いは認められなかった(温度範囲:20℃〜85℃)。また、工程5における撹拌時間を2時間よりも長くしても軽希土類元素と重希土類元素の分離性の向上は認められなかった。
【0032】
実施例2:軽希土類元素(Nd,Pr)と重希土類元素(Tb)の分離(モデル実験)
Nd含量が62.5mass%でPr含量が17.8mass%のジジム酸化物(SEM・EDX分析による)75gを、濃度が1.0mol/Lの塩酸1Lに加え、80℃で6時間撹拌した後、残渣をろ過することで、ジジムの塩酸溶液を得た。また、Tb
4O
7試薬10gを、濃度が1.0mol/Lの塩酸100mLに加え、80℃で6時間撹拌した後、残渣をろ過することで、Tbの塩酸溶液を得た。ジジムの塩酸溶液とTbの塩酸溶液を9:1の体積比で混合して調製した塩酸溶液1Lを用いて、実施例1の工程3〜工程6と同様の工程を実施することで、塩酸溶液と残渣を分離した。実施例1の工程4に相当する工程によって得られた焼成物のSEM・EDX分析の結果を表6に示す(Nd,Pr,Tbのみ)。なお、この焼成物は、軽希土類元素と重希土類元素の複合酸化物ないし酸化物の混合物であることを、別途に行ったX線回析分析において確認した。
【0033】
【表6】
【0034】
得られた塩酸溶液と残渣から、実施例1と同様にしてそれぞれに由来する焼成物を得た。塩酸溶液由来の焼成物と残渣由来の焼成物のそれぞれの重量の測定とSEM・EDX分析を行い、塩酸溶液由来の焼成物の重量にSEM・EDX分析による含有比率を乗じて算出される塩酸溶液由来の焼成物に含まれる各希土類元素の量(a)と、残渣由来の焼成物の重量にSEM・EDX分析による含有比率を乗じて算出される残渣由来の焼成物に含まれる各希土類元素の量(b)から、各希土類元素の残渣への残留率((b/(a+b))×100)を調べた結果(残渣由来の焼成物に含まれる各希土類元素の量は残渣に含まれる各希土類元素の量に相当)を
図3に示す(図中の△はNd、○はPr、□はTbを示す)。
図3から明らかなように、残渣には重希土類元素であるTbが多く含まれる一方、塩酸溶液には軽希土類元素であるNdとPrが多く含まれ(別途確認)、塩酸溶液と残渣を分離することで、軽希土類元素リッチな含有物と重希土類元素リッチな含有物をそれぞれ塩酸溶液と残渣として得ることができることがわかった。また、塩酸への焼成物の添加量を多くするほど、重希土類元素の残渣への残留率が向上したが、残留率の向上は、添加量を溶解上限量の1.5倍にした時点でプラトーにほぼ達し、少なくとも添加量を溶解上限量の2.0倍にするまでは向上した残留率がほぼ維持された。焼成物を添加する塩酸の濃度が、軽希土類元素と重希土類元素の分離性にどのような影響を与えるのか、容量が同じで各種の濃度の塩酸を用い、焼成物の添加量を各塩酸の溶解上限量の1.1倍とし、上記と同様にして各希土類元素の残渣への残留率を調べることで評価した(焼成物は別ロットのものを使用)。結果を
図4に示す(図中の△はNd、○はPr、□はTbを示す)。
図4から明らかなように、濃度が0.6mol/Lの塩酸を用いた場合、軽希土類元素とともに重希土類元素も溶解してしまい、軽希土類元素リッチな含有物と重希土類元素リッチな含有物を得ることができなかったが、塩酸の濃度を濃くすると、重希土類元素の残渣への残留率が向上することによる軽希土類元素と重希土類元素の分離性の向上が認められ、この向上した分離性は濃度が2.0mol/Lの塩酸を用いた場合においても認められた。なお、塩酸の温度の違いによる軽希土類元素と重希土類元素の分離性の違いは認められなかった(温度範囲:20℃〜85℃)。また、撹拌時間を2時間よりも長くしても軽希土類元素と重希土類元素の分離性の向上は認められなかった。
