(58)【調査した分野】(Int.Cl.,DB名)
示差屈折率検出器及び紫外可視吸光度検出器を備えるゲルパーミエーションクロマトグラフを用い、上記エチレン−ビニルアルコール共重合体の窒素雰囲気下、220℃、50時間熱処理後に測定した分子量が、下記式(2)で表される条件をさらに満たす請求項1に記載の樹脂組成物。
(Ma−Mc)/Ma<0.45 ・・・(2)
Mc:紫外可視吸光度検出器で測定される波長280nmでの吸収ピークの最大値におけるポリメタクリル酸メチル換算の分子量
上記無機粒子を構成する金属元素が、ケイ素、アルミニウム、マグネシウム、ジルコニウム、セリウム、タングステン及びモリブデンからなる群より選ばれる少なくとも1種である請求項1から請求項3のいずれか1項に記載の樹脂組成物。
【発明を実施するための形態】
【0026】
以下、本発明の実施の形態について、当該樹脂組成物、この当該樹脂組成物から形成されるフィルム、この当該フィルムを備える多層構造体、及びこの多層構造体を備える包装材料の順に説明するが、本発明はこれらに限定されない。また、例示される材料は、特に記載がない限り、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0027】
<樹脂組成物>
本発明の樹脂組成物は、EVOH(A)及び無機粒子(B)を含有する。当該樹脂組成物は、EVOH(A)及び無機粒子(B)以外にアルカリ金属塩(C)、他の任意成分等をさらに含有してもよい。
【0028】
[EVOH(A)]
EVOH(A)は当該樹脂組成物の主成分である。EVOH(A)は、エチレンとビニルエステルとの共重合体をケン化したものである。ここで「主成分」とは、最も含有量の多い成分であり、例えば含有量が50質量%以上の成分を指す。当該樹脂組成物の樹脂分におけるEVOH(A)の含有量の下限としては、70質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。
【0029】
エチレンとビニルエステルとの共重合方法としては特に限定されず、例えば溶液重合、懸濁重合、乳化重合、バルク重合等の公知の方法を用いることができる。また、上記共重合方法は、連続式及び回分式のいずれであってもよい。
【0030】
EVOH(A)のエチレン含有量の下限としては、10モル%が好ましく、20モル%がより好ましく、25モル%がさらに好ましい。一方、EVOH(A)のエチレン含有量の上限としては、60モル%が好ましく、55モル%がより好ましく、50モル%がさらに好ましく、40モル%が特に好ましい。エチレン含有量が上記下限未満であると、溶融押出時の熱安定性が低下してゲル化しやすくなり、ストリーク、フィッシュアイ等の製膜欠陥が発生し易くなるおそれがある。特に、一般的な溶融押出し時の条件よりも高温又は高速の条件下で長時間運転を行うとゲル化する可能性が高くなる。一方、エチレン含有量が上記上限を超えると、ガスバリア性等が低下し、EVOHが有する有利な特性を十分に発揮できないおそれがある。
【0031】
上記ビニルエステルとしては、工業的入手容易さ等の観点から酢酸ビニルが好適に用いられる。この酢酸ビニルは、通常不可避的不純物として少量のアセトアルデヒドを含有する。この酢酸ビニルのアセトアルデヒドの含有量としては、100ppm未満が好ましい。この酢酸ビニルのアセトアルデヒドの含有量の上限としては、60ppmがより好ましく、25ppmがさらに好ましく、15ppmが特に好ましい。酢酸ビニルのアセトアルデヒドの含有量を上記範囲とすることで、後述する式(1)を満たすEVOH(A)を調製し易くなる。
【0032】
EVOH(A)は、エチレン及びビニルエステル以外の単量体に由来する他の構造単位を含んでいてもよい。このような他の構造単位を与える単量体としては、例えばビニルシラン系化合物、その他の重合性化合物等が挙げられる。他の構造単位の含有量としては、EVOH(A)の全構造単位に対して、0.0002モル%以上0.2モル%以下が好ましい。
【0033】
(ケン化度)
EVOH(A)のビニルエステルに由来する構造単位のケン化度の下限としては、通常85モル%であり、90モル%が好ましく、98モル%がより好ましく、98.9モル%がさらに好ましい。このケン化度が上記下限未満であると、熱安定性が不十分となるおそれがある。
【0034】
(ピークトップ分子量(Ma))
ピークトップ分子量(Ma)は、窒素雰囲気下、220℃で50時間熱処理した後のEVOH(A)をゲルパーミションクロマトグラフィー(以下、「GPC」ともいう)を用いて分離し、このときにカラムから溶出されるEVOH(A)の
図1に模式的に示すように示差屈折率検出器において測定されるシグナル(
図1中の「RI」)のメインピークの最大値に対応する値である。本発明におけるピークトップ分子量(Ma)は、後述の方法により作成される検量線を用いて算出されるポリメタクリル酸メチル換算(以下、「PMMA換算」ともいう)の値である。
【0035】
ピークトップ分子量(Ma)の下限としては、30,000が好ましく、35,000がより好ましく、40,000がさらに好ましく、50,000が特に好ましい。一方、ピークトップ分子量(Ma)の上限としては、100,000が好ましく、80,000がより好ましく、65,000がさらに好ましく、60,000が特に好ましい。
【0036】
(吸収ピーク分子量(Mb)及び(Mc))
吸収ピーク分子量(Mb)及び(Mc)は、
図1に模式的に示すようにピークトップ分子量(Ma)の測定と同じ条件でGPCによりEVOH(A)を分離し、紫外可視吸光度検出器において測定される特定波長でのシグナル(
図1中の「UV」)の吸収ピークの最大値に相当する値である。この吸収ピーク分子量(Mb)及び(Mc)は、ポリメタクリル酸メチル換算の分子量である。なお、波長220nmにおける吸収ピークの分子量は、「Mb」として表記し、波長280nmにおける吸収ピークの分子量は「Mc」として表記する。
【0037】
吸収ピーク分子量(Mb)の下限としては、30,000が好ましく、35,000がより好ましく、40,000がさらに好ましく、50,000が特に好ましい。一方、吸収ピーク分子量(Mb)の上限としては、75,000が好ましく、60,000がより好ましく、55,000がさらに好ましい。
【0038】
吸収ピーク分子量(Mc)の下限としては、35,000が好ましく、40,000がより好ましく、45,000がさらに好ましく、48,000が特に好ましい。一方、吸収ピーク分子量(Mc)の上限としては、75,000が好ましく、55,000がより好ましく、50,000がさらに好ましい。
【0039】
(検量線の作成)
検量線は、例えば標品としてAgilent Technologies社の単分散のPMMA(ピークトップ分子量:1,944,000、790,000、467,400、271,400、144,000、79,250、35,300、13,300、7,100、1,960、1,020、690)を測定し、示差屈折率検出器及び吸光度検出器のそれぞれについて作成する。検量線の作成には、解析ソフトを用いることが好ましい。なお、本測定のPMMAの測定においては、例えば1,944,000と271,400との両分子量の標準試料同士のピークが分離できるカラムを用いる。
【0040】
(EVOH(A)の分子量相関)
EVOH(A)は、下記式(1)で表される条件を満たすものである。
【0041】
(Ma−Mb)/Ma<0.45 ・・・(1)
【0042】
式(1)の左辺(Ma−Mb)/Maとしては、0.40未満であることが好ましく、0.30未満がより好ましく、0.10未満がさらに好ましい。ここで、MaとMbとの差(Ma−Mb)が小さくなれば、
図1における示差屈折率検出器から得られるメインピーク(P
RI)と紫外可視吸光度検出器から得られる吸収ピーク(P
UV(220nm))とが近接していることを意味する。逆に、分子量差(Ma−Mb)の値が大きくなれば、これら両ピーク(P
RI、P
UV(220nm))が離れていること意味する。すなわち、両ピーク(P
RI、P
UV(220nm))の分子量差(Ma−Mb)の値が大きい場合には、比較的低分子量の成分に波長220nmの紫外線を吸収する成分が多いことを意味する。そのため、EVOH(A)が上記式(1)を満たさない場合、比較的低分子量の成分に波長220nmの紫外線を吸収する成分が多いことを意味する。そして、この場合、EVOH(A)を含有する樹脂組成物を用いた溶融成形時にEVOH(A)が熱劣化してフィルム端部の着色や蒸着欠点抑制性の低下が顕在化する傾向にある。その結果、形成されるフィルムの外観特性、耐フィルム破断性及び蒸着層の密着強度が低下する。
【0043】
上述の式(1)を満たすことによる効果は、以下の理由により生じると考えられる。すなわち、EVOHは、脱水等の熱劣化を生じることにより、波長220nmの紫外線を吸収する炭素−炭素二重結合やカルボニル基を分子内に生じ、これらの基によって樹脂組成物のゲル化を促進する。上述のゲル化の促進作用は、熱劣化したEVOHの分子量に依存し、熱劣化したEVOHの分子量が大きい場合には上記促進作用が弱く、分子量が小さくなるほど上記促進作用が強くなる。そのため、EVOHが上述の式(1)を満たす場合、つまり熱劣化しても比較的高分子量を維持できる場合、形成されるフィルムの外観特性、耐フィルム破断性及び蒸着層の密着強度を向上できると考えられる。
