(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、本発明のチョコレート及び改良チョコレートについて順を追って記述する。
<チョコレート>
本発明において「チョコレート」とは、「チョコレート類の表示に関する公正競争規約(S46.3.29公正取引委員会告示第16号、変更 H2.6.22同告示第18号)」(全国チョコレート業公正取引協議会)乃至法規上の規定により限定されるものに限らず、カカオマス、ココアパウダー、食用油脂(ココアバター、植物油脂など)、糖類(砂糖、乳糖、麦芽糖、果糖など)を主原料とし、必要に応じて、乳製品、香料、乳化剤等を加え、チョコレートの製造工程(混合工程、微粒化工程、精錬工程、冷却工程など)を経て製造されるものであれば特に限定されない。本発明の「チョコレート」としては、ダークチョコレート、ブラックチョコレート、ミルクチョコレートの他に、カカオマスを使用しない、ホワイトチョコレート、カラーチョコレート等が挙げられる。本発明において特に好ましくは、ハードバターを用いたチョコレートである。
また、本発明において「改良チョコレート」とは、上記で定義したチョコレートに対して、下記で定義する「粉末油脂組成物」ないし「油脂組成物」を含有させたものであり、前記「粉末油脂組成物」ないし「油脂組成物」を含有させていないチョコレートに比べて、固化速度が改善するとともに、型抜け速度が向上し、耐熱性が上昇したチョコレートをいう。
【0013】
<ハードバター>
本発明における「ハードバター」は、チョコレートの油脂として使用されるカカオ代用脂の総称である。「ハードバター」は、一般に、テンパリング型とノンテンパリング型に分類される。テンパリング型ハードバターは、カカオ脂に多く含まれる対称型トリグリセリドを主成分としている。例えば、2位にオレイン酸、1、3位に炭素数16以上の飽和脂肪酸が結合したSOS型トリグリセリド(以下、SOSとも記載する)を含有する。そのため、テンパリング型ハードバターは、カカオ脂との相溶性が高い。また、テンパリング型ハードバターは、カカオ脂と同様にテンパリングを行う必要がある。
一方、ノンテンパリング型ハードバターは、カカオ脂と融解性状は似ているが、油脂構造は全く異なるものである。そのため、ノンテンパリング型ハードバターは、カカオ脂との相溶性は低い。しかしながら、テンパリングが不要で作業性が良いため、チョコレート領域で広く使用されている。また、ノンテンパリング型ハードバターは、ラウリン酸型と非ラウリン酸型に大きく分けられる。ラウリン酸型ハードバターは、ラウリン酸を主な構成脂肪酸としており、典型的にはパーム核油を分別して得られる高融点部(パーム核ステアリン)を水素添加して極度硬化したものが含まれている。この種のハードバターは速やかに融解する特徴があるが、カカオ脂との相溶性が極端に悪いため、カカオ脂の配合率を極力少なくしなければならず、カカオ風味に乏しいものとなる。また、非ラウリン酸型ハードバターは、トランス酸型ハードバターとも言われているが、典型的には低融点パームオレイン又は大豆油等の液体油を異性化水素添加したものや、異性化水素添加したものを分別した高融点部又は中融点部が含まれている。この種のハードバターの融解性状はラウリン酸型と比較してやや速やかに溶解する特徴が欠けるものの、カカオ脂との相溶性はラウリン酸型よりは良く、カカオ脂をラウリン酸型よりも比較的多く配合することができる。しかしながら、多量のトランス脂肪酸を含有するため、トランス脂肪酸の健康への悪影響が認識されるようになって以来、使用が敬遠されている。このような背景から、非ラウリン酸型ハードバターには、トランス脂肪酸の低減が求められている。
さらに、本発明において「改良ハードバター」とは、上記で定義した「ハードバター」に対して、下記で定義する「粉末油脂組成物」ないし「油脂組成物」を含有させたものであり、前記「粉末油脂組成物」ないし「油脂組成物」を含有させていないハードバターに比べて、前記改良ハードバターを使用した場合に、固化速度が改善し、型抜け速度が向上し、耐熱性が上昇したチョコレートが製造できるものをいう。
【0014】
<固化速度>
本発明における「固化速度」は、油脂の固体脂含量(SFC)に関する曲線から求めることができる。例えば、20℃で冷却した際の15分後における固体脂含量(SFC)が多いものほど、固化速度が速い油脂であると測定される。なお、油脂のSFCは、周知のSFC測定装置を用いて測定することができる。例えば、SFC測定装置(製品名:Minispec MQ−20、Bruker Optics社製)が挙げられる。測定方法としては、例えば、45℃で温められた溶融状態にある油脂をSFC測定装置に入れて20℃で冷却しながら、5分おきにSFCを測定する方法などが挙げられる。
【0015】
<型抜け速度>