【0035】
実施例3:軽希土類元素(Nd,Pr)と重希土類元素(Dy)の分離(その2)
実施例1の工程2と工程5で用いた濃度が1.0mol/Lの塩酸のかわりに、濃度が1.1mol/Lの硝酸を用いること以外は実施例1と同様の実験を行ったところ、実施例1と同様に軽希土類元素リッチな含有物と重希土類元素リッチな含有物をそれぞれ塩酸溶液と残渣として得ることができた。
【0036】
実施例4:軽希土類元素(Nd,Pr)と重希土類元素(Dy)の分離(その3)
実施例1の工程3と工程6で用いたシュウ酸二水和物のかわりに、無水酢酸を用いること以外は実施例1と同様の実験を行ったところ、実施例1と同様に軽希土類元素リッチな含有物と重希土類元素リッチな含有物をそれぞれ塩酸溶液と残渣として得ることができた。
【0037】
実施例5:軽希土類元素(Nd,Pr)と重希土類元素(Dy)の分離(その4)
実施例1の工程3と工程6で用いたシュウ酸二水和物のかわりに、炭酸ナトリウムを用いること以外は実施例1と同様の実験を行ったところ、実施例1と同様に軽希土類元素リッチな含有物と重希土類元素リッチな含有物をそれぞれ塩酸溶液と残渣として得ることができた。
【0038】
実施例6:軽希土類元素(Nd,Pr)と重希土類元素(Dy,Tb)の分離(モデル実験)
実施例1の工程1と工程2と同様にして、塊状物Bの塩酸溶液を得た。また、Tb
4O
7試薬10gを、濃度が1.0mol/Lの塩酸100mLに加え、80℃で6時間撹拌した後、残渣をろ過することで、Tbの塩酸溶液を得た。塊状物Bの塩酸溶液とTbの塩酸溶液を9:1の体積比で混合して調製した塩酸溶液1Lに、シュウ酸二水和物130gを加え、室温で2時間撹拌することで、水分を多量に含む白色粉末の沈殿物(軽希土類元素と重希土類元素のシュウ酸塩)を約100g得た。得られた沈殿物50gを、アルミナるつぼに収容し、大気雰囲気またはアルゴン雰囲気で600℃〜1000℃で2時間焼成することで、茶色の焼成物を得た。沈殿物の焼成温度と得られた焼成物の重量の関係を
図5に示す。
図5から明らかなように、沈殿物の焼成温度を700℃以上にすることで、焼成が十分に行われて焼成物の重量が安定化することがわかった。また、沈殿物を大気雰囲気で焼成する方がアルゴン雰囲気で焼成するよりも焼成物の重量が大きいことがわかった。
【0039】
次に、60℃に加熱した濃度が1.0mol/Lの塩酸100mLに、溶解上限量(6.54g)の1.8倍に相当する量の焼成物を添加して6時間撹拌した後、残渣をろ過することで、塩酸溶液と残渣を分離した。得られた塩酸溶液100mLにシュウ酸二水和物13gを加えて室温で2時間撹拌することで白色の沈殿物を得、この沈殿物を大気雰囲気で900℃で2時間焼成することで焼成物を得た。また、得られた残渣を大気雰囲気で900℃で2時間焼成することで焼成物を得た。塩酸溶液由来の焼成物と残渣由来の焼成物のそれぞれについて、塊状物Bの塩酸溶液とTbの塩酸溶液から調製した塩酸溶液にシュウ酸二水和物を加えることで得た沈殿物を焼成する際の雰囲気、焼成温度、重量、SEM・EDX分析の結果(Nd,Pr,Dy,Tbのみ)を表7と表8に示す。また、塩酸溶液由来の焼成物の重量にSEM・EDX分析による含有比率を乗じて算出される塩酸溶液由来の焼成物に含まれる各希土類元素の量(a)と、残渣由来の焼成物の重量にSEM・EDX分析による含有比率を乗じて算出される残渣由来の焼成物に含まれる各希土類元素の量(b)から、各希土類元素の残渣への残留率((b/(a+b))×100)を調べた結果(残渣由来の焼成物に含まれる各希土類元素の量は残渣に含まれる各希土類元素の量に相当)を希土類元素ごとに
