【実施例】
【0055】
以下に実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。
【0056】
(実施例1:GL-BP-WT1表層提示ビフィズス菌の作製)
A.GL-BP遺伝子の単離
Bifidobacterium longum JCM1217(ATCC15707)ゲノム(Accession:EU193949)より、プライマーglt-f:5'-ggggtgctgatatattggtttg-3'(配列番号3)および終止コドンがXhoIに置換されるようにしたglt-r:5'-gctcgagctcggaaacagacaggccgaagtt-3'(配列番号4)とKOD -Plus-(TOYOBO社製)とを用いてPCR反応を行ってGL-BP遺伝子を増幅させた。増幅させたGL-BP遺伝子を含むPCR産物についてアガロースゲル電気泳動を行い、1989bpのPCR産物を切り出し、Wizard SV Gel and PCR Clean-Up System(Promega社製)を用いてGL-BP遺伝子増幅断片のみを単離精製した。
【0057】
B.単離したGL-BP遺伝子を有するpMW118プラスミドの構築
単離精製したGL-BP遺伝子増幅断片を、アンピシリン耐性遺伝子(Ampr)を有するpMW118(株式会社ニッポンジーン製)のSmaIサイトに導入し、プラスミドの構築を行った。なお、ライゲーションには、DNA Ligation kit Ver. 2(タカラバイオ株式会社製)を用いた。構築したプラスミドを、ヒートショック法(42℃、30秒)にて大腸菌DH5α(タカラバイオ株式会社製)に導入し、アンピシリン100μg/mlを含むLB寒天培地(Difco社製)に塗布し、37℃にて一晩培養し、GL-BP遺伝子を有するプラスミドを保持した形質転換大腸菌を得た。形質転換大腸菌からQuantum Prep Plasmid Miniprep Kit(Bio-Rad社製)を使用してプラスミドを抽出精製し、シーケンスによる配列確認を行い、GL-BP遺伝子の導入された組換えプラスミドを得た。得られた組換えプラスミドをpJT101と命名した。
【0058】
C.WT1遺伝子の単離
マウスWT1の117番目から439番目までのアミノ酸配列をコードするDNA(配列番号2)を全合成した(フナコシ株式会社)。なお、合成の際にはビフィズス菌において使用頻度の高いコドンを用いた。また、N末端側にはXhoI認識配列(CTCGAG:配列番号5)を、C末端側には終止コドンおよびそれに引き続いてSphI認識配列(GCATGC:配列番号6)を付加した。これをpUC18ベクターのSmaIサイトに導入し、プラスミドの構築を行った。ライゲーションには、DNA Ligation kit Ver. 2(タカラバイオ株式会社製)を用いた。構築したプラスミドを、ヒートショック法(42℃、30秒)にて大腸菌DH5α(タカラバイオ株式会社製)に導入し、アンピシリン100μg/mlを含むLB寒天培地(Difco社製)に塗布し、37℃にて一晩培養し、マウスWT1(117〜439)をコードするDNAを有するプラスミドを保持した形質転換大腸菌を得た。形質転換大腸菌からQuantum Prep Plasmid Miniprep Kit(Bio-Rad社製)を使用してプラスミドを抽出精製し、シーケンスによる配列確認を行った。得られた組換えプラスミドをpTK2875-1と命名した。
【0059】
合成したマウスWT1遺伝子の配列(配列番号2)
CTCGAGCCGTCCCAGGCGTCGTCGGGCCAGGCGAGGATGTTCCCGAACGCGCCCTACCTGCCCAGCTGCCTGGAGTCCCAGCCGACGATCCGCAACCAGGGCTACTCCACCGTGACGTTCGACGGCGCCCCGTCCTACGGCCACACGCCCAGCCACCACGCCGCCCAGTTCCCGAACCACAGCTTCAAGCACGAAGACCCCATGGGCCAGCAGGGCAGCCTCGGCGAACAGCAGTACAGCGTGCCGCCGCCGGTCTACGGCTGCCACACCCCGACCGACTCCTGCACGGGCTCCCAGGCCCTGCTCCTGCGTACGCCGTACTCCTCCGACAACCTCTACCAGATGACCTCCCAGCTGGAGTGCATGACCTGGAACCAGATGAACCTGGGCGCCACGCTGAAGGGAATGGCCGCGGGGTCGTCGAGCTCCGTCAAGTGGACCGAAGGCCAGTCCAACCACGGCATCGGCTACGAGTCCGAGAACCACACCGCGCCGATCCTGTGCGGAGCCCAGTACCGCATCCACACGCACGGCGTCTTCCGCGGCATCCAGGACGTCCGGCGCGTCTCCGGCGTCGCGCCGACCCTGGTGCGGTCCGCCTCCGAGACCTCCGAGAAGCGCCCGTTCATGTGCGCCTACCCGGGCTGCAACAAGCGCTACTTCAAGCTCTCGCACCTGCAGATGCACTCCCGGAAGCACACCGGCGAGAAGCCGTACCAGTGCGACTTCAAGGACTGCGAACGCCGCTTCTCGCGCAGCGACCAGCTGAAGCGCCACCAGCGTAGGCACACCGGCGTGAAGCCCTTCCAGTGCAAGACCTGCCAGCGCAAGTTCTCCCGCAGCGACCACCTCAAGACGCACACCCGCACCCACACCGGCAAGACGTCCGAGAAGCCGTTCTCGTGCCGCTGGCACAGCTGCCAGAAGAAGTTCGCCCGCAGCGACGAGCTCGTGCGCCACCACAACATGCACCAGTGAAGCATGC