【0044】
EVOH(A)は、好ましくは下記式(2)の条件を満たすものである。
【0045】
(Ma−Mc)/Ma<0.45 ・・・(2)
【0046】
式(2)の左辺(Ma−Mc)/Maとしては、0.40未満がより好ましく、0.30未満がさらに好ましく、0.15未満が特に好ましい。ここで、式(2)の左辺(Ma−Mc)/Maの値が大きくなれば、示差屈折率検出器から得られるメインピーク(P
RI)と紫外可視吸光度検出器から得られる吸収ピーク(P
UV(280nm))とが離れており、比較的低分子量の成分に波長280nmの紫外線を吸収する成分が多くなる。この場合、EVOHが溶融成形時に熱劣化してフィルム端部の着色や蒸着欠点抑制性の低下が顕在化する傾向にある。その結果、得られるフィルムの外観特性、耐フィルム破断性及び蒸着層の密着強度が低下する。
【0047】
上述の式(2)を満たすことによる効果は、以下の理由により生じると考えられる。すなわち、EVOHは、上述の熱劣化によって炭素−炭素二重結合やカルボニル基が分子内に生じた後、熱劣化がさらに進行することにより、波長280nmの紫外線を吸収する共役二重結合が分子内に生じ、この共役二重結合によって樹脂組成物の黄変を促進する。上述の黄変の促進作用は、上述のゲル化の促進作用と同様に、熱劣化したEVOHの分子量に依存し、熱劣化したEVOHの分子量が大きい場合には上記促進作用が弱く、分子量が小さくなるほど上記促進作用が強くなる。そのため、EVOHが上述の式(2)を満たす場合、つまり熱劣化が進行しても比較的高分子量を維持できる場合、得られるフィルムの外観特性、耐フィルム破断性及び蒸着層の密着強度をより向上できると考えられる。
【0048】
(式(1)で表される条件を満たすEVOH(A)を調製する方法)
式(1)で表される条件を満たすEVOH(A)を調製する方法としては、従来のEVOHの調製において、
(A)原料であるエチレンとビニルエステルとの共重合体の調製において、ビニルエステルに含まれるラジカル重合禁止剤を予め除去する方法、
(B)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合に用いるビニルエステルに含まれる不純物を特定量とする方法、
(C)原料であるエチレンとビニルエステルとの共重合体の調製において、重合温度を特定範囲とする方法、
(D)原料であるエチレンとビニルエステルとの共重合体の調製において、重合工程、又は上記重合工程後に未反応のビニルエステルを回収再利用する工程において有機酸を添加する方法、
(E)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒の不純物を特定量とする方法、
(F)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒とビニルエステルとの質量比(溶媒/ビニルエステル)を高める方法、
(G)エチレンとビニルエステルモノマーとをラジカル重合する際に使用するラジカル重合開始剤として、アゾニトリル系開始剤又は有機過酸化物系開始剤を用いる方法、
(H)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合後にラジカル重合禁止剤を添加する場合の添加量を残存する未分解のラジカル重合開始剤に対して特定量とする方法、
(I)残存するビニルエステルが極力除去されたエチレンとビニルエステルとの共重合体のアルコール溶液をけん化反応に用いる方法、
(J)けん化に用いるエチレンとビニルエステルとの共重合体に酸化防止剤を添加する方法等
が挙げられ、(A)〜(J)を適宜組み合わせてもよい。また、(A)〜(J)により、式(2)で表される条件を満たすEVOH(A)を調製することもできる。(A)〜(J)の方法について以下で説明する。
【0049】
((A)原料であるエチレンとビニルエステルとの共重合体の調製において、ビニルエステルに含まれるラジカル重合禁止剤を予め除去する方法)
上記ラジカル重合禁止剤としては、後述する(H)でラジカル重合後に添加するラジカル重合禁止剤として例示するものと同様のもの等が挙げられる。また、ラジカル重合禁止剤を除去する方法としては、カラムクロマトグラフィーを用いる方法、再沈法、蒸留法等が挙げられ、通常蒸留法が採用される。蒸留法によりラジカル重合禁止剤を除去する場合、ビニルエステルの沸点はラジカル重合禁止剤の沸点よりも低いため、蒸留塔頂部から重合禁止剤が除去されたビニルエステルを得ることができる。
【0050】
((B)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合に用いるビニルエステルに含まれる不純物を特定量とする方法)
ラジカル重合に用いるビニルエステルに含まれる不純物の合計含有量の下限としては、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましい。また、上記不純物の合計含有量の上限としては、1,200ppmが好ましく、1,100ppmがより好ましく、1,000ppmがさらに好ましい。
【0051】
上記不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレイン等のアルデヒド;このアルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタール等のアセタール;アセトン等のケトン;酢酸メチル、酢酸エチル等のエステルなどが挙げられる。
【0052】
なお、上記不純物のうちアセトアルデヒドは、酢酸ビニルの製造等で生じ易く、かつEVOH(A)が式(1)を満たすことを妨げ易い。そのため、本方法においては、特にアセトアルデヒドの含有量を低減するとよい。
【0053】
((C)原料であるエチレンとビニルエステルとの共重合体の調製において、重合温度を特定範囲とする方法)
エチレンとビニルエステルとの共重合体の重合温度の下限としては、20℃が好ましく、40℃がより好ましい。一方、上記重合温度の上限としては、90℃が好ましく、70℃がより好ましい。
【0054】
((D)原料であるエチレンとビニルエステルとの共重合体の調製において、アルコール溶媒を用い、かつ重合工程、又は重合工程後に未反応のビニルエステルを回収再利用する工程において有機酸を添加する方法)
本方法は、重合系への有機酸の添加により、ビニルエステルのアルコールによる加アルコール分解や微量の水分による加水分解を抑制することで、アセトアルデヒド等のアルデヒドの生成を抑制できる。上記有機酸としては、グリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸等のヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸等の多価カルボン酸などが挙げられる。
【0055】
上記有機酸の添加量の下限としては、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましい。上記有機酸の添加量の上限としては、500ppmが好ましく、300ppmがより好ましく、100ppmがさらに好ましい。
【0056】
((E)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒の不純物を特定量とする方法)
重合に用いる溶媒の不純物の合計含有量の下限としては、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましい。上記不純物の合計含有量の上限としては、1,200ppmが好ましく、1,100ppmがより好ましく、1,000ppmがさらに好ましい。重合に用いる溶媒の不純物としては、例えば上述のビニルエステルに含まれる不純物として例示したもの等が挙げられる。
【0057】
((F)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒とビニルエステルとの質量比(溶媒/ビニルエステル)を高める方法)
上記重合に用いる溶媒とビニルエステルとの質量比(溶媒/ビニルエステル)の下限としては、0.03が好ましい。一方、上記質量比(溶媒/ビニルエステル)の上限としては、例えば0.4である。
【0058】
((G)エチレンとビニルエステルモノマーとをラジカル重合する際に使用するラジカル重合開始剤として、アゾニトリル系開始剤又は有機過酸化物系開始剤を用いる方法)
アゾニトリル系開始剤としては、例えば2,2−アゾビスイソブチロニトリル、2,2−アゾビス−(2,4−ジメチルバレロニトリル)、2,2−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2−アゾビス−(2−シクロプロピルプロピオニトリル)等が挙げられる。有機過酸化物としては、例えばアセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられる。
【0059】
