(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下、本発明を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付することにより重複した説明を省く。
【0012】
[第1の実施形態]
本発明の第1の実施形態に係る載置台構造を備える処理装置について説明する。
図1は、本発明の第1の実施形態に係る処理装置の一例を示す概略断面図である。
【0013】
図1に示されるように、処理装置1は、超高真空かつ極低温の環境下において処理が可能に構成された真空容器10内において、被処理体である半導体ウエハWに磁性膜を形成することが可能な成膜装置である。磁性膜は、例えばトンネル磁気抵抗(Tunneling Magneto Resistance;TMR)素子に用いられる。処理装置1は、真空容器10と、ターゲット30と、載置台構造50と、を備える。
【0014】
真空容器10は、その内部を超高真空(例えば10
−5Pa以下)に減圧可能に構成されている。真空容器10には、外部からガス供給管(図示せず)が接続されており、ガス供給管からスパッタ成膜に必要なガス(例えばアルゴン、クリプトン、ネオン等の希ガスや窒素ガス)が供給される。また、真空容器10には、ガス供給管から供給されるガス等を排気し、真空容器10内を超高真空に減圧可能な真空ポンプ等の排気手段(図示せず)が接続されている。
【0015】
ターゲット30は、載置台構造50の上方であって、真空容器10内に設けられている。ターゲット30には、プラズマ発生用電源(図示せず)からの交流電圧が印加される。プラズマ発生用電源からターゲット30に交流電圧が印加されると、真空容器10内にプラズマが発生し、真空容器10内の希ガス等をイオン化し、イオン化した希ガス元素等によって、ターゲット30がスパッタリングされる。スパッタリングされたターゲット材料の原子又は分子は、ターゲット30に対向し、載置台構造50に保持された半導体ウエハWの表面に堆積する。ターゲット30の数は特に限定されないが、1つの処理装置1で異なる材料を成膜できるという観点から、複数であることが好ましい。例えば、磁性膜(Ni,Fe,Co等の強磁性体を含む膜)を堆積する場合、ターゲット30の材料としては、例えばCoFe、FeNi、NiFeCoを用いることができる。また、ターゲット30の材料として、これらの材料に、別の元素を混入させることもできる。
【0016】
載置台構造50は、冷凍機52と、冷凍伝熱体54と、載置台56と、外筒58と、を有する。
【0017】
冷凍機52は、冷凍伝熱体54を保持し、冷凍伝熱体54の上面を極低温(例えば−30℃以下)に冷却する。冷凍機52は、冷却能力の観点から、GM(Gifford-McMahon)サイクルを利用したタイプであることが好ましい。
【0018】
冷凍伝熱体54は、冷凍機52の上に固定配置されており、その上部が真空容器10内に配置されている。冷凍伝熱体54は、例えば純銅(Cu)等の熱伝導性の高い材料により形成されており、略円柱形状を有する。冷凍伝熱体54は、載置台56の中心軸Cにその中心が一致するように配置されている。冷凍伝熱体54の内部には、後述する隙間Gと連通し、第1冷却ガスを通流可能な第1冷却ガス供給部54aが形成されている。これにより、第1冷却ガスを隙間Gに供給することができる。第1冷却ガスとしては、高い熱伝導性を有するという観点から、ヘリウム(He)を用いることが好ましい。
【0019】
載置台56は、冷凍伝熱体54の上面との間に隙間G(例えば2mm以下)を有して配置されている。載置台56は、例えば純銅(Cu)等の熱伝導性の高い材料により形成されている。隙間Gは、冷凍伝熱体54の内部に形成された第1冷却ガス供給部54aと連通している。そのため、隙間Gには、第1冷却ガス供給部54aから第1冷却ガスが供給される。これにより、載置台56は、冷凍機52、冷凍伝熱体54、及び隙間Gに供給される第1冷却ガスによって極低温(例えば、−30℃以下)に冷却される。なお、第1冷却ガスに代えて、熱伝導性の良好な熱伝導グリースを隙間Gに充填してもよい。この場合、第1冷却ガス供給部54aを設ける必要がないため、冷凍伝熱体54の構造をシンプルにできる。載置台56には、上下に貫通する貫通孔56aが形成されている。貫通孔56aは、隙間Gを介して第1冷却ガス供給部54aに連通する。これにより、第1冷却ガス供給部54aから隙間Gに供給される第1冷却ガスの一部が貫通孔56aを介して、載置台56(静電チャック)の上面と半導体ウエハWの下面との間に供給される。そのため、冷凍伝熱体54の冷熱が効率よく半導体ウエハWに伝達する。貫通孔56aは、1つであってもよく、複数であってもよい。但し、冷凍伝熱体54の冷熱を特に効率よく半導体ウエハWに伝達するという観点から、複数であることが好ましい。載置台56は、静電チャックを含む。静電チャックは、誘電体膜内に埋設されたチャック電極56bを有する。チャック電極56bには、配線Lを介して所定の電位が与えられる。これにより、半導体ウエハWを静電チャックにより吸着して固定することができる。