図6に示す。
【0040】
【表7】
【0041】
【表8】
【0042】
表7、表8、
図6から明らかなように、塩酸溶液由来の焼成物には軽希土類元素であるNdとPrが多く含まれる一方、残渣由来の焼成物には重希土類元素であるDyとTbが多く含まれ、塩酸溶液と残渣を分離することで、軽希土類元素リッチな含有物と重希土類元素リッチな含有物をそれぞれ塩酸溶液と残渣として得ることができることがわかった。また、塊状物Bの塩酸溶液とTbの塩酸溶液から調製した塩酸溶液にシュウ酸二水和物を加えることで得た沈殿物を焼成する際の雰囲気が大気雰囲気の場合、アルゴン雰囲気の場合よりも軽希土類元素リッチな含有物と重希土類元素リッチな含有物を効果的に得ることができることがわかった。以上の結果は、沈殿物を焼成する際の雰囲気によって焼成による希土類元素の酸化状態が異なり、大気雰囲気で焼成する方がアルゴン雰囲気で焼成するよりも希土類元素の酸化の価数が高いことが、軽希土類元素と重希土類元素の分離性の向上に寄与することによると推察された。
【0043】
実施例7:塩酸溶液として得られる軽希土類元素リッチな含有物に含まれる軽希土類元素と重希土類元素の含量比の特徴(モデル実験その1)
60℃に加熱した濃度が1.0mol/Lの塩酸5400mL、1450mL、750mL、100mLに、それぞれ343gのNd
2O
3試薬、93gのPr
6O
11試薬、53gのDy
2O
3試薬、7gのTb
4O
7試薬を添加して6時間撹拌することで、それぞれの希土類元素の塩酸溶液を調製した。調製したそれぞれの希土類元素の塩酸溶液を表9の割合で混合し、含まれる希土類元素の濃度が異なる7種類の塩酸溶液(溶液A〜G)を作製した。
【0044】
【表9】
【0045】
作製した7種類の塩酸溶液のそれぞれ1.5Lに、シュウ酸二水和物195gを加え、室温で2時間撹拌することで、水分を多量に含む白色粉末の沈殿物(軽希土類元素と重希土類元素のシュウ酸塩)を得た。得られた沈殿物を、アルミナるつぼに収容し、大気雰囲気で900℃で2時間焼成することで、茶色の組成の異なる7種類の焼成物(焼成物A〜G)を得た。それぞれの焼成物の重量、SEM・EDX分析の結果、軽希土類元素(Nd,Pr)と重希土類元素(Dy,Tb)の含量比(W
HR/W
LR)を表10に示す。なお、それぞれの焼成物は、軽希土類元素と重希土類元素の複合酸化物ないし酸化物の混合物であることを、別途に行ったX線回析分析において確認した。
【0046】
【表10】
【0047】
7種類の焼成物のそれぞれを、60℃に加熱した濃度が1.0mol/Lの塩酸100mLに、溶解上限量(焼成物の重量の1/15)の0.8倍、1.0倍、1.2倍、1.5倍、2.0倍、2.5倍、3.0倍に相当する量添加して6時間撹拌した後、残渣をろ過することで、塩酸溶液と残渣を分離した。得られた塩酸溶液100mLにシュウ酸二水和物13gを加えて室温で2時間撹拌することで白色の沈殿物を得、この沈殿物を大気雰囲気で900℃で2時間焼成することで焼成物を得た。焼成物の重量とSEM・EDX分析の結果から、焼成物に含まれる軽希土類元素と重希土類元素の含量比(W
HR/W
LR:塩酸溶液に含まれる軽希土類元素と重希土類元素の含量比に相当)を調べた。結果を表11(添加量が溶解上限量の2.5倍の場合)と
図7(添加倍数0.0倍の含量比は7種類の焼成物それぞれの含量比を意味する)に示す。表11と