((H)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合後にラジカル重合禁止剤を添加する場合の添加量を残存する未分解のラジカル重合開始剤に対して特定量とする方法)
ラジカル重合後にラジカル重合禁止剤を添加する場合の添加量としては、残存する未分解のラジカル重合開始剤に対して、5モル当量以下が好ましい。上記ラジカル重合禁止剤としては、例えば共役二重結合を有する分子量1,000以下の化合物であって、ラジカルを安定化させて重合反応を阻害する化合物等が挙げられる。具体的な上記ラジカル重合禁止剤としては、イソプレン、2,3−ジメチル−1,3−ブタジエン、2,3−ジエチル−1,3−ブタジエン、2−t−ブチル−1,3−ブタジエン、1,3−ペンタジエン、2,3−ジメチル−1,3−ペンタジエン、2,4−ジメチル−1,3−ペンタジエン、3,4−ジメチル−1,3−ペンタジエン、3−エチル−1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、4−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエン、2,5−ジメチル−2,4−ヘキサジエン、1,3−オクタジエン、1,3−シクロペンタジエン、1,3−シクロヘキサジエン、1−メトキシ−1,3−ブタジエン、2−メトキシ−1,3−ブタジエン、1−エトキシ−1,3−ブタジエン、2−エトキシ−1,3−ブタジエン、2−ニトロ−1,3−ブタジエン、クロロプレン、1−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、2−ブロモ−1,3−ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の2個の炭素−炭素二重結合の共役構造を含む共役ジエン;1,3,5−ヘキサトリエン、2,4,6−オクタトリエン−1−カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の3個の炭素−炭素二重結合を含む共役構造を含む共役トリエン;シクロオクタテトラエン、2,4,6,8−デカテトラエン−1−カルボン酸、レチノール、レチノイン酸等の4個以上の炭素−炭素二重結合の共役構造を含む共役ポリエンなどのポリエンが挙げられる。なお、1,3−ペンタジエン、ミルセン、ファルネセン等のように、複数の立体異性体を有するものについては、そのいずれを用いても良い。上記ラジカル重合禁止剤としては、p−ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2−フェニル−1−プロペン、2−フェニル−1−ブテン、2,4−ジフェニル−4−メチル−1−ペンテン、3,5−ジフェニル−5−メチル−2−ヘプテン、2,4,6−トリフェニル−4,6−ジメチル−1−ヘプテン、3,5,7−トリフェニル−5−エチル−7−メチル−2−ノネン、1,3−ジフェニル−1−ブテン、2,4−ジフェニル−4−メチル−2−ペンテン、3,5−ジフェニル−5−メチル−3−ヘプテン、1,3,5−トリフェニル−1−ヘキセン、2,4,6−トリフェニル−4,6−ジメチル−2−ヘプテン、3,5,7−トリフェニル−5−エチル−7−メチル−3−ノネン、1−フェニル−1,3−ブタジエン、1,4−ジフェニル−1,3−ブタジエン等の芳香族系化合物も挙げられる。
【0060】
((I)残存するビニルエステルが極力除去されたエチレンとビニルエステルとの共重合体のアルコール溶液をけん化反応に用いる方法)
残存モノマーの除去率の下限としては、99モル%が好ましく、99.5モル%がより好ましく、99.8モル%がさらに好ましい。残存モノマーを除去する方法としては、例えばカラムクロマトグラフィーを用いる方法、再沈法、蒸留法等が挙げられ、蒸留法が好ましい。蒸留法で残存モノマーを除去する場合、ラシヒリングを充填した蒸留塔の上部からエチレンとビニルエステルとの共重合体溶液を一定速度で連続的に供給し、蒸留塔下部よりメタノール等の有機溶媒蒸気を吹き込む。これにより、蒸留塔頂部より上記有機溶媒と未反応ビニルエステルとの混合蒸気を留出させることができ、蒸留塔底部より未反応のビニルエステルが除去されたエチレンとビニルエステルとの共重合体溶液を取り出すことができる。ここで、「残存モノマーの除去率」とは、エチレンとビニルエステルとの共重合体のアルコール溶液について除去処理前後のモノマー含有量を測定し、以下の式で算出される値である。
残存モノマーの除去率(モル%)={1−(除去後の残存モノマー含有量/除去前の残存モノマー含有量)}×100
【0061】
((J)けん化に用いるエチレンとビニルエステルとの共重合体に酸化防止剤を添加する方法)
上記酸化防止剤としては、特に限定されないが、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。上記酸化防止剤としては、これらの中でフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤がより好ましい。
【0062】
フェノール系酸化防止剤としては、例えば2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−t−アミル−6−(1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル)フェニルアクリレート等のアクリレート系化合物;2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、オクタデシル−3−(3,5−)ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(6−t−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、ビス(3−シクロヘキシル−2−ヒドロキシ−5−メチルフェニル)メタン、3,9−ビス(2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス(メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート)メタン、トリエチレングリコールビス(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、6−(4−ヒドロキシ−3,5−ジメチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、6−(4−ヒドロキシ−3−メチル−5−t−ブチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、2−オクチルチオ−4,6−ビス−(3,5−ジ−t−ブチル−4−オキシアニリノ)−1,3,5−トリアジン等のトリアジン基含有フェノール系化合物などが挙げられる。
【0063】
リン系酸化防止剤としては、例えばトリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2−t−ブチル−4−メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン等のモノホスファイト系化合物;4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)、4,4’−イソプロピリデン−ビス(フェニル−ジアルキル(炭素数12〜15)ホスファイト)、4,4’−イソプロピリデン−ビス(ジフェニルモノアルキル(炭素数12〜15)ホスファイト)、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−t−ブチルフェニル)ブタン、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンホスファイト等のジホスファイト系化合物などが挙げられる。リン系酸化防止剤としては、これらの中で、モノホスファイト系化合物が好ましい。
【0064】
硫黄系酸化防止剤としては、例えばジラウリル3,3’−チオジプロピオネート、ジステアリル3,3’−チオジプロピオネート、ラウリルステアリル3,3’−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等が挙げられる。
【0065】
エチレンとビニルエステルとの共重合体に酸化防止剤を添加する場合、酸化防止剤の含有量の下限としては、特に限定されないが、上記共重合体100質量部に対して、0.001質量部が好ましく、0.01質量部がより好ましい。一方、酸化防止剤の含有量の上限としては、特に限定されないが、上記共重合体100質量部に対して、5質量部が好ましく、1質量部がより好ましい。酸化防止剤の含有量が上記下限未満であると、式(1)を満たすEVOH(A)の調製が困難となるおそれがある。逆に、酸化防止剤の含有量が上記上限を超えると、含有量の増加によるコスト上昇等に見合う効果が得られないおそれがある。
【0066】