【0020】
載置台56の下面には、冷凍伝熱体54の側に向かって突出する凸部56cが形成されている。図示の例では、凸部56cは、載置台56の中心軸Cを取り囲む略円環形状を有する。凸部56cの高さは、例えば40〜50mmとすることができる。凸部56cの幅は、例えば6〜7mmとすることができる。なお、凸部56cの形状及び数は特に限定されないが、冷凍伝熱体54との間の熱伝達効率を高めるという観点から、表面積が大きくなるような形状及び数であることが好ましい。凸部56cは、例えば
図2に示されるように、その外面が波打った形状であってもよい。また、凸部56cの外面は、ブラスト等により凹凸加工が施されていることが好ましい。表面積が大きくなり、冷凍伝熱体54との間の熱伝達効率を高めることができるからである。また、凸部56cは、複数形成されていてもよい。
【0021】
また、載置台56における静電チャックを含む部分と凸部56cが形成される部分とは、一体的に成形されていてもよく、別体で成形され接合されていてもよい。
【0022】
冷凍伝熱体54の上面、即ち、凸部56cと対向する面には、凸部56cに対して隙間Gを有して嵌合する凹部54cが形成されている。図示の例では、凹部54cは、載置台56の中心軸Cを取り囲む略円環形状を有する。凹部54cの高さは、凸部56cの高さと同じであってよく、例えば40〜50mmとすることができる。凹部54cの幅は、例えば凸部56cの幅よりも僅かに広い幅とすることができ、例えば7〜9mmであることが好ましい。なお、凹部54cの形状及び数は、凸部56cの形状及び数と対応するように定められる。例えば
図2に示されるように、凸部56cの外面が波打った形状である場合、凹部54cの内面も対応して波打った形状とすることができる。また、凹部54cの内面は、ブラスト等により凹凸加工が施されていることが好ましい。表面積が大きくなり、載置台56との間の熱伝達効率を高めることができるからである。また、凹部54cは、複数形成されていてもよい。
【0023】
外筒58は、冷凍伝熱体54の周囲に配置されている。図示の例では、外筒58は、冷凍伝熱体54の上部の外周面を覆うように配置されている。外筒58は、冷凍伝熱体54の外径よりも僅かに大きい内径の円筒部58aと、円筒部58aの下面において外径方向に延びるフランジ部58bと、を有する。円筒部58a及びフランジ部58bは、例えばステンレス等の金属により形成されている。フランジ部58bの下面には、断熱部材60が接続されている。
【0024】
断熱部材60は、フランジ部58bと同軸に延在する略円筒形状を有し、フランジ部58bに対して固定されている。断熱部材60は、アルミナ等のセラミックスにより形成されている。断熱部材60の下面には、磁性流体シール部62が設けられている。
【0025】
磁性流体シール部62は、回転部62aと、内側固定部62bと、外側固定部62cと、加熱手段62dと、を有する。回転部62aは、断熱部材60と同軸に延在する略円筒形状を有し、断熱部材60に対して固定されている。言い換えると、回転部62aは、断熱部材60を介して外筒58と接続されている。これにより、外筒58の冷熱の回転部62aへの伝達が断熱部材60により遮断されるので、磁性流体シール部62の磁性流体の温度が低下し、シール性能が低下したり、結露が生じたりすることを抑制できる。内側固定部62bは、冷凍伝熱体54と回転部62aとの間に磁性流体を介して設けられている。内側固定部62bは、内径が冷凍伝熱体54の外径よりも大きく、外径が回転部62aの内径よりも小さい略円筒形状を有する。外側固定部62cは、回転部62aの外側に磁性流体を介して設けられている。外側固定部62cは、内径が回転部62aの外径よりも大きい略円筒形状を有する。加熱手段62dは、内側固定部62bの内部に埋め込まれており、磁性流体シール部62の全体を加熱する。これにより、磁性流体シール部62の磁性流体の温度が低下し、シール性能が低下したり、結露が生じたりすることを抑制できる。係る構成により、磁性流体シール部62では、回転部62aが、内側固定部62b及び外側固定部62cに対して気密状態で回転可能となっている。即ち、外筒58は、磁性流体シール部62を介して回転可能に支持されている。外側固定部62cの上面と真空容器10の下面との間には、ベローズ64が設けられている。