【0060】
マウスWT1の117番目から350番目までのアミノ酸配列をコードするDNAを有するプラスミドの作製は、以下のように行った。すなわち上記で得られたpTK2875を鋳型にして、プライマーWT1-f (5'-CGCTCGAGCCGTCCCAGGCGTCGT-3':配列番号7)およびプライマーWT1-r2(5'-GCGCATGCTCACTCGCCGGTGTGCTTCCGG-3':配列番号8)とKOD -Plus-(TOYOBO社製)とを用いてPCR反応を行ってマウスWT1(117〜350)をコードするDNA断片を増幅させた。なお、C末端側には終止コドンおよびそれに引き続いてSphI認識配列(GCATGC:配列番号6)を付加した。増幅させたPCR産物についてアガロースゲル電気泳動を行い、721bpのPCR産物を切り出し、Wizard SV Gel and PCR Clean-Up System(Promega社製)を用いて単離精製した。これをpUC18ベクターのSmaIサイトに導入し、プラスミドの構築を行った。ライゲーションには、DNA Ligation kit Ver. 2(タカラバイオ株式会社製)を用いた。構築したプラスミドを、ヒートショック法(42℃、30秒)にて大腸菌DH5α(タカラバイオ株式会社製)に導入し、アンピシリン100μg/mlを含むLB寒天培地(Difco社製)に塗布し、37℃にて一晩培養し、マウスWT1(117〜350)をコードするDNAを有するプラスミドを保持した形質転換大腸菌を得た。形質転換大腸菌からQuantum Prep Plasmid Miniprep Kit(Bio-Rad社製)を使用してプラスミドを抽出精製し、シーケンスによる配列確認を行った。得られた組換えプラスミドをpTK2875-2と命名した。
【0061】
D.GL-BP遺伝子の下流にWT1遺伝子を有するプラスミドの構築
上記C.にて得られたWT1遺伝子を保持するプラスミドpTK2875-1およびpTK2875-2を制限酵素XhoIおよびSphIで処理し、アガロースゲル電気泳動を行い、それぞれ986bpおよび718bpのDNA断片を切り出し、Wizard SV Gel and PCR Clean-Up System(Promega社製)を用いて単離精製した。これらのWT1遺伝子増幅断片を、DNA Ligation kit Ver. 2を用いて、同じく制限酵素XhoIおよびSphIで処理した上記pJT101プラスミドへそれぞれ導入し、プラスミドの構築を行った。構築したプラスミドをそれぞれ、ヒートショック法にて大腸菌DH5αに導入し、アンピシリン100μg/mlを含むLB寒天培地に塗布し、37℃にて一晩培養し、GL-BP遺伝子とWT1遺伝子との融合遺伝子(
図1)を有するプラスミドを保持した形質転換大腸菌を得た。得られた形質転換大腸菌から、Quantum Prep Plasmid Miniprep Kitを使用してプラスミドを抽出精製し、シーケンスによる配列確認を行い、GL-BP遺伝子の下流にWT1遺伝子を連結した組換えプラスミドを得た。得られた組換えプラスミドをそれぞれpTK2895(GLBP-WT1(117〜439))およびpTK2896(GLBP-WT1(117〜350))と命名した。
【0062】
E.大腸菌−ビフィズス菌シャトルベクターの構築
大腸菌−ビフィズス菌シャトルベクターとして、Vaccine. 28:6684-6691 (2010)に開示する大腸菌−ビフィズス菌シャトルベクターpJW241を使用した。
【0063】
F.大腸菌−ビフィズス菌シャトルベクターpJW241へのGL-BP遺伝子とWT1遺伝子とが連結された遺伝子の組込み
GL-BP遺伝子とWT1遺伝子とが連結された融合遺伝子(以下「当該融合遺伝子」という。)を有するベクターpTK2895(GLBP-WT1(117〜439))およびpTK2896(GLBP-WT1(117〜350))をそれぞれテンプレートとして、プライマーInfusion-F(5'-ggaaaactgtccatagatggcgaggcgaacgccacg-3':配列番号9) およびプライマーInfusion-R(5'-tttcatctgtgcatagtgctgcaaggcgattaagtt-3':配列番号10)を用いてPCRを行った。PCR増幅産物についてアガロースゲル電気泳動を行って当該融合遺伝子を切り出し、Wizard SV Gel and PCR Clean-Up System(Promega社製)を用いて単離精製した。また、これとは別に、大腸菌−ビフィズス菌シャトルベクターpJW241(Vaccine. 28:6684-6691 (2010))を制限酵素NdeIで処理した。精製した当該融合遺伝子とpJW241とを、それぞれIn-Fusion HD Cloning kit(Clontech社製)を用いてライゲートし、得られたプラスミドをヒートショック法にて大腸菌DH5αに導入し、スペクチノマイシン70μg/mlを含むLB寒天培地に塗布し、37℃にて一晩培養して、大腸菌複製開始点ori領域、スペクチノマイシン耐性遺伝子(SPr)、ビフィズス菌の複製開始点ori領域、および当該融合遺伝子を有するプラスミドを保持した形質転換大腸菌を得た。形質転換大腸菌からQuantum Prep Plasmid Miniprep Kitを使用してプラスミドを抽出精製し、当該融合遺伝子の配列の存在を確認した。得られた組換えプラスミドをそれぞれpTK2897(GLBP-WT1(aa117〜439))およびpTK2898(GLBP-WT1(aa117〜350))と命名した。