なお、上記(A)、(C)〜(J)の方法でEVOH(A)を調製する場合、ビニルエステル(酢酸ビニル)中に含まれるアセトアルデヒドの含有量は上記範囲でなくてもよい。この場合のアセトアルデヒドの含有量の下限としては、150ppmが好ましく、250ppmがより好ましく、350ppmがさらに好ましい。このように、アセトアルデヒドの含有量を上記範囲とすることで、酢酸ビニルからアセトアルデヒドを除去する工程を省略できるため、製造コストを低減できる。なお、この場合のアセトアルデヒドの含有量の上限としては、特に限定されないが、例えば1,000ppmである。
【0067】
(EVOH(A)の溶融粘度(メルトフローレート))
EVOH(A)のメルトフローレートの下限としては、0.5g/10minが好ましく、1.0g/10minがより好ましく、1.4g/10minがさらに好ましい。一方、EVOH(A)のメルトフローレートの上限としては、30g/10minが好ましく、25g/10minがより好ましく、20g/10minがさらに好ましく、15g/10minが特に好ましく、10g/10minがさらに特に好ましく、1.6g/10minが最も好ましい。EVOH(A)のメルトフローレートが上記下限未満である場合、又は上記上限を超える場合、成形性及び外観特性が悪化するおそれがある。
【0068】
なお、メルトフローレートは、JIS−K7210:1999に準拠し、温度190℃、荷重2,160gで測定した値である。
【0069】
[無機粒子(B)]
無機粒子(B)は、当該樹脂組成物から形成されるフィルムの表面の算術平均粗さ(Ra)を適度なものとし、耐ブロッキング性及び滑り性を向上させるものである。ここで、無機粒子(B)とは、無機物を主成分とする粒子をいう。
【0070】
無機粒子(B)を構成する金属元素としては、ケイ素、アルミニウム、マグネシウム、ジルコニウム、セリウム、タングステン及びモリブデンからなる群より選ばれる少なくとも1種が好ましい。上記金属元素としては、これらの中でも、入手が容易であることから、ケイ素、アルミニウム及びマグネシウムからなる群より選ばれる少なくとも1種がより好ましい。
【0071】
無機粒子(B)の主成分である無機物としては、例示した金属元素の酸化物、窒化物、酸化窒化物等が挙げられ、酸化物が好ましい。
【0072】
無機粒子(B)の平均粒子径の下限としては、0.5μmが好ましく、1.5μmがより好ましく、2.5μmがさらに好ましい。無機粒子(B)の平均粒子径の上限としては、10μmが好ましく、8μmがより好ましく、5μmがさらに好ましく、3μmが特に好ましい。無機粒子(B)の平均粒子径を上記範囲とすることで、当該樹脂組成物から形成されるフィルムの表面の算術平均粗さ(Ra)が適度なものとなり、耐ブロッキング性及び滑り性が向上する。その結果、当該樹脂組成物は、耐フィルム破断性、蒸着欠点抑制性及び蒸着層の密着強度を向上させることができると共に、フィルムの密着強度をより向上させることができる。ここで「無機粒子(C)の平均粒子径」とは、レーザー回折式粒度分布測定装置を用いて測定した回析/散乱光の光強度分布データから計算した粒子径分布(粒子径及び相対粒子量)を用い、粒子径及び相対粒子量を掛けた値の積算値を相対粒子量の合計で割った値をいう。
【0073】
無機粒子(B)の含有量の下限としては、50ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましい。無機粒子(B)の含有量の上限としては、5,000ppmが好ましく、4,000ppmがより好ましく、3,000ppmがさらに好ましく、1,000ppmが特に好ましく、200ppmがさらに特に好ましい。無機粒子(B)の含有量を上記範囲とすることで、当該樹脂組成物から形成されるフィルムの表面の算術平均粗さ(Ra)が適度なものとなり、耐ブロッキング性及び滑り性が向上する。その結果、当該樹脂組成物の耐フィルム破断性及び蒸着欠点抑制性をより向上でき、また、得られるフィルムの密着強度を向上させることができる。なお、無機粒子(B)は、1個の粒子が1種又は2種以上の無機物から形成されていてもよい。
【0074】
[アルカリ金属塩(C)]
アルカリ金属塩(C)を構成するアルカリ金属としては、単独の金属種であってもよく、複数の金属種からなるものであってもよい。上記アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられるが、工業的入手の点からはナトリウム及びカリウムがより好ましい。当該樹脂組成物がアルカリ金属塩(C)を含むことで、ロングラン性と多層構造体とした際の層間接着力とが向上する。
【0075】
アルカリ金属塩(C)を構成するアニオンとしては、例えば有機酸のアニオン等が挙げられる。上記有機酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、パルミチン酸、ステアリン酸、コハク酸、リノール酸、オレイン酸等の脂肪族カルボン酸;安息香酸、サリチル酸、フタル酸等の芳香族カルボン酸;乳酸、酒石酸、クエン酸、リンゴ酸等のヒドロキシカルボン酸;エチレンジアミン四酢酸などのカルボン酸やp−トルエンスルホン酸等のスルホン酸などが挙げられる。上記有機酸としては、これらの中でカルボン酸が好ましく、脂肪族カルボン酸がより好ましく、酢酸がさらに好ましい。
【0076】
アルカリ金属塩(C)としては、特に限定されないが、例えばリチウム、ナトリウム、カリウム等の脂肪族カルボン酸塩、芳香族カルボン酸塩、リン酸塩、金属錯体などが挙げられる。具体的なアルカリ金属塩(C)としては、例えば酢酸ナトリウム、酢酸カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素リチウム、リン酸三リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩等が挙げられる。アルカリ金属塩(C)としては、有機酸のアルカリ金属塩が好ましく、酢酸ナトリウム及び酢酸カリウムがより好ましい。
【0077】
当該樹脂組成物がアルカリ金属塩を含有する場合、アルカリ金属塩の含有量(乾燥樹脂組成物中の含有量)の下限としては、金属換算で、1ppmが好ましく、5ppmがより好ましく、10ppmがさらに好ましく、80ppmが特に好ましい。一方、アルカリ金属塩の含有量の上限としては、金属換算で、1,000ppmが好ましく、800ppmがより好ましく、550ppmがさらに好ましく、250ppmが特に好ましく、150ppmがさらに特に好ましい。アルカリ金属塩の含有量が上記下限より小さいと、層間接着性が低下するおそれがある。逆に、アルカリ金属塩の含有量が上記上限を超えると、当該樹脂組成物の着色の低減が困難となり、外観特性が悪化するおそれがある。
【0078】
[他の任意成分]
他の任意成分としては、例えば酸化防止剤、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、高級脂肪族カルボン酸の多価金属塩、ヒンダードフェノール系化合物やヒンダードアミン系化合物等の熱安定剤、ポリアミドやポリオレフィン等の他の樹脂、ハイドロタルサイト化合物などが挙げられる。当該樹脂組成物の他の任意成分の合計含有量としては、通常1質量%以下である。
【0079】
充填剤としては、例えばグラスファイバー、バラストナイト、ケイ酸カルシウム、タルク、モンモリロナイト等が挙げられる。
【0080】
高級脂肪族カルボン酸の多価金属塩としては、例えばステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。
【0081】
なお、ゲル化対策として、例えば上記熱安定剤として例示したヒンダードフェノール系化合物及びヒンダードアミン系化合物、上記高級脂肪族カルボン酸の多価金属塩、ハイドロタルサイト化合物等を当該樹脂組成物に添加してもよい。当該樹脂組成物にゲル化対策のための化合物を添加する場合、その添加量としては、通常0.01質量%以上1質量%以下である。
【0082】
[樹脂組成物の溶融粘度(メルトフローレート)]
当該樹脂組成物のメルトフローレートの下限としては、0.5g/10minが好ましく、1.0g/10minがより好ましく、1.4g/10minがさらに好ましい。一方、当該樹脂組成物のメルトフローレートの上限としては、30g/10minが好ましく、25g/10minがより好ましく、20g/10minがさらに好ましく、15g/10minが特に好ましく、10g/10minがさらに特に好ましく、1.6g/10minが最も好ましい。当該樹脂組成物のメルトフローレートが上記下限未満である場合、又は上記上限を超える場合、成形性及び外観性が悪化するおそれがある。
【0083】
<樹脂組成物の製造方法>
当該樹脂組成物の製造方法としては、例えばEVOH(A)及び無機粒子(B)と共に、必要に応じてアルカリ金属塩(C)や他の任意成分等を均一にブレンドできる方法であれば特に限定されない。
【0084】
無機粒子(B)等を当該樹脂組成物中に均一にブレンドさせる方法としては、
エチレン−ビニルアルコール共重合体を製造する方法における
(1)エチレンとビニルエステルとを共重合させる工程、及び
(2)工程(1)により得られた共重合体をケン化する工程において、例えば
上記工程(1)において無機粒子(B)等を添加する方法、
上記工程(2)において無機粒子(B)等を添加する方法、
上記工程(2)により得られたEVOHに無機粒子(B)等を添加する方法、