本発明における「型抜け速度」は、チョコレートが型から抜け始めてから、離型率が90%になるまでの冷却時間から求めることができる。すなわち、まず融解したチョコレート生地を成形型(例えば、167mm×84mm×11mmで、167mm×84mmの上面が解放された透明なポリカーボネート製の型)に流し込み、冷却開始から一定時間ごとに成形型から抜けていくチョコレートの数を目視で数える(例えば、透明なポリカーボネート製の型を用いると、チョコレートが剥離すると浮き上がって見える)。より短い冷却時間でチョコレートが抜け始め、より短い冷却時間で離形率が90%になることを、本発明では、「型抜け速度」が速いという。「型抜け速度」の終点が、離型率90%である理由は、全てのチョコレートが型から抜けることは難しく、離型率100%を基準とすると、測定にばらつきが生じやすいためである。また、離形率はチョコレートの離形性及び生産性の目安となる。上記167mm×84mm×11mmの透明なポリカーボネート製の型を使用して測定した離型率が90%以上になる時間が20分以下である場合、チョコレートの離型性(型抜け)は良好であり、生産性が良いと判断した。なお、離型率は次の式で求めることができる。
離型率(%)= 剥離した升目の数 / 升目の総数 × 100
【0016】
<耐熱性>
本発明における「耐熱性」は、油脂の固体脂含量(SFC)に関する曲線から評価することができる。チョコレートが溶け切る直前の温度、例えば、SFCが10%となるときの温度が高いものほど、耐熱性が上昇したものであると評価される。なお、油脂のSFCは、周知のSFC測定装置を用いて測定することができる。例えば、SFC測定装置(製品名:Minispec MQ−20、Bruker Optics社製)が挙げられる。測定方法としては、例えば、10℃で固められた油脂をSFC測定装置に入れて温度を上げながら、20℃、25℃におけるSFCを測定し、次いで、2.5℃温度が上がるたびにSFCを測定する方法などが挙げられる。
【0017】
<粉末油脂組成物>
本発明は、以下の(a)の条件を満たす粉末状の油脂組成物を含有する、チョコレート用粉末油脂組成物に関する。
(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子は板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm
3である。
チョコレート用粉末油脂組成物中の上記(a)の条件を満たす粉末状の油脂組成物の含有量は、チョコレート用粉末油脂組成物の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。チョコレート用粉末油脂組成物の100質量%が、上記(a)の条件を満たす粉末状の油脂組成物であってよい。当該粉末状の油脂組成物は1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。
【0018】
<油脂成分>
本発明の粉末油脂組成物は、油脂成分を含有する。当該油脂成分は、少なくともXXX型トリグリセリドを含み、任意にその他のトリグリセリドを含む。
上記油脂成分はβ型油脂を含む。ここで、β型油脂とは、油脂の結晶多形の一つであるβ型の結晶のみからなる油脂である。その他の結晶多形の油脂としては、β’型油脂及びα型油脂があり、β’型油脂とは、油脂の結晶多形の一つであるβ’型の結晶のみからなる油脂である。α型油脂とは、油脂の結晶多形の一つであるα型の結晶のみからなる油脂である。油脂の結晶には、同一組成でありながら、異なる副格子構造(結晶構造)を持つものがあり、結晶多形と呼ばれている。代表的には、六方晶型、斜方晶垂直型及び三斜晶平行型があり、それぞれα型、β’型及びβ型と呼ばれている。また、各多形の融点はα、β’、βの順に融点が高くなり、各多形の融点は、炭素数xの脂肪酸残基Xの種類により異なるので、以下、表1にそれぞれ、トリカプリン、トリラウリン、トリミリスチン、トリパルミチン、トリステアリン、トリアラキジン、トリベヘニンである場合の各多形の融点(℃)を示す。なお、表1は、Nissim Garti et al.、”Crystallization and Polymorphism of Fats and Fatty Acids”、Marcel Dekker Inc.、1988、pp.32-33に基づいて作成した。そして、表1の作成にあたり、融点の温度(℃)は小数点第1位を四捨五入した。また、油脂の組成とその各多形の融点がわかれば、少なくとも当該油脂中にβ型油脂が存在するか否かを検出することができる。
【0020】
これらの多形を同定する一般的な手法は、X線回折法があり、回折条件は下記のブラッグの式によって与えられる。
2dsinθ=nλ(n=1,2,3・・・)