【0026】
ベローズ64は、上下方向に伸縮可能な金属製の蛇腹構造体である。ベローズ64は、冷凍伝熱体54、外筒58、及び断熱部材60を囲み、真空容器10内の減圧可能な空間と真空容器10の外部の空間とを分離する。
【0027】
スリップリング66は、磁性流体シール部62の下方に設けられている。スリップリング66は、金属リングを含む回転体66aと、ブラシを含む固定体66bと、を有する。回転体66aは、磁性流体シール部62の回転部62aと同軸に延在する略円筒形状を有し、回転部62aに対して固定されている。固定体66bは、内径が回転体66aの外径よりも僅かに大きい略円筒形状を有する。スリップリング66は、直流電源(図示せず)と電気的に接続されており、直流電源から供給される電力を、固定体66bのブラシ及び回転体66aの金属リングを介して、配線Lに伝達する。この構成により、配線Lにねじれ等を発生させることなく、直流電源からチャック電極に電位を与えることができる。スリップリング66の回転体66aは、駆動機構68に取り付けられている。
【0028】
駆動機構68は、ロータ68aと、ステータ68bと、を有するダイレクトドライブモータである。ロータ68aは、スリップリング66の回転体66aと同軸に延在する略円筒形状を有し、回転体66aに対して固定されている。ステータ68bは、内径がロータ68aの外径よりも大きい略円筒形状を有する。係る構成により、ロータ68aが回転すると、回転体66a、回転部62a、外筒58、及び載置台56が冷凍伝熱体54に対して回転する。
【0029】
また、冷凍機52及び冷凍伝熱体54の周囲には、真空断熱二重構造に形成された断熱体70が設けられている。図示の例では、断熱体70は、冷凍機52とロータ68aとの間、及び冷凍伝熱体54の下部とロータ68aとの間に設けられている。これにより、冷凍機52及び冷凍伝熱体54の冷熱がロータ68aに伝達するのを抑制できる。
【0030】
また、冷凍機52及び冷凍伝熱体54の周囲には、第2冷却ガス供給部72が形成されている。第2冷却ガス供給部72は、冷凍伝熱体54と外筒58との間の空間Sに第2冷却ガスを供給する。第2冷却ガスは、例えば第1冷却ガスと熱伝導率が異なるガスであり、好ましくは熱伝導率が第1冷却ガスよりも低いガスであるため、第2冷却ガスの温度が第1冷却ガスの温度よりも相対的に高くなる。これにより、隙間Gから空間Sに漏れ出す第1冷却ガスが磁性流体シール部62に侵入するのを防止できる。言い換えると、第2冷却ガスは、隙間Gから漏れ出す第1冷却ガスに対するカウンターフローとして機能する。これにより、磁性流体シール部62の磁性流体の温度が低下し、シール性能が低下したり、結露が生じたりすることを抑制できる。また、カウンターフローとしての機能を高めるという観点から、第2冷却ガスの供給圧力は、第1冷却ガスの供給圧力と略同一、又は僅かに高い圧力であることが好ましい。なお、第2冷却ガスとしては、アルゴン、ネオン等の低沸点ガスを用いることができる。
【0031】
また、冷凍伝熱体54、隙間G等の温度を検出するための温度センサが設けられていてもよい。温度センサとしては、例えばシリコンダイオード温度センサ、白金抵抗温度センサ等の低温用温度センサを用いることができる。
【0032】
また、処理装置1は、載置台構造50の全体を真空容器10に対して昇降させる昇降機構74を有する。これにより、ターゲット30と半導体ウエハWとの間の距離を制御することができる。具体的には、昇降機構74により載置台構造50を昇降させることで、半導体ウエハWを載置台56に載置するときの位置と、載置台56に載置された半導体ウエハWに成膜を行うときの位置とを変更することができる。
【0033】
以上に説明したように、第1の実施形態の載置台構造50は、固定配置された冷凍伝熱体54と、冷凍伝熱体54の周囲に配置され、回転可能な外筒58と、外筒58に接続され、冷凍伝熱体54の上面に対して隙間Gを有して配置された載置台56と、を有する。これにより、半導体ウエハWを極低温に維持した状態で回転させることができる。また、載置台構造50を備える処理装置1を用いることで、良好な面内均一性と高い磁気抵抗比を有する磁気抵抗素子を製造することができる。
【0034】