【0064】
G.宿主ビフィズス菌液の調製
Bifidobacterium longum 105-A(Matsumura H.ら,Biosci. Biotech. Biochem.,1997年,61巻,pp.1211-1212:東京大学名誉教授 光岡知足氏より供与)をGAM培地(日水製薬株式会社製)50mlに植菌し、アネロパック
(R)ケンキ(三菱ガス化学株式会社製)を用いて37℃にて培養した。培養中、波長600nmでの吸光度を測定し、吸光度が0.4〜0.8に達した時点で培養を止めた。培養終了後、高速遠心分離機で遠心分離(6000×g、10分間)し、菌体を集めた。集めた菌体に10%(v/v)グリセロール溶液10mlを加えて懸濁し、高速遠心分離機で遠心分離して、菌体を2〜3回洗浄した。
【0065】
H.組換えプラスミドpTK2897およびpTK2898のビフィズス菌への形質転換によるGL-BP-WT1融合タンパク質表層提示ビフィズス菌の作製
上記G.で得た宿主ビフィズス菌液に、10%(v/v)グリセロール溶液500μlを加えて懸濁した。別のチューブに、この懸濁液200μlをとり、上記F.で得た組換えプラスミドpTK2897およびpTK2898をそれぞれ含む溶液5μlを加えて混合し、氷上に5分間放置した。次いで、エレクトロポレーション・キュベット0.2cm(Bio-Rad社製)に混合液を入れ、Gene Pulser Xcellエレクトロポレーションシステム(Bio-Rad社製)を用いて2kV、2.5μF、200Ωの条件でエレクトロポレーションを行った。エレクトロポレーション後直ちに、予め37℃にしておいたGAM培地0.8mlを加え、アネロパック
(R)ケンキを用いて37℃にて3時間培養した。次いで、スペクチノマイシン70μg/mlを含むGAM寒天培地(日水製薬株式会社製)に塗布し、アネロパック
(R)ケンキを用いて37℃にて培養し、形質転換ビフィズス菌を得た。得られた形質転換ビフィズス菌をスペクチノマイシン70μg/mlを含むGAM培地に植菌し、アネロパック
(R)ケンキを用いて37℃で培養した。培養終了後、1.5mlチューブに培養液を分注し、等量の50%(v/v)グリセロール溶液を加えて懸濁した。得られた懸濁液を-80℃で保存してフリーズストックを作製し、これを、GL-BP-WT1融合タンパク質表層提示ビフィズス菌(「形質転換ビフィズス菌」という場合がある)のマスターセルとした(それぞれTK2900(GLBP-WT1(aa117〜439))およびTK2903(GLBP-WT1(aa117〜350)))。
【0066】
図2は、組換えビフィズス菌の遺伝子(DNA)を、下記プライマーを用いてPCRにより増幅して得られた増幅断片の長さを電気泳動により確認した結果を示す図である。
フォワードプライマー410, 420:ACGATCCGCAACCAGGGCTACTC(配列番号11)
リバースプライマー410:ggtgcgagagcttgaagtagcgc(配列番号12)
リバースプライマー420:gtcgctgcgggcgaacttcttc(配列番号13)
410とは
B. longum 410であり、マウスWT1(aa170〜350)をコードするDNAを挿入したシャトルベクターで形質転換したビフィズス菌であり、上記TK2903(GLBP-WT1(aa117〜350))に該当する。420とは
B. longum 420であり、マウスWT1(aa117〜439)をコードするDNAを挿入したシャトルベクターで形質転換したビフィズス菌であり、上記TK2900(GLBP-WT1(aa117〜439))に該当する。2012とは
B. longum 2012であり、マウスWT1をコードするDNAが挿入されていないGLBP遺伝子のみを挿入したシャトルベクターで形質転換したビフィズス菌である。410と示すプライマーはマウスWT1(aa117〜350)をコードするDNAを増幅し、420と示すプライマーはマウスWT1(aa117〜439)をコードするDNAを増幅する。
図2の結果から、WT1をコードするDNAが確かに組換えビフィズス菌に導入されたことが確認された。
【0067】
(実施例2:形質転換ビフィズス菌のGL-BP-WT1融合タンパク質表層提示の確認)
(1)上記実施例1で得た形質転換ビフィズス菌を高速遠心機で遠心し、菌体を集めた。集めた菌体にPBSを加えて懸濁し、高速遠心分離機での遠心分離による菌体洗浄を3回行った。菌体に、PBS、1MのTris-HCl(pH8.0)(株式会社ニッポンジーン製)、およびTriton X-100(和光純薬工業株式会社製)を含む溶液を加え、30分間氷上に放置した。この溶液に、等量の2×SDSゲル泳動緩衝液を加え、95℃で5分間放置して電気泳動用サンプルを得た。次いで、8%(w/v)アクリルアミドゲルを泳動装置(アトー株式会社製)にセットし、得られたサンプルをアプライし、分子量マーカーと共に20mAの電流にて1.5時間電気泳動を行った。電気泳動後のゲルをニトロセルロースメンブレン(アトー株式会社製)に重ね、ブロッティング装置(Bio-Rad社製)に20mAの電流をかけてブロッティングを行った。