上記工程(2)により得られたEVOHを溶融成形する際に無機粒子(B)等を添加する方法、
これらの方法を併用する方法などが挙げられる。
【0085】
なお、上記工程(1)において無機粒子(B)等を添加する方法、又は上記工程(2)において無機粒子(B)等を添加する方法を採用する場合は、上記工程(1)における重合反応、上記工程(2)におけるケン化反応を阻害しない範囲でこれらを添加する必要がある。
【0086】
これらの方法の中でも、樹脂組成物中の無機粒子(B)等の含有量調節の容易性の観点から、工程(2)により得られたEVOHに無機粒子(B)等を添加する方法、及び工程(2)により得られたEVOHを溶融成形する際に無機粒子(B)等を添加する方法が好ましく、工程(2)により得られたEVOHに無機粒子(B)等を添加する方法がより好ましい。
【0087】
当該樹脂組成物に無機粒子(B)等を添加する方法としては、例えば無機粒子(B)等を予めEVOHに配合してペレットを造粒する方法、乾燥樹脂組成物のチップを再溶解したものに無機粒子(B)等を添加する方法、EVOH(A)、無機粒子(B)等をブレンドしたものを溶融混練する方法、押出機の途中からEVOH(A)の溶融物に無機粒子(B)等を添加する方法、EVOH(A)の一部に無機粒子(B)等を高濃度で配合して造粒したマスターバッチを作製し、このマスターバッチとEVOH(A)とをドライブレンドして溶融混練する方法などが挙げられる。
【0088】
これらのうち、EVOH(A)中に無機粒子(B)等をより均一に分散することができる観点から、無機粒子(B)等を予めEVOHに配合してペレットを造粒する方法が好ましい。具体的には、EVOH(A)を水/メタノール混合溶媒等の良溶媒に溶解させた溶液に、無機粒子(B)を添加し、その混合溶液をノズル等から貧溶媒中に押出して析出及び/又は凝固させ、それを洗浄及び/又は乾燥することにより、EVOH(A)に無機粒子(B)等が均一に混合されたペレットを得ることができる。
【0089】
当該樹脂組成物に無機粒子(B)等以外の他の成分を含有させる方法としては、例えば上記ペレットを各成分と共に混合して溶融混練する方法、上記ペレットを調製する際に、無機粒子(B)等と共に他の成分を混合する方法、上記ペレットを各成分が含まれる溶液に浸漬させる方法などが挙げられる。なお、ペレットと他の成分との混合には、リボンブレンダー、高速ミキサーコニーダー、ミキシングロール、押出機、インテンシブミキサー等を用いることができる。
【0090】
当該樹脂組成物は、溶融成形等により、フィルム、シート、容器、パイプ、繊維等の各種の成形体に成形される。ここで、フィルムとは、通常300μm程度未満の平均厚みを有するものをいい、シートとは、通常300μm程度以上の平均厚みを有するものをいう。溶融成形の方法としては、例えば押出成形、キャスト成形、インフレーション押出成形、ブロー成形、溶融紡糸、射出成形、射出ブロー成形等が挙げられる。溶融成形温度としては、EVOH(A)の融点等により異なるが、150℃以上270℃以下程度が好ましい。上記成形体は、上述の当該樹脂組成物から形成されるので、外観特性に優れる。これらの成形体は再使用の目的で粉砕し再度成形することも可能である。また、フィルム、シート、繊維等を一軸又は二軸延伸することも可能である。上記溶融成形等により得られた成形体は、必要に応じて、曲げ加工、真空成形、ブロー成形、プレス成形等の二次加工成形を行って、目的とする成形体にしてもよい。
【0091】
<フィルム>
当該フィルムは、当該樹脂組成物から形成される。当該フィルムは、当該樹脂組成物から形成されるので、外観特性及び耐フィルム破断性に優れる。当該フィルムとしては、単層フィルム及び多層フィルムが含まれる。
【0092】
JIS−B0601:2001に準拠して測定される当該フィルムの少なくとも一方の表面の算術平均粗さ(Ra)の下限としては、0.05μmが好ましく、0.10μmがより好ましく、0.15μmがさらに好ましく、0.20μmが特に好ましい。当該フィルムの少なくとも一方の表面の算術平均粗さ(Ra)の上限としては、1.0μmが好ましく、0.8μmがより好ましく、0.6μmがさらに好ましく、0.4μmが特に好ましい。当該フィルムの少なくとも一方の表面の算術平均粗さ(Ra)を上記範囲とすることで、耐フィルム破断性をより向上できる。
【0093】
JIS−B0601:2001に準拠して測定される当該フィルムの少なくとも一方の表面の輪郭曲線要素の平均長さ(RSm)の下限としては、50μmが好ましく、100μmがより好ましく、150μmがさらに好ましく、200μmが特に好ましい。当該フィルムの少なくとも一方の表面の輪郭曲線要素の平均長さ(RSm)の上限としては、1,000μmが好ましく、800μmがより好ましく、600μmがさらに好ましく、400μmが特に好ましい。当該フィルムの少なくとも一方の表面の輪郭曲線要素の平均長さ(RSm)を上記範囲とすることで、耐フィルム破断性をより向上できる。
【0094】
<フィルムの製造方法>
当該フィルムの製造方法としては、例えば当該樹脂組成物をキャスティングロール上に溶融押出するキャスト成形工程、このキャスト成形工程で当該樹脂組成物から得られる無延伸フィルムを延伸する工程(一軸延伸工程、逐次二軸工程、同時二軸延伸工程、インフレーション成形工程等)を有する方法などが挙げられる。当該フィルムを上述の工程を有する製造方法により製造することで、耐フィルム破断性をより向上させることができる。
【0095】
<多層構造体>
当該多層構造体は、複数の層を有し、上記複数の層のうちの少なくとも1層が当該フィルム(以下、「バリア層」ともいう)である。このような多層構造体としては、例えば多層シート、多層パイプ、多層ホース、多層繊維等が挙げられる。
【0096】
当該多層構造体の有する複数の層としては、例えば熱可塑性樹脂から形成される熱可塑性樹脂層、接着性樹脂から得られる層、金属蒸着層等が挙げられる。
【0097】
当該多層構造体を製造する方法としては、特に限定されないが、例えば当該フィルムに熱可塑性樹脂、接着性樹脂等を溶融押出する方法、当該樹脂組成物と他の熱可塑性樹脂とを共押出する方法、当該樹脂組成物と熱可塑性樹脂とを共射出する方法、当該樹脂組成物から得られる上記バリア層若しくは多層構造体と他の基材のフィルム、シート等とを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物等の公知の接着剤を用いてラミネートする方法などが挙げられる。
【0098】
また、当該多層構造体は、上記複数の層のうちの少なくとも1層が金属蒸着層であることも好ましい。また、当該多層構造体は、金属蒸着層側及び/又はその反対側の表面に、他の樹脂層が積層していてもよい。当該多層構造体が上記層金属蒸着層や他の樹脂層を備えることで、ガスバリア性及び防湿性を高めることができる。また、当該多層構造体は、上述の当該樹脂組成物から形成されるフィルムを用いているので、蒸着欠点が少なく、金属蒸着層とEVOHフィルム層との密着強度に優れる。
【0099】
当該多層構造体における他の成分からなる層に用いられる熱可塑性樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又はその共重合体、ポリエチレンテレフタレート等のポリエステル、ポリエステルエラストマー、ナイロン−6、ナイロン−66等のポリアミド、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ビニルエステル系樹脂、ポリウレタンエラストマー、ポリカーボネート、塩素化ポリエチレン、塩素化ポリプロピレンなどが挙げられる。上記熱可塑性樹脂としては、これらの中でも、ポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、ポリアミド、ポリスチレン及びポリエステルが好ましい。
【0100】
上記接着性樹脂としては、当該樹脂組成物及び熱可塑性樹脂との接着性を有していれば特に限定されないが、カルボン酸変性ポリオレフィンを含有する接着性樹脂が好ましい。カルボン酸変性ポリオレフィンとしては、オレフィン系重合体にエチレン性不飽和カルボン酸、そのエステル又はその無水物を化学的(例えば付加反応、グラフト反応等)に結合させて得られるカルボキシ基を含有する変性オレフィン系重合体を好適に用いることができる。ここでオレフィン系重合体には、ポリエチレン(低圧、中圧、高圧等)、直鎖状低密度ポリエチレン、ポリプロピレン、ボリブテンなどのポリオレフィンの他、オレフィンと他のモノマー(ビニルエステル、不飽和カルボン酸エステル等)との共重合体(例えばエチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチルエステル共重合体など)も含まれる。カルボン酸変性ポリオレフィンとしては、これらの中でも、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体(酢酸ビニルの含有量が5質量%以上55質量%以下)、及びエチレン−アクリル酸エチルエステル共重合体(アクリル酸エチルエステルの含有量が8質量%以上35質量%以下)が好ましく、直鎖状低密度ポリエチレン及びエチレン−酢酸ビニル共重合体がより好ましい。エチレン性不飽和カルボン酸、そのエステル及びその無水物としては、エチレン性不飽和モノカルボン酸及びそのエステル、エチレン性不飽和ジカルボン酸及びそのモノ又はジエステル、エチレン性不飽和モノカルボン酸無水物、エチレン性不飽和ジカルボン酸無水物等が挙げられ、これらの中でもエチレン性不飽和ジカルボン酸無水物が好ましい。具体的なエチレン性不飽和ジカルボン酸無水物としては、マレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水イタコン酸、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル等が挙げられ、特に無水マレイン酸が好ましい。