この式を満たす位置に回折ピークが現れる。ここでdは格子定数、θは回折(入射)角、λはX線の波長、nは自然数である。短面間隔に対応する回折ピークの2θ=16〜27°からは、結晶中の側面のパッキング(副格子)に関する情報が得られ、多形の同定を行なうことができる。特にトリアシルグリセロールの場合、2θ=19、23、24°(4.6Å付近、3.9Å付近、3.8Å付近)にβ型の特徴的ピークが、21°(4.2Å)付近にα型の特徴的なピークが出現する。なお、X線回折測定は、例えば、20℃に維持したX線回折装置((株)リガク、試料水平型X線回折装置UItimaIV)を用いて測定される。X線の光源としてはCuKα線(1.54Å)が最もよく利用される。
【0021】
さらに、上記油脂の結晶多形は、示差走査熱量測定法(DSC法)によっても予測することができる。例えば、β型油脂の予測は、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社製、品番BSC6220)によって10℃/分の昇温速度で100℃まで昇温することにより得られるDSC曲線に基づいて油脂の結晶構造を予測することにより行われる。
【0022】
ここで、油脂成分はβ型油脂を含むもの、又は、β型油脂を主成分(50質量%超)として含むものあればよく、好ましい態様としては、上記油脂成分がβ型油脂から実質的になるものであり、より好ましい態様は上記油脂成分がβ型油脂からなるものであり、特に好ましい態様は、上記油脂成分がβ型油脂のみからなるものである。上記油脂成分のすべてがβ型油脂である場合とは、示差走査熱量測定法によってα型油脂及び/又はβ’型油脂が検出されない場合である。別の好ましい態様としては、上記油脂成分(又は油脂成分を含む粉末油脂組成物)が、X線回折測定において、4.5〜4.7Å付近、好ましくは4.6Å付近に回析ピークを有し、表1のα型油脂及び/又はβ’型油脂の短面間隔のX線回折ピークがない、特に、4.2Å付近に回折ピークを有さない場合であり、かかる場合も上記油脂成分のすべてがβ型油脂であると判断できる。本発明の更なる態様として、上記油脂成分が全てβ型油脂であることが好ましいが、その他のα型油脂やβ’型油脂が含まれていてもよい。ここで、本発明における油脂成分が「β型油脂を含む」こと及びα型油脂+β型油脂に対するβ型油脂の相対的な量の指標は、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比率:[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](以下、ピーク強度比ともいう。)から想定できる。具体的には、上述のX線回折測定に関する知見をもとに、β型の特徴的ピークである2θ=19°(4.6Å)のピーク強度とα型の特徴的ピークである2θ=21°(4.2Å)のピーク強度の比率:19°/(19°+21°)[4.6Å/(4.6Å+4.2Å)]を算出することで上記油脂成分のβ型油脂の存在量を表す指標とし、「β型油脂を含む」ことが理解できる。本発明は、上記油脂成分が全てβ型油脂である(即ち、ピーク強度比=1)ことが好ましいが、例えば、該ピーク強度比の下限値が、例えば0.4以上、好ましくは、0.5以上、より好ましくは、0.6以上、さらに好ましくは、0.7以上、特に好ましくは、0.75以上、殊更好ましくは0.8以上であることが適当である。ピーク強度が0.4以上であれば、β型油脂を主成分が50質量%超であるとみなすことができる。該ピーク強度比の上限値は1であることが好ましいが、0.99以下、0.98以下、0.95以下、0.93以下、0.90以下、0.85以下、0.80以下等であってもかまわない。ピーク強度比は、上記下限値及び上限値のいずれか若しくは任意の組み合わせであり得る。
【0023】
<XXX型トリグリセリド>
本発明の油脂成分は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む。当該XXX型トリグリセリドは、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有するトリグリセリドであり、各脂肪酸残基Xは互いに同一である。ここで、当該炭素数xは10〜22から選択される整数であり、好ましくは12〜22から選択される整数、より好ましくは14〜20から選択される整数、更に好ましくは16〜18から選択される整数である。
脂肪酸残基Xは、飽和あるいは不飽和の脂肪酸残基であってもよい。具体的な脂肪酸残基Xとしては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸等の残基が挙げられるがこれに限定するものではない。脂肪酸としてより好ましくは、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸及びベヘン酸であり、さらに好ましくは、ミリスチン酸、パルミチン酸、ステアリン酸、及びアラキジン酸であり、殊更好ましくは、パルミチン酸及びステアリン酸である。