ブロッティング後、ニトロセルロースメンブレンを4%(w/v)スキムミルク(BD社製)を含む緩衝液であるTBS(株式会社ニッポンジーン製)に1時間浸漬してブロッキングを行った。ブロッキング後、ニトロセルロースメンブレンをTBSで2回洗浄した。洗浄後、ニトロセルロースメンブレンを、0.5%(w/v)の一次抗体(WT1 抗体(C-19): sc-192:SANTA CRUZ BIOTECHNOLOGY社製)を添加したTBSに1.5時間浸漬し、TBSで3回洗浄した。次いで、ニトロセルロースメンブレンを、0.5%(w/v)の二次抗体(goat anti-rabbit IgG-HRP: sc-2004:SANTA CRUZ BIOTECHNOLOGY社製)を添加したTBSに3時間浸漬した。次いで、ニトロセルロースメンブレンをTBSで3回洗浄し、1-Steptm NBT/BCIP plus Suppressorキット(PIERCE社製)を用いて遮光下で30分間発色させ、純水ですすいだ後、発色によりGL-BP-WT1融合タンパク質の表層発現を確認した。
【0068】
ウエスタンブロッティングの結果を
図3のAに示した。
図3のAから明らかなように、
B. longum 420にはWT1(aa117〜439)とGL-BPの融合タンパク質の分子量の合計に相当する82.9kDaに明確なバンドが認められた。したがって、形質転換ビフィズス菌(
B. longum 420)が、GL-BP-WT1融合タンパク質を発現していることを確認した。
【0069】
(2)培養した上記実施例1にて得た形質転換ビフィズス菌を高速遠心分離機で遠心分離し、菌体を集めた。集めた菌体に緩衝液であるPBS(株式会社ニッポンジーン製)を加えて懸濁し、高速遠心分離機での遠心分離により菌体洗浄を3回行った。次いで、1%(w/v)BSAを含むPBSに一次抗体(WT1 抗体(C-19): sc-192:SANTA CRUZ BIOTECHNOLOGY社製)を加え、これをビフィズス菌液に加えて懸濁し、37℃にて30分間放置した。30分間放置した菌液を高速遠心分離機で遠心分離し、菌体を集めた。集めた菌体にPBSを加えて懸濁し、高速遠心分離機での遠心分離による菌体洗浄を2回行った。次いで、1%(w/v)BSAを含むPBSに二次抗体Alexa Fluor
TM 488 Rabbit Anti-Mouse IgG antibody(Molecular Probes社製)を加え、これをビフィズス菌液に加えて懸濁し、37℃にて30分間放置した。30分間放置した菌液を、高速遠心分離機で遠心分離して菌体を集めた。集めた菌体にPBSを加えて懸濁し、高速遠心分離機での遠心分離による菌体洗浄を2回行った後、蛍光顕微鏡(KEYENCE社製)で観察した。
【0070】
蛍光顕微鏡で観察した結果を
図3のBに示した。
図3Bの左図は、上記実施例1で得た形質転換ビフィズス菌である
B. longum 420の蛍光顕微鏡写真であり、
図3Bの右図は、
B. longum 2012の蛍光顕微鏡写真である。蛍光顕微鏡写真から、
B. longum 420の細胞表面にWT1が存在することを確認した。
【0071】
(実施例3:形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与による抗腫瘍効果の確認)
上記実施例1で得たフリーズストックした形質転換ビフィズス菌をマウスに経口投与したときの抗腫瘍効果を確認した。実験プロトコールは、
図4および
図5に示した。
C57BL/6(メス, 6〜8週齢)に、マウスWT1発現C1498細胞(マウス白血病細胞)を右横腹へ皮下移植した。細胞は、マウス一匹あたり1×10
6 cells /200μl RPMI1640およびマトリゲルで移植し、移植した日をDay0とした。4日ごとに腫瘍の大きさを確認した。
【0072】
腫瘍接種19日目(Day19)の代表的な皮下腫瘍の写真を
図6に示した。また、腫瘍の大きさの経日変化を
図7に示し、および腫瘍接種29日目(Day29)の腫瘍の大きさを
図8に示した。
B. longum 420の単独投与群では、PBS投与群に対して有意に腫瘍増殖を抑制できることがわかった(*:p<0.05、**:p<0.001)。また
B. longum 420とIL-2の併用により、Day19以降、PBS投与群に対して有意に腫瘍増殖を抑制できること(p<0.01)、Day29には
B. longum 420単独投与群に対して有意に腫瘍増殖を抑制できることがわかった(p<0.01)。IL-2との併用により、
B. longum 420の抗腫瘍効果が増強された。
【0073】
(実施例4:形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与による細胞免疫応答誘導効果の確認)
上記実施例1で得たフリーズストックした形質転換ビフィズス菌をマウスに経口投与したときの細胞免疫応答誘導効果を確認した。実験プロトコールは、
図9に示した。なお、Day0からDay29の観察期間中、
B. longum 420投与群の平均体重は他の群と同様に推移し(
図10)、
B. longum 420投与による下痢、行動不良等の副作用は見られなかった。
【0074】