図7から明らかなように、7種類の焼成物に含まれる軽希土類元素と重希土類元素の含量比は、0.07〜0.15の範囲でバラツキがあったが(表10)、いずれの焼成物においても、塩酸溶液由来の焼成物に含まれる軽希土類元素と重希土類元素の含量比は、添加量を溶解上限量の2.0倍以上とすることで、0.02〜0.04の範囲に収束することがわかった(バラツキ幅:0.08→0.02)。なお、塩酸溶液由来の焼成物に含まれる軽希土類元素と重希土類元素の含量比が、添加量を溶解上限量の2.0倍以上とすることで、0.02〜0.04の範囲に収束する現象は、塩酸の濃度が異なっても同様であった(濃度が0.7mol/Lの塩酸と1.5mol/Lの塩酸で確認)。また、軽希土類元素リッチな含有物である塩酸溶液は、自体公知の方法によって溶媒抽出法に付すことで、塩酸溶液に含まれる軽希土類元素と重希土類元素を分離することができること、軽希土類元素リッチな含有物である塩酸溶液から分離された重希土類元素リッチな含有物である残渣に対して実施例1の工程2〜工程6と同様の工程を実施することで、残渣に含まれる軽希土類元素の量を低減すること(重希土類元素の軽希土類元素に対する含量比をより大きくすること)ができることを確認した。
【0048】
【表11】
【0049】
実施例8:塩酸溶液として得られる軽希土類元素リッチな含有物に含まれる軽希土類元素と重希土類元素の含量比の特徴(モデル実験その2)
実施例1の工程1と同様にして塊状物Bを得た。得られた塊状物Bを、タングステンカーバイド製の乳鉢と瑪瑙製の乳棒で粉砕し、ステンレス製の篩を用いて粒径が125μm未満の粉末を得る操作を複数回行うことで、塊状物Bの粉末を調製した。こうして調製した塊状物Bの粉末を、60℃に加熱した濃度が1.0mol/Lの塩酸に過剰量加え、6時間撹拌した後、残渣をろ過することで、塊状物Bの飽和塩酸溶液を得た。また、Tb
4O
7試薬を、60℃に加熱した濃度が1.0mol/Lの塩酸に過剰量加え、6時間撹拌した後、残渣をろ過することで、Tbの飽和塩酸溶液を得た。塊状物Bの飽和塩酸溶液とTbの飽和塩酸溶液を10:1の体積比で混合して調製した塩酸溶液1Lに、シュウ酸二水和物130gを加え、室温で2時間撹拌することで、水分を多量に含む白色粉末の沈殿物(軽希土類元素と重希土類元素のシュウ酸塩)を得た。得られた沈殿物を、アルミナるつぼに収容し、大気雰囲気で900℃で2時間焼成することで、茶色の焼成物を65.4g得た。得られた焼成物のSEM・EDX分析の結果と軽希土類元素(Nd,Pr)と重希土類元素(Dy,Tb)の含量比(W
HR/W
LR)を表12に示す。なお、得られた焼成物は、軽希土類元素と重希土類元素の複合酸化物ないし酸化物の混合物であることを、別途に行ったX線回析分析において確認した。
【0050】
【表12】
【0051】
次に、60℃に加熱した濃度が1.0mol/Lの塩酸100mLに、溶解上限量(6.54g)の1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.8倍、2.0倍、2.5倍、3.0倍に相当する量の焼成物を添加して6時間撹拌した後、残渣をろ過することで、塩酸溶液と残渣を分離した。得られた塩酸溶液100mLにシュウ酸二水和物13gを加えて室温で2時間撹拌することで白色の沈殿物を得、この沈殿物を大気雰囲気で900℃で2時間焼成することで焼成物を得た。焼成物の重量とSEM・EDX分析の結果から、焼成物に含まれる軽希土類元素と重希土類元素の含量比(W
HR/W
LR:塩酸溶液に含まれる軽希土類元素と重希土類元素の含量比に相当)を調べた。結果を
図8に示す。
図8から明らかなように、塩酸溶液由来の焼成物に含まれる軽希土類元素と重希土類元素の含量比は、添加量を溶解上限量の2.0倍以上とすることで、0.04になることがわかった。