特に、載置台56の上方に複数の異なる材料のターゲット30が配置された処理装置1において成膜を行う場合、載置台56が回転する本発明の第1の実施形態に係る載置台構造50を用いることで、良好な面内均一性を実現することができる。これに対して、載置台56が回転しない場合には、半導体ウエハWの表面におけるターゲット30からの距離の違いにより膜厚や膜質が異なる等、良好な面内均一性を実現することが困難である。
【0035】
[第2の実施形態]
本発明の第2の実施形態に係る載置台構造を備える処理装置について説明する。第2の実施形態では、第1の実施形態の載置台構造50の貫通孔56aに代えて第3冷却ガス供給部76が形成されている。以下、第1の実施形態と異なる点を中心に説明する。
図3は、本発明の第2の実施形態に係る処理装置の一例を示す概略断面図である。
【0036】
第3冷却ガス供給部76は、載置台56の上面と半導体ウエハWの下面との間に第3冷却ガスを供給する。第3冷却ガスとしては、例えば第1冷却ガスと同様のガスであるHeを用いることができる。第3冷却ガス供給部76は、例えば磁性流体シール部76aを介して載置台構造50Aに導入される。磁性流体シール部76aの外周側にはカバー76bが設けられている。
【0037】
以上に説明した第2の実施形態の載置台構造50Aによれば、上述した第1の実施形態による効果に加えて、以下のような効果が奏される。
【0038】
前述の第1の実施形態に係る載置台構造50を備える処理装置1では、半導体ウエハWを載置しない状態で載置台56を冷却すると、高真空雰囲気に維持された真空容器10内に第1冷却ガスが勢いよく放出されてしまい、隙間Gにおける熱伝達や真空容器10内の圧力制御が困難となる場合がある。そのため、上記の処理装置1では、載置台56にダミーウエハを載置することにより貫通孔56aから載置台56の上面とダミーウエハの下面との間に供給される第1冷却ガス量を調整していた。その結果、真空容器10内にダミーウエハを搬入又は搬出するといった動作が必要となり、スループットが悪化するという課題が生じる。
【0039】
これに対し、第2の実施形態によれば、冷凍伝熱体54の上面と載置台56の下面と隙間に冷却ガスを供給する第1冷却ガス供給部54aとは別に設けられ、載置台56の上面と半導体ウエハWの下面との間に冷却ガスを供給可能な第3冷却ガス供給部76を有する。これにより、上記の課題を解決することができる。
【0040】
[第3の実施形態]
本発明の第3の実施形態に係る載置台構造を備える処理装置について説明する。第3の実施形態では、第1の実施形態の載置台構造50に対して更に第1摺動用シール部材78及び第2摺動用シール部材80が設けられている。但し、第1摺動用シール部材78又は第2摺動用シール部材80のいずれか一方のみが設けられていてもよい。以下、第1の実施形態と異なる点を中心に説明する。
図4は、第3の実施形態に係る処理装置の一例を示す概略断面図である。
【0041】
第1摺動用シール部材78は、冷凍伝熱体54と外筒58との間の空間Sの上部に設けられている。言い換えると、第1摺動用シール部材78は、冷凍伝熱体54の凹部54c(載置台56の凸部56c)の周辺に設けられている。これにより、第1摺動用シール部材78は、隙間Gから空間Sに漏れ出す第1冷却ガスが磁性流体シール部62に侵入するのを防止する。第1摺動用シール部材78は、例えばオムニシール(登録商標)であってよい。また、第1摺動用シール部材78は、例えば磁性流体シール等を用いたガス分離構造であってもよい。
【0042】
第2摺動用シール部材80は、冷凍伝熱体54と外筒58との間の空間Sの下部に設けられている。言い換えると、第2摺動用シール部材80は、磁性流体シール部62の近傍に設けられている。これにより、第2冷却ガスの冷却機能を分離させることができ、磁性流体シール部62と冷凍伝熱体54との断熱機能に特化させることができる。
【0043】
以上に説明した第3の実施形態の載置台構造50Bによれば、上述した第1の実施形態による効果に加えて、以下のような効果が奏される。
【0044】
第3の実施形態によれば、冷凍伝熱体54と外筒58との間の空間Sに摺動用シール部材(第1摺動用シール部材78、第2摺動用シール部材80)が設けられている。これにより、隙間Gから空間Sに漏れ出す第1冷却ガスが磁性流体シール部62に侵入するのを防止できる。
【0045】
以上、本発明を実施するための形態について説明したが、上記内容は、発明の内容を限定するものではなく、本発明の範囲内で種々の変形及び改良が可能である。
【0046】
上記の実施形態では、処理装置1が成膜装置である場合を例に挙げて説明したが、本発明はこれに限定されず、例えばエッチング装置等であってもよい。