(1)Day27にマウスから脾臓を回収して脾細胞を調製して培養し、脾細胞培養上清中の細胞性免疫系各種サイトカイン濃度を測定した。脾細胞を刺激する抗原として、マウスWT1タンパク質を発現するようにマウスWT1遺伝子の導入を行ったC1498マウス白血病細胞株(C1498-WT1細胞)、対照としてマウスWT1遺伝子を挿入していない空ベクターを導入したC1498細胞(C1498-Mock細胞)を用いた。
マイトマイシンC処理C1498-WT1細胞又はC1498-Mock細胞(各4×10
4 cells/well)を用いて、4×10
5 cells/wellのマウス脾細胞を96ウェルプレートで37℃、3日間刺激培養した(n=5)。培養後、細胞培養液を回収し、Enzyme-Linked Immuno Sorbent Assay(ELISA)法により各種サイトカイン(インターフェロンγ(IFN-γ)、インターロイキン2(IL-2)、腫瘍壊死因子α(TNF-α))の濃度を測定した。各種サイトカインの濃度の測定は、Mouse IFN-gamma Quantikine ELISA Kit (R&D Systems, Minneapolis, MN), Mouse TNF-alpha Quantikine (R&D Systems), および Mouse IL-2 ELISA Kit (Thermo Scientific, Waltham, MA)を用いて、キットのマニュアルに準拠した方法により行った。
【0075】
結果を、
図11に示す。
B. longum 420投与群においては、C1498-WT1細胞による再刺激により、非刺激群と比較して、IFN-γ、IL-2、TNF-α産生量が有意に増加した(*:p<0.01)。
B. longum 420投与群におけるIFN-γ産生量は、PBS投与群および
B. longum 2012投与群と比較し、有意に増加した(*:p<0.01)。従って、形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与により、WT1特異的抗腫瘍免疫に重要な各種サイトカイン産生がWT1タンパク質の刺激により増強されることが示された。
【0076】
(2)上記(1)と同様にして調製した脾細胞について、細胞内サイトカイン染色(ICCS)を行い、CD4陽性T細胞又はCD8陽性T細胞中のサイトカイン産生T細胞の比率を確認した。
マウス脾細胞(2×10
6 cells/well、n=5)を、2×10
5 cells/wellのC1498-WT1細胞と混合し、24ウェルプレートにて37℃、5% CO
2条件下で42時間培養した。ここでGolgiStopまたはGolgiPlug(BD社)を各ウェルに添加し、さらに6時間培養した。細胞を回収し、BD/Cytofix/Cytoperm Plus Fixation/Permeabilization Kit(BD社)を用いて細胞内サイトカイン染色を行った。FITC標識抗CD3モノクローナル抗体、FITC標識抗CD8モノクローナル抗体、又はFITC標識抗CD4モノクローナル抗体を添加し、混合した。染色用バッファーで細胞を洗浄した。各種の抗サイトカイン抗体を細胞に加えて穏やかに懸濁した後、室温の暗所にて静置した。細胞を洗浄した後、染色用バッファーに再懸濁した。その後、細胞をフローサイトメーターを用いて付属の解析ソフトウェアを用いて解析した。具体的な方法はキットのマニュアルに準じて行った。
【0077】
結果を
図12に示す。
B. longum 420投与群において、脾細胞中のIFN-γ、IL-2およびTNFを産生するCD4+T細胞、CD8+T細胞のいずれもが、他の投与群と比較して有意に増加した(*:p<0.05)。従って、形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与により、WT1特異的細胞性免疫に関与するサイトカインを産生するCD4
+T細胞およびCD8
+T細胞が増加することが示された。
【0078】
(3)上記(1)と同様にして調製した脾細胞について、WT1テトラマーを用いて、CD8陽性T細胞中のWT1(Db126ペプチド)特異的CD8
+T細胞の比率を確認した。
2×10
6 cells/wellのマウス脾細胞(n=5)を2×10
5 cells/wellのC1498-WT1細胞と混合し、24ウェルプレートにて37℃、5% CO
2条件下で7日間培養した。培養1日目、3日目に20 IU/ml IL-2を添加し、CTLを誘導した。培養後、FITC標識抗CD3モノクローナル抗体、FITC標識抗CD8モノクローナル抗体を用いてCD8陽性T細胞を検出し、H-2Db WT1 Tetramer-RMFPNAPYL (MBL社) を用いてWT1ペプチド特異的CD8
+T細胞(CTL)を検出した。細胞はフローサイトメーターを用いて付属の解析ソフトウェアを用いて解析した。
【0079】
結果を
図13に示す。形質転換ビフィズス菌が経口投与されることにより、当該ビフィズス菌の表層に発現するGL-BP-WT1融合タンパク質が腸管関連リンパ組織(GALT)に取り込まれ、GALT内の抗原提示細胞(APC)により適切なエピトープで処理される。さらにGALT内でプロセッシングされたペプチドはMHCクラスIIと一緒にAPCに提示され、当該ペプチドに特異的なT細胞受容体を持つCTLを誘導すると考えられる。H-2Db WT1 Tetramer-RMFPNAPYLは、WT1タンパク質に含まれるエピトープの1つであるCD8エピトープ(a.a.126-134:RMFPNAPYL(配列番号19))に特異的なT細胞受容体に結合して蛍光を発することから、当該CD8エピトープに特異的なCTLの誘導を確認することができる。