【0101】
エチレン性不飽和カルボン酸又はその無水物のオレフィン系重合体への付加量又はグラフト量(変性度)の下限としては、オレフィン系重合体に対し0.0001質量%が好ましく、0.001質量%がより好ましい。一方、上記変性度の上限としては、15質量%が好ましく、10質量%以下がより好ましい。エチレン性不飽和カルボン酸又はその無水物のオレフィン系重合体への付加反応又はグラフト反応は、例えば溶媒(キシレン等)、触媒(過酸化物等)の存在下でのラジカル重合法などにより行うことができる。
【0102】
このようにして得られたカルボン酸変性ポリオレフィンの210℃で測定したメルトフローレート(MFR)の下限としては、0.2g/10分が好ましく、0.5g/10分がより好ましい。一方、上記MFRの上限としては、30g/10分が好ましく、10g/10分がより好ましい。
【0103】
当該樹脂組成物と熱可塑性樹脂等との共押出の方法としては、特に限定されないが、例えばマルチマニホールド合流方式Tダイ法、フィードブロック合流方式Tダイ法、インフレーション法等が挙げられる。
【0104】
[金属蒸着層]
金属蒸着層は、当該多層構造体において主としてガスバリア性を確保するものである。
【0105】
金属蒸着層を形成する材料としては、例えばアルミニウム、珪素、マグネシウム、亜鉛、錫、ニッケル、チタン、これら1種又は2種以上の酸化物、炭化物、窒化物等が挙げられ、これらの中で、アルミニウムを単独又は併用することが好ましい。このようにアルミニウムを使用することで、軽く、柔軟性及び光沢性に富む蒸着フィルムを得ることができる。
【0106】
金属蒸着層の平均厚みの合計の下限としては、30nmが好ましく、35nmがより好ましく、40nmがさらに好ましい。金属蒸着層の平均厚みの合計の上限としては、150nmが好ましく、140nmがより好ましく、130nmがさらに好ましく、70nmが特に好ましい。金属蒸着層の平均厚みの合計が上記下限未満であると、ガスバリア性が不十分になるおそれがある。一方、金属蒸着層の平均厚みの合計が上記上限を超えると、ヒートブリッジが発生し易くなり、断熱効果が低下するおそれがある。
【0107】
ここで、金属蒸着層の平均厚みとは、電子顕微鏡により測定される金属蒸着層断面の任意の10点における厚みの平均値である。
【0108】
金属蒸着層におけるアルミニウム粒子等の蒸着粒子の平均粒子径の下限としては、特に限定はないが、10nmが好ましく、15nmがより好ましく、20nmがさらに好ましい。蒸着粒子の平均粒子径の上限としては、150nmが好ましく、125nmがより好ましく、100nmがさらに好ましく、75nmが特に好ましく、50nmが最も好ましい。
【0109】
ここで、蒸着粒子の平均粒子径は、金属蒸着層表面を走査型電子顕微鏡で観察し、同一方向に存在する複数の蒸着粒子の最大径(定方向最大径)の合算値を測定粒子個数で除した平均値を意味する。また、平均粒子径は、蒸着粒子が粒塊で形成している場合、粒塊を構成する蒸着粒子の粒子径(一次粒子径)を意味する。
【0110】
当該多層構造体の層構造としては、特に限定されないが、上記バリア層からなる層をE、金属蒸着層をM、接着性樹脂から得られる層をAd、熱可塑性樹脂から得られる層をTで表わす場合、T/E/T、E/Ad/T、T/Ad/E/Ad/T、M/T/Ad/E/Ad/T等の構造が挙げられる。当該多層構造体の層構造としては、これらの中で、金属蒸着層が最外層である層構造が好ましい。なお、上記層構造の各層は、単層であってもよいし、多層であってもよい。
【0111】
<包装材料>
当該包装材料は、当該多層構造体を備える。当該包装材料は、当該多層構造体を備えることで、ガスバリア性に優れ、変形や衝撃等の物理的ストレスを受けた際にもそのガスバリア性が維持される。
【0112】
当該包装材料は、少なくとも1層の当該フィルムと、少なくとも1層の他の層とを積層することによって形成される。他の層としては、例えばポリエステル層、ポリアミド層、ポリオレフィン層、紙層、無機蒸着フィルム層、EVOH層、接着層等が挙げられる。当該包装材料における層数及び積層順には特に制限はないが、ヒートシールが行われる場合には少なくとも最外層がヒートシール可能な層とされる。なお、ポリオレフィン層は、当該包装材料が後述のラミネートチューブ容器等として構成される場合には顔料を含有していてもよい。
【0113】
当該包装材料は、例えば食品、飲料物、農薬や医薬等の薬品、医療器材、機械部品、精密材料等の産業資材、衣料などを包装するために使用される。特に、当該包装材料は、酸素に対するバリア性が必要となる用途、及び包装材料の内部が各種の機能性ガスによって置換される用途に好ましく使用される。
【0114】
当該包装材料は、用途に応じて種々の形態、例えば縦製袋充填シール袋、真空包装袋、スパウト付パウチ、ラミネートチューブ容器、容器用蓋材等に形成される。
【実施例】
【0115】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0116】
[EVOHの合成]
[合成例1](EVOHペレットの合成)
(エチレン−酢酸ビニル共重合体の重合)
ジャケット、攪拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた250L加圧反応槽に、酢酸ビニルを83kg、メタノール(以下、MeOHと称する)を14.9kg仕込み、60℃に昇温した後、反応液に窒素ガスを30分間バブリングして反応槽内を窒素置換した。次いで反応槽圧力(エチレン圧力)が4.0MPaとなるようにエチレンを導入した。反応槽内の温度を60℃に調整した後、開始剤として12.3gの2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業株式会社の「V−65」)をメタノール溶液として添加し、重合を開始した。重合中はエチレン圧力を4.0MPaに、重合温度を60℃に維持した。5時間後、酢酸ビニルの重合率が40%となったところで冷却して重合を停止した。反応槽からエチレンを排気し、さらに反応液に窒素ガスをバブリングしてエチレンを完全に除去した。次いで減圧下で未反応の酢酸ビニルを除去した後、エチレン−酢酸ビニル共重合体(以下EVAcと称する)を得た。合成に使用する酢酸ビニルは、表1に示す含有量のアセトアルデヒドを添加したものを用いた。
【0117】
(ケン化)
得られたEVAc溶液にメタノールを加え、濃度15質量%のEVAcのメタノール溶液を得た。このEVAcのメタノール溶液253.4kg(溶液中のEVAcが38kg)に、水酸化ナトリウムを10質量%含むメタノール溶液76.6L(EVAc中の酢酸ビニルユニットに対してモル比0.4)を添加して60℃で4時間撹拌することにより、EVAcのケン化を行った。反応開始から6時間後、酢酸9.2kgと水60Lとを添加して上記反応液を中和し、反応を停止させた。
【0118】
(洗浄)
中和した上記反応液を反応器からドラム缶に移して16時間室温で放置し、ケーキ状に冷却固化させた。その後、遠心分離機(国産遠心器株式会社の「H−130」、回転数1200rpm)を用いて、上記ケーキ状の樹脂を脱液した。次に、遠心分離機の中央部に、上方よりイオン交換水を連続的に供給しながら洗浄し、上記樹脂を水洗する工程を10時間行った。洗浄開始から10時間後の洗浄液の伝導度は、30μS/cm(東亜電波工業株式会社の「CM−30ET」で測定)であった。
【0119】
(造粒)
このようにして得られた粉末状のEVOHを乾燥機を用いて60℃、48時間乾燥させた。乾燥した粉末状のEVOH20kgを水及びメタノール混合溶液(質量比:水/メタノール=4/6)43Lに投入し、80℃で12時間撹拌することで溶解させた。次に、撹拌を止めて溶解槽の温度を65℃に下げて5時間放置し、上述のEVOHの水及びメタノール溶液の脱泡を行った。そして、直径3.5mmの円形の開口部を有する金板から、5℃の水及びメタノール混合溶液(質量比:水/メタノール=9/1)中に押出してストランド状に析出させ、切断することで直径約4mm、長さ約5mmの含水EVOHペレットを得た。
【0120】
(精製)
得られた上記含水EVOHペレットを遠心分離機で脱液し、さらに大量の水を加え脱液する操作を繰り返し行って洗浄し、EVOHのペレットを得た。得られたEVOHのケン化度は99モル%であった。
【0121】
[合成例2〜4及び比較合成例1]