図13の結果から、
B. longum 420投与群における脾細胞中のWT1テトラマー陽性CTLの比率が、他の投与群と比較して有意に増加したことがわかった(*;p<0.05)。したがって、経口投与した形質転換ビフィズス菌のGL-BP-WT1融合タンパクが適切に処理され、抗腫瘍効果に重要な役割を担うWT1ペプチド特異的CTLが誘導されることが示された。
【0080】
(4)上記(1)と同様にして調製した脾細胞について、WT1特異的細胞傷害性T細胞(CTL)の活性の測定を行った。
3×10
7 cells/wellのマウス脾細胞(n=5)を3×10
6 cells/wellのC1498-WT1細胞と混合し、6ウェルプレートにて37℃、5% CO
2条件下で6日間培養した。培養1日目、3日目に20 IU/ml IL-2を添加し、CTLを誘導した。脾細胞を回収し、96ウェルプレートにて脾細胞と、1×10
4cells/ウェルのC1498-WT1細胞またはC1498-Mock細胞とを、20:1、10:1、または5:1の比率で混合した後、37℃、5%CO
2条件下で8時間培養した。培養上清を回収し、Cytotox 96 Non-radioactive Citotoxicity Assay Kit(Promega社)を用いて、培養上清中の乳酸デヒドロゲナーゼ活性を測定し、これを基に細胞傷害活性を算出した。乳酸デヒドロゲナーゼは細胞質に存在する酵素で、通常は細胞膜を透過しないが、細胞膜が障害を受けると培地中に放出されることから、細胞傷害活性の指標として使用されている。
【0081】
結果を
図14に示す。全ての細胞混合比率において、
B. longum 420投与群におけるWT1特異的な細胞傷害活性が有意に上昇した(p<0.01)。従って、形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与により、WT1特異的細胞傷害活性を有するCTLが誘導されることがわかった。
【0082】
(実施例5:形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与による抗腫瘍効果の確認2)
上記実施例1で得たフリーズストックした形質転換ビフィズス菌をマウスに経口投与したときの抗腫瘍効果を確認した。実験プロトコールは、
図15に示した。
C57BL/6Nマウス(メス, 6週齢)(n=25)に、1×10
6 cells C1498-WT1細胞またはC1498-Mock細胞を皮下接種した。2日後、マウスを3つの群(n=5)に分け、形質転換ビフィズス菌の経口投与を開始した。経口投与毎に、
B. longum 420投与群については、1×10
9 CFU in 100 μL PBSを、
B. longum 2012投与群については、1×10
9 CFU in 100 μL PBSを、PBS投与群については、100 μL PBSを投与した。また、抗腫瘍効果の評価は下記の腫瘍体積の算出値をもとに行った。
(式) 腫瘍体積(mm
3) = 長径×短径
2×1/2
【0083】
結果を
図16に示す。Day25において、
B. longum 420投与群の腫瘍体積はPBS投与群、および
B. longum 2012投与群と比較して有意に抑制された。また、
B. longum 420投与群において、C1498-Mock細胞に対する抗腫瘍効果は認められなかったことから、形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与による抗腫瘍効果はWT1発現細胞に特異的であることが示された。
【0084】
(実施例6:アジュバントによる、形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与の抗腫瘍効果への影響の確認)
上記実施例1で得たフリーズストックした形質転換ビフィズス菌を、コレラトキシンを粘膜免疫アジュバントとして使用して、マウスに経口投与したときの抗腫瘍効果を確認した。実験プロトコールは、
図17に示した。
6週齢メスC57BL/6Nマウスに、1×10
6 cells C1498-WT1細胞を右背側に皮下接種した。7日後に腫瘍形成を確認し、マウスを3つの群(n=3)に分け、形質転換ビフィズス菌の経口投与を開始した。経口投与毎に、
B. longum 420投与群については、6.4×10
9 CFU in 200 μL PBSを、B. longum 420+コレラトキシン投与群については、6.4×10
9 CFU + 10 μg コレラトキシン(Wako)in 200 μL PBSを、PBS投与群については、200 μL PBSを投与した。ワクチン投与は腫瘍接種日をDay0として、 Day 7、14、21の計3回行った。Day0からDay27の期間、腫瘍径を測定した。抗腫瘍効果の評価は、実施例5と同様に、腫瘍体積の算出値をもとに行った。
【0085】
結果を
図18に示す。週1回の投与で、Day18以降、
B. longum 420とコレラトキシンの併用により、PBS群と比較して有意な抗腫瘍効果を認めた(p<0.05)。なお、腫瘍未接種のマウスに同様の経口投与を行った結果、コレラトキシン併用群で平均体重は他の群と同様に推移した(
図18右)。投与による下痢、行動不良等の副作用は見られなかった。コレラトキシンとの併用により、低頻度の投与で安全に抗腫瘍効果が増強可能であることがわかった。
【0086】
(実施例7:各種粘膜免疫アジュバントによる、形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与の抗腫瘍効果への影響の確認)
上記実施例1で得たフリーズストックした形質転換ビフィズス菌を、各種粘膜免疫アジュバントを使用して、マウスに経口投与したときの抗腫瘍効果を確認した。実験プロトコールは、
図19に示した。
6週齢メスC57BL/6Nマウスを次の5つの群(n=3)に分け、形質転換ビフィズス菌の経口投与を開始した:、
B. longum 420 + 20 μg/dose LTB (Heat-Labile Enterotoxin B subunit(Sigma社))、
B. longum 420 + 20 μg/dose MPLA(Monophosphoryl Lipid A(Sigma社)、
B. longum 420 + 100 μg/dose Chitosan(Chitosan low molecular weight(Sigma社)、
B. longum 420 + 10 μg/dose CpG 1585(Invivogen社)、PBS。
各ビフィズス菌投与液6.4×10
9 CFU/200 μL またはPBS 200 μLを、ゾンデを用いてマウスに経口投与した。Day 49にC1498-WT1細胞を右背側に皮下接種し、Day76までの期間、腫瘍径を測定した。抗腫瘍効果の評価は、実施例6と同様に腫瘍体積の算出値をもとに行った。
【0087】
結果を
図20に示す。Day 67において、全てのアジュバント併用群の腫瘍増殖は、PBS投与群と比較して有意に抑制された(p<0.05)。Day70ではLTB及びChitosan併用群において、Day73ではLTB、ChitosanおよびCpG1585併用群において、PBS群に対して有意な腫瘍抑制が認められた(p<0.05) 。形質転換ビフィズス菌のGL-BP-WT1融合タンパク質経口投与により、予防的な抗腫瘍効果を示すことがわかった。なお、Day0からDay49の経口投与期間中、全てのアジュバント併用群で平均体重はPBS群と同様に推移した。投与による下痢、行動不良等の副作用は認められなかった。
【0088】
(実施例8:GL-BP-WT1表層提示ビフィズス菌の作製2)
A.GL-BP遺伝子の単離、B.単離したGL-BP遺伝子を有するpMW118プラスミドの構築は、実施例1と同様の手法により行った。
【0089】
C.WT1遺伝子の単離
ヒトWT1の117番目から439番目までのアミノ酸配列をコードするDNA(配列番号15)を全合成した(フナコシ株式会社)。なお、合成の際にはビフィズス菌において使用頻度の高いコドンを用いた。また、N末端側にはXhoI認識配列(CTCGAG:配列番号5)を、C末端側には終止コドンおよびそれに引き続いてSphI認識配列(GCATGC:配列番号6)を付加した。これをpUC18ベクターのSmaIサイトに導入し、プラスミドの構築を行った。ライゲーションには、DNA Ligation kit Ver. 2(タカラバイオ株式会社製)を用いた。構築したプラスミドを、ヒートショック法(42℃、30秒)にて大腸菌DH5α(タカラバイオ株式会社製)に導入し、アンピシリン100μg/mlを含むLB寒天培地(Difco社製)に塗布し、37℃にて一晩培養し、ヒトWT1タンパク質(117〜439)をコードするDNAを有するプラスミドを保持した形質転換大腸菌を得た。形質転換大腸菌からQuantum Prep Plasmid Miniprep Kit(Bio-Rad社製)を使用してプラスミドを抽出精製し、シーケンスによる配列確認を行った。
【0090】
合成したヒトWT1遺伝子の配列(配列番号15)
CCGTCCCAGGCGTCGTCGGGCCAGGCGAGGATGTTCCCGAACGCGCCCTACCTGCCCAGCTGCCTGGAGTCCCAGCCGGCGATCCGCAACCAGGGCTACTCCACCGTGACGTTCGACGGCACCCCGTCCTACGGCCACACGCCCAGCCACCACGCCGCCCAGTTCCCGAACCACAGCTTCAAGCACGAAGACCCCATGGGCCAGCAGGGCAGCCTCGGCGAACAGCAGTACAGCGTGCCGCCGCCGGTCTACGGCTGCCACACCCCGACCGACTCCTGCACGGGCTCCCAGGCCCTGCTCCTGCGTACGCCGTACTCCTCCGACAACCTCTACCAGATGACCTCCCAGCTGGAGTGCATGACCTGGAACCAGATGAACCTGGGCGCCACGCTGAAGGGAGTCGCCGCGGGGTCGTCGAGCTCCGTCAAGTGGACCGAAGGCCAGTCCAACCACTCCACCGGCTACGAGTCCGACAACCACACCACGCCGATCCTGTGCGGAGCCCAGTACCGCATCCACACGCACGGCGTCTTCCGCGGCATCCAGGACGTCCGGCGCGTCCCCGGCGTCGCGCCGACCCTGGTGCGGTCCGCCTCCGAGACCTCCGAGAAGCGCCCGTTCATGTGCGCCTACCCGGGCTGCAACAAGCGCTACTTCAAGCTCTCGCACCTGCAGATGCACTCCCGGAAGCACACCGGCGAGAAGCCGTACCAGTGCGACTTCAAGGACTGCGAACGCCGCTTCTCGCGCAGCGACCAGCTGAAGCGCCACCAGCGTAGGCACACCGGCGTGAAGCCCTTCCAGTGCAAGACCTGCCAGCGCAAGTTCTCCCGCAGCGACCACCTCAAGACGCACACCCGCACCCACACCGGCAAGACGTCCGAGAAGCCGTTCTCGTGCCGCTGGCCCAGCTGCCAGAAGAAGTTCGCCCGCAGCGACGAGCTCGTGCGCCACCACAACATGCACCAGTGAA