酢酸ビニルのアセトアルデヒド含有量、EVOH(A)のケン化度、及びアルカリ金属塩の含有量を表1に示すものとした以外は合成例1と同様にしてEVOHを合成した。
【0122】
得られた乾燥EVOHペレットを用い、以下に説明する方法にて、表1に示すEVOHのケン化度、エチレン含有量、アルカリ金属含有量等の測定を行った。
【0123】
[EVOHのエチレン含有量及びケン化度]
乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを呼び寸法1mmのふるい(標準フルイ規格JIS−Z8801準拠)でふるい分けした。このふるいを通過したEVOH粉末5gを100gのイオン交換水中に浸漬し、85℃で4時間撹拌した後、脱液して乾燥する操作を二回行った。得られた洗浄後の粉末EVOHを用いて、下記の測定条件で
1H−NMRの測定を行い、下記解析方法でエチレン含有量及びケン化度を求めた。
【0124】
(測定条件)
装置名 :超伝導核磁気共鳴装置(日本電子株式会社の「Lambda500」)
観測周波数 :500MHz
溶媒 :DMSO−d
6
ポリマー濃度 :4質量%
測定温度 :40℃及び95℃
積算回数 :600回
パルス遅延時間:3.836秒
サンプル回転速度:10Hz〜12Hz
パルス幅(90°パルス):6.75μsec
【0125】
(解析方法)
40℃での測定では、3.3ppm付近に水分子中の水素のピークが観測され、EVOHのビニルアルコール単位のメチン水素のピークのうちの、3.1ppm〜3.7ppmの部分と重なった。一方、95℃での測定では、上記40℃で生じた重なりは解消するものの、4ppm〜4.5ppm付近に存在するEVOHのビニルアルコール単位の水酸基の水素のピークが、EVOHのビニルアルコール単位のメチン水素のピークのうちの、3.7ppm〜4ppmの部分と重なった。すなわち、EVOHのビニルアルコール単位のメチン水素(3.1ppm〜4ppm)の定量については、水又は水酸基の水素のピークとの重複を避けるために、3.1ppm〜3.7ppmの部分については、95℃の測定データを採用し、3.7ppm〜4ppmの部分については40℃の測定データを採用し、これらの合計値として当該メチン水素の全量を定量した。なお、水又は水酸基の水素のピークは測定温度を上昇させることで高磁場側にシフトすることが知られている。従って、以下のように40℃及び95℃の両方の測定結果を用いて解析した。上記の40℃で測定したスペクトルより、3.7ppm〜4ppmのケミカルシフトのピークの積分値(I
1)及び0.6ppm〜1.8ppmのケミカルシフトのピークの積分値(I
2)を求めた。
【0126】
一方、95℃で測定したスペクトルより、3.1ppm〜3.7ppmのケミカルシフトのピークの積分値(I
3)、0.6ppm〜1.8ppmのケミカルシフトのピークの積分値(I
4)及び1.9ppm〜2.1ppmのケミカルシフトのピークの積分値(I
5)を求めた。ここで、0.6ppm〜1.8ppmのケミカルシフトのピークは、主にメチレン水素に由来するものであり、1.9ppm〜2.1ppmのケミカルシフトのピークは、未ケン化の酢酸ビニル単位中のメチル水素に由来するものである。これらの積分値から下記式(3)によりエチレン含有量を計算し、下記式(4)によりケン化度を計算した。
【0127】
【数1】
【0128】
【数2】
【0129】
[アルカリ金属含有量]
アルカリ金属含有量の測定は、分光分析装置を用いて定量した。具体的には、乾燥EVOHペレット0.5gをアクタック社のテフロン(登録商標)製耐圧容器に添加し、硝酸(和光純薬工業社の精密分析用)5mLを添加した。30分放置後、ラプチャーディスク付きキャップリップにて容器に蓋をし、マイクロウェーブ高速分解システム(アクタック社の「スピードウェーブ MWS−2」)にて150℃、10分、次いで180℃、10分の処理を行って乾燥EVOHペレットを分解させた。なお、上述の処理では乾燥EVOHペレットの分解が完了できていない場合、処理条件を適宜調節した。得られた分解物を10mLのイオン交換水で希釈し、全液を50mLのメスフラスコに移しとり、イオン交換水で定容することで分解溶液を得た。ICP発光分光分析装置(パーキンエルマージャパン社の「Optima 4300 DV」)を用い、上記分解溶液をNaの波長589.592nmで定量分析することで、アルカリ金属含有量を測定した。
【0130】
[溶融粘度(メルトフローレート)]
溶融粘度(メルトフローレート)は、JIS−K7210:1999に準拠し、温度190℃、荷重2,160gで測定した。
【0131】
[EVOHの分子量の測定]
(測定サンプルの準備)
測定サンプルは、窒素雰囲気下、EVOHを220℃で50時間加熱することで作製した。
【0132】
(GPC測定)
GPC測定は、VISCOTECH社の「GPCmax」を用いて行った。分子量は、示差屈折率検出器及び紫外可視吸光度検出器で検出されるシグナル強度に基づいて算出した。示差屈折率検出器及び紫外可視吸光度検出器としては、VISCOTECH社の「TDA305」及び「UV Detector2600」を用いた。この吸光度検出器の検出用セルとしては、光路長が10mmのものを用いた。GPCカラムとしては、昭和電工株式会社の「GPC HFIP−806M」を用いた。また、解析ソフトとしては、装置付属の「OmniSEC(Version 4.7.0.406)」を用いた。
【0133】
(測定条件)
測定サンプルを採取し、トリフルオロ酢酸ナトリウム20mmol/Lを含有するヘキサフルオロイソプロパノール(以下、「HFIP」ともいう)に溶解し、0.100wt/vol%溶液を調製した。測定には、0.45μmのポリテトラフルオロエチレン製フィルターでろ過した溶液を用いた。測定サンプルの溶解は、室温にて一晩静置することで行った。
【0134】
移動相には、20mmol/Lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0mL/分とした。試料注入量は100μLとし、GPCカラム温度40℃にて測定した。
【0135】
(検量線の作成)
標品として、Agilent Technologies社のポリメタクリル酸メチル(以下「PMMA」と略記する)(ピークトップ分子量:1,944,000、790,000、467,400、271,400、144,000、79,250、35,300、13,300、7,100、1,960、1,020又は690)を測定し、示差屈折率検出器及び吸光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、上記解析ソフトを用いた。なお、本測定においてはPMMAの測定において、1,944,000及び271,400の両分子量の標準試料同士のピークが分離できるカラムを用いた。
【0136】
なお、示差屈折率検出器から得られるピーク強度は、「mV」で表され、標準サンプルとしてAmerican Polymer Standard Corp.社のPMMAサンプル(PMMA85K:重量平均分子量85,450、数平均分子量74,300、固有粘度0.309)を1.000mg/mL濃度として用いた場合のピーク強度は358.31mVであった。
【0137】
また、紫外可視吸光度検出器から得られるピーク強度は吸光度(アブソーバンスユニット)で表され、紫外可視吸光度検出器の吸光度は解析ソフトにおいて、1アブソーバンスユニット=1,000mVに変換した。
【0138】
(無機粒子(B)の定量)
各無機粒子(B)の含有量は、上述のアルカリ金属含有量の測定法と同様の方法により金属元素を定量し、酸化物換算値として算出した。すなわち、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化セリウム、酸化タングステン、及び/又は酸化モリブデンとして算出した。複数の金属を含む場合は、複数の金属酸化物量として算出した。リン酸化合物の量は、リン元素を定量しリン酸根換算値として算出した。ホウ素化合物の含有量は、ホウ素元素換算値として算出した。
【0139】
各金属元素の測定に用いた波長を以下に示す。
Na :589.592nm
K :766.490nm
Mg :285.213nm
Ca :317.933nm
P :214.914nm
B :249.667nm
Si :251.611nm
Al :396.153nm
Zr :343.823nm
Ce :413.764nm
W :207.912nm
Mo :202.031nm
【0140】
[無機粒子(B)の作製]
ケイ素原子を含む無機粒子(B)として、富士シリシア化学株式会社の「サイリシア380」(平均粒子径9.0μm)又は「サイリシア310P」(平均粒子径2.7μm)を粉砕及びふるいによる分級を行い、所望のサイズに調整した。
【0141】
(無機粒子(B)の平均粒子径の測定)
無機粒子(B)の平均粒子径は、株式会社島津製作所の「レーザー回折式粒度分布測定装置(SALD−2200)」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する無機粒子(B)を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。次に、分散処理を行った無機粒子(B)を含む液を装置のサンプラ部に添加し吸光度が安定になった時点で測定を行い、粒子の回折/散乱光の光強度分布データから粒子径分布(粒子径及び相対粒子量)を計算した。平均粒子径は、測定された粒子径と相対粒子量とを掛けた値の積算値を相対粒子量の合計で割って求めた。なお、平均粒子径は粒子の平均直径である。