【0091】
またヒトWT1の117番目から439番目までのアミノ酸配列において、HLA-A*2402拘束性CTLエピトープにM236Yの置換を導入したアミノ酸配列を有する変異型WT1タンパク質をコードするDNAを、上述と同様にして全合成して、組換えプラスミドを作製した。
【0092】
合成したヒトWT1遺伝子の配列(配列番号17)
CCGTCCCAGGCGTCGTCGGGCCAGGCGAGGATGTTCCCGAACGCGCCCTACCTGCCCAGCTGCCTGGAGTCCCAGCCGGCGATCCGCAACCAGGGCTACTCCACCGTGACGTTCGACGGCACCCCGTCCTACGGCCACACGCCCAGCCACCACGCCGCCCAGTTCCCGAACCACAGCTTCAAGCACGAAGACCCCATGGGCCAGCAGGGCAGCCTCGGCGAACAGCAGTACAGCGTGCCGCCGCCGGTCTACGGCTGCCACACCCCGACCGACTCCTGCACGGGCTCCCAGGCCCTGCTCCTGCGTACGCCGTACTCCTCCGACAACCTCTACCAGATGACCTCCCAGCTGGAGTGCTACACCTGGAACCAGATGAACCTGGGCGCCACGCTGAAGGGAGTCGCCGCGGGGTCGTCGAGCTCCGTCAAGTGGACCGAAGGCCAGTCCAACCACTCCACCGGCTACGAGTCCGACAACCACACCACGCCGATCCTGTGCGGAGCCCAGTACCGCATCCACACGCACGGCGTCTTCCGCGGCATCCAGGACGTCCGGCGCGTCCCCGGCGTCGCGCCGACCCTGGTGCGGTCCGCCTCCGAGACCTCCGAGAAGCGCCCGTTCATGTGCGCCTACCCGGGCTGCAACAAGCGCTACTTCAAGCTCTCGCACCTGCAGATGCACTCCCGGAAGCACACCGGCGAGAAGCCGTACCAGTGCGACTTCAAGGACTGCGAACGCCGCTTCTCGCGCAGCGACCAGCTGAAGCGCCACCAGCGTAGGCACACCGGCGTGAAGCCCTTCCAGTGCAAGACCTGCCAGCGCAAGTTCTCCCGCAGCGACCACCTCAAGACGCACACCCGCACCCACACCGGCAAGACGTCCGAGAAGCCGTTCTCGTGCCGCTGGCCCAGCTGCCAGAAGAAGTTCGCCCGCAGCGACGAGCTCGTGCGCCACCACAACATGCACCAGTGAA
【0093】
D.GL-BP遺伝子の下流にWT1遺伝子を有するプラスミドの構築、E.大腸菌−ビフィズス菌シャトルベクターの構築、F.大腸菌−ビフィズス菌シャトルベクターpJW241へのGL-BP遺伝子とWT1遺伝子とが連結された遺伝子の組込み、G.宿主ビフィズス菌液の調製は実施例1と同様にして、2種類の形質転換ビフィズス菌を作製した。
【0094】
図21は、
図21右側に示す特異的プライマーを用いて、2種類の形質転換ビフィズス菌を遺伝子レベルで識別したことを示す図である。なお、430とは
B. longum 430であり、ヒトWT1タンパク質(117〜439)をコードするDNAを挿入したシャトルベクターで形質転換したビフィズス菌である。440とは
B. longum 440であり、アミノ酸置換M236YのあるヒトWT1タンパク質(117〜439)をコードするDNAを挿入したシャトルベクターで形質転換したビフィズス菌である。2012は、実施例1と同様に
B. longum 2012であり、WT1をコードするDNAが挿入されていないGLBP遺伝子のみを挿入したシャトルベクターで形質転換したビフィズス菌である。430と示すプライマーはヒトWT1タンパク質(117〜439)をコードするDNAを増幅し、440と示すプライマーはアミノ酸置換M236YのあるヒトWT1タンパク質(117〜439)をコードするDNAを増幅する。
【0095】
(実施例9:形質転換ビフィズス菌のGL-BP-WT1融合タンパク質表層提示の確認)
上記実施例8で得た形質転換ビフィズス菌について、実施例2と同様の手法により、GL-BP-WT1融合タンパク質の表層発現を確認した。
【0096】
ウエスタンブロッティングの結果を
図22A、蛍光免疫染色の結果を
図22Bに示した。
図22から明らかなように、
B. longum 430及び
B. longum 440には、
B. longum 420と同様に、WT1とGL-BPの融合タンパク質の分子量の合計に相当する約82.5kDaのバンドが認められた。また、蛍光顕微鏡写真から、
B. longum 430及び
B. longum 440の細胞表面にWT1が存在することを確認した。したがって、形質転換ビフィズス菌が、GL-BP-WT1融合タンパク質を発現していることを確認した。