【0142】
<樹脂組成物の調製>
表1の通りに無機粒子(B)を添加し、実施例1〜4及び比較例1のEVOH樹脂組成物の乾燥ペレットを得た。
【0143】
【表1】
【0144】
<樹脂組成物の評価>
後述する方法でフィルム及び多層構造体を製造し、このフィルム及び多層構造体を用いて実施例1〜4及び比較例1のEVOH樹脂組成物の評価を行った。
【0145】
[フィルムの製造]
上記得られた乾燥EVOHペレットを用いて、240℃にて溶融し、ダイからキャスティングロール上に押出すと同時にエアーナイフを用いて空気を風速30m/秒で吹き付け、平均厚み170μmのEVOH未延伸フィルムを得た。このEVOH未延伸フィルムを80℃の温水に10秒接触させ、テンター式同時二軸延伸機を用い、90℃雰囲気下で縦方向に3.2倍、横方向に3.0倍延伸し、さらに170℃に設定したテンター内にて5秒間熱処理を行い、フィルム端部をカットすることにより、以下の二軸延伸フィルムを得た。
フィルム平均厚み :12μm
フィルム平均幅 :50cm
フィルム平均巻長さ:4,000m
本数 :100
【0146】
(フィルム端部の色の測定)
上記得られた二軸延伸フィルムを紙管に巻き取り、フィルム端部の色を肉眼で以下のように判定した。
(判定基準)
A:着色なし
B:うすい黄色
C:着色
【0147】
(フィルム表面の算術平均高さ(Ra)及び輪郭曲線要素の平均長さ(RSm)の測定)
上記得られた二軸延伸フィルムの表面について、株式会社キーエンス「形状測定レーザマイクロスコープ VK−X200」を用い、JIS−B0610:2001に準拠し、算術平均粗さ(Ra)と輪郭曲線要素の平均長さ(RSm)の測定を行った。測定はn=100で行い、その平均値を各測定値とした。Ra及びRSmのそれぞれについて以下のように判定した。
【0148】
(判定基準)
算術平均粗さ(Ra)
A:0.20μm以上0.40μm以下
B:0.15μm以上0.20μm未満又は0.40μmを超え0.60μm以下
C:0.10μm以上0.15μm未満又は0.60μmを超え0.80μm以下
【0149】
輪郭曲線要素の平均長さ(RSm)
A:200μm以上400μm以下
B:150μm以上200μm未満又は400μmを超え600μm以下
C:100μm以上150μm未満又は600μmを超え800μm以下
【0150】
[耐フィルム破断性の評価]
上記得られた二軸延伸フィルムをスリッターにかけ、フィルムロールに100N/mの張力をかけて巻きとったときの破断回数を評価し、以下のように判定した。
【0151】
(判定基準)
A:0〜1回/100本
B:2〜4回/100本
C:5〜7回/100本
【0152】
[多層構造体の製造]
上記得られた100本の二軸延伸フィルムを用い、日本真空技術株式会社のバッチ式蒸着設備EWA−105を使用して、フィルム走行速度200m/分で、フィルム片側にアルミニウムを蒸着させ、多層構造体(蒸着フィルム)を得た。
【0153】
(金属蒸着層の厚みの測定)
上記得られた多層構造体をミクロトームでカットし、断面を露出させた。この断面を走査型電子顕微鏡(SEM)を用いて観察し、金属蒸着層の厚みを測定した。SEM観察はエス・アイ・アイナノテクノロジー社の「ZEISS ULTRA 55」を使用し、反射電子検出器を用いて行った。得られた多層構造体の蒸着欠点抑制性の評価を以下のように行った。
【0154】
(蒸着欠点数の測定(1))
上記得られた多層構造体の1本目のロールをスリッターにかけて、フィルム下部から100Wの蛍光灯を当てながら巻きだし、幅0.5m長さ2mに渡ってn=10で蒸着欠点数を数え、その平均値を1m
2あたりの蒸着欠点数とし、以下のように判定した。
A:0〜20個/m
2
B:21〜40個/m
2
C:41〜60個/m
2
【0155】
(蒸着欠点数の測定(2)(経時的な蒸着欠点数))
上記得られた多層構造体の100本目のロールをスリッターにかけて、フィルム下部から100Wの蛍光灯を当てながら巻きだし、幅0.5m長さ2mに渡ってn=10で蒸着欠点数を数え、その平均値を1m
2あたりの蒸着欠点数とし、以下のように判定した。
A:0〜20個/m
2
B:21〜40個/m
2
C:41〜60個/m
2
【0156】
(蒸着欠点数の経時的な増加度合いの評価)
EVOH樹脂組成物の溶融成形のロングラン性を示すものとして、蒸着欠点数の経時的な増加度合いについて評価を行い、以下のように判定した。
【0157】
(判定基準)
A:多層構造体1本目と100本目での蒸着欠点のランク差がなかったもの
B:多層構造体1本目と100本目での蒸着欠点のランク差が1つあったもの
C:多層構造体1本目と100本目での蒸着欠点のランク差が2つあったもの
【0158】
EVOH樹脂組成物から形成された多層構造体及びフィルムにおける蒸着層と他の樹脂層との密着強度の評価として、以下の測定を行った。
【0159】
(蒸着層とEVOHフィルム層との密着強度の測定)
上記得られた多層構造体の金属蒸着層側の表面に、ドライラミネート用接着剤(三井化学株式会社の「タケラックA−385/A−50(6/1の質量比で混合し、固形分濃度23質量%の酢酸エチル溶液としたもの)」をバーコーターを用いてコートし、50℃で5分間熱風乾燥させた後、80℃に加熱したニップロールにて、PETフィルム(東洋紡株式会社の「E5000」:平均厚み12μm)とラミネートを行った。このとき、フィルムの半分は、間にアルミホイルを挟むことで貼りあわされない部分も用意した。その後、40℃で72時間養生し、ラミネートフィルムを得た。得られたラミネートフィルムをアルミ蒸着の境目を中心として100mm×15mmの短冊に裁断し、引っ張り試験機により引っ張り速度10mm/分にてT型剥離試験を5回行った。得られた測定値の平均値を密着強度とした。密着強度は、以下のように判定した。
【0160】
(判定基準)
A:500g/15mm以上
B:450以上500g/15mm未満
C:400以上450g/15mm未満
【0161】
[二軸延伸によるフィルムの製造]
実施例4の樹脂組成物を製膜し、同時二軸延伸機を用いた方法に従い、フィルムを製造し、各物性の評価を行ったところ、JIS−B0601:2001に準拠し測定されたフィルム表面の算術平均粗さ(Ra)は0.28μm、輪郭曲線要素の平均長さ(RSm)は298μmでありともにA判定であった。また、ロールとして巻き取った後のロール端面に黄色の着色が見られず、A判定であった。さらに、フィルム加工時における破断回数は1回であり、A判定であった。製造した多層構造体(アルミ蒸着層を有する多層構造体)におけるアルミ蒸着層の平均厚みは50nmであった。その多層構造体1本目の蒸着欠点は9個/m
2、多層構造体100本目の蒸着欠点は12個/m
2であり、ともにA判定であった。このことから、経時的な蒸着欠点の増加はA判定であった。上記多層構造体のアルミ蒸着層とEVOHフィルム層との密着強度は、530g/15mmであり、A判定であった。
【0162】
[キャスト法によるフィルムの製造]
得られたEVOH樹脂組成物について、240℃にて溶融し、ダイからキャスティングロール上に押出し、フィルム端部をカット後、巻き取ることによりフィルムロールを得た。外観特性に優れたフィルムロールを得ることができた。
【0163】
[包装材料(パウチ)の製造]
上記得られた多層構造体(アルミ蒸着層を有する多層構造体)EVOHフィルムを中間層、PETフィルム(東洋紡株式会社の「E5000」)を外層(多層構造体(アルミ蒸着層を有する多層構造体)のアルミ蒸着層側)、無延伸ポリプロピレンフィルム(以下、CPPと略称する;東セロ株式会社の「RXC−18」、平均厚み60μm)を内層(多層構造体(アルミ蒸着層を有する多層構造体)のEVOH層側)として、PETの片面及びCPPの片面にドライラミネート用接着剤(三井化学株式会社の「タケラックA−385/A−50(6/1の質量比で混合し、固形分濃度23質量%の酢酸エチル溶液としたもの)」をバーコーターを用いてコートし、50℃で5分間熱風乾燥させた後、接着剤面で多層構造体EVOHフィルムを挟み込むようにしてPETフィルムとCPPフィルムを貼合わせ、40℃で5日間エージングを行って、PET/接着剤層/EVOH層/接着剤層/CPPの層構成を有する多層構造体を得た。次に、得られた多層構造体をヒートシールしてパウチに成形し、水100gを充填した。
【0164】
各EVOH樹脂組成物を用いて製造したフィルム及び多層構造体についての評価結果を表2に示す。
【0165】
【表2】
【0166】
表2の結果から明らかなように、実施例のEVOH樹脂組成物を用いて製造したフィルムは、外観特性及び耐フィルム破断性に優れる。また、多層構造体のうちフィルムに金属を蒸着して得られる多層構造体は、蒸着欠点が少なく、金属蒸着層とEVOHフィルム層との密着強度に優れる。一方、EVOH(A)が式(1)の規定範囲外であるものは、これらの特性に劣る。