当該XXX型トリグリセリドの含有量は、油脂成分の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。XXX型トリグリセリドは1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。XXX型トリグリセリドが2種類以上の場合は、その合計値がXXX型トリグリセリドの含有量となる。
【0024】
<その他のトリグリセリド>
本発明の油脂成分は、本発明の効果を損なわない限り、上記XXX型トリグリセリド以外の、その他のトリグリセリドを含んでいてもよい。その他のトリグリセリドは、複数の種類のトリグリセリドであってもよく、合成油脂であっても天然油脂であってもよい。合成油脂としては、トリカプリル酸グリセリル、トリカプリン酸グリセリル等が挙げられる。天然油脂としては、例えば、ココアバター、ヒマワリ油、菜種油、大豆油、綿実油等が挙げられる。本発明の油脂成分中の全トリグリセリドを100質量%とした場合、その他のトリグリセリドは、1質量%以上、例えば、5〜50質量%程度含まれていても問題はない。その他のトリグリセリドの含有量は、例えば、0〜30質量%、好ましくは0〜18質量%、より好ましくは0〜15質量%、更に好ましくは0〜8質量%である。
【0025】
<その他の成分>
本発明の粉末油脂組成物は、上記トリグリセリド等の油脂成分の他、任意に乳化剤、香料、脱脂粉乳、全脂粉乳、ココアパウダー、砂糖、デキストリン等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、粉末油脂組成物の全質量を100質量%とした場合、0〜70質量%、好ましくは0〜65質量%、より好ましくは0〜30質量%である。その他の成分は、その90質量%以上が、平均粒径が1000μm以下である紛体であることが好ましく、平均粒径が500μm以下の紛体であることがより好ましい。なお、ここでいう平均粒径は、レーザー回折散乱法(ISO133201及びISO9276-1)によって測定した値である。
但し、本発明の好ましい粉末油脂組成物は、実質的に上記油脂成分のみからなることが好ましく、かつ、油脂成分は、実質的にトリグリセリドのみからなることが好ましい。また、「実質的に」とは、油脂組成物中に含まれる油脂成分以外の成分または油脂成分中に含まれるトリグリセリド以外の成分が、粉末油脂組成物または油脂成分を100質量%とした場合、例えば、0〜15質量%、好ましくは0〜10質量%、より好ましくは0〜5質量%であることを意味する。
【0026】
<粉末油脂組成物の製造>
本発明の粉末油脂組成物は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂組成物原料を溶融状態とし、特定の冷却温度に保ち、冷却固化することにより、噴霧やミル等の粉砕機による機械粉砕等特別の加工手段を採らなくても、粉末状の油脂組成物(粉末油脂組成物)を得ることができる。より具体的には、(a)上記XXX型トリグリセリドを含む油脂組成物原料を準備し、任意に工程(b)として、工程(a)で得られた油脂組成物原料を加熱し、前記油脂組成物原料中に含まれるトリグリセリドを溶解して溶融状態の前記油脂組成物原料を得、さらに(d)前記油脂組成物原料を冷却固化して、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を得る。なお、冷却後に得られる固形物に対して、ハンマーミル、カッターミル等、公知の粉砕加工手段を適用して、該粉末油脂組成物を生産することもできる。
【0027】
上記工程(d)の冷却は、例えば、溶融状態の油脂組成物原料を、当該油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度であって、かつ、次式:
冷却温度(℃) = 炭素数x × 6.6 ― 68
から求められる冷却温度以上の温度で行われる。このような温度範囲で冷却すれば、β型油脂を効率よく生成でき、細かい結晶ができるので、粉末油脂組成物を容易に得ることができる。なお、前記「細かい」とは、一次粒子(一番小さい大きさの結晶)が、例えば20μm以下、好ましくは、15μm以下、より好ましくは10μmの場合をいう。また、このような温度範囲で冷却しないと、β型油脂が生成せず、油脂組成物原料よりも体積が増加した空隙を有する固形物ができない場合がある。さらに、本発明では、このような温度範囲で冷却することによって、静置した状態でβ型油脂を生成させ、粉末油脂組成物の粒子を板状形状とさせたものであり、冷却方法は、本発明の粉末油脂組成物を特定するために有益なものである。本発明のチョコレート用粉末油脂組成物の好ましい平均粒径として、例えば、20μm以下の平均粒径を挙げることができる。平均粒径の測定方法は上述したとおりである。さらに、20μm以下の細かい粒子は人間の感覚では感じとることが困難であるため、20μm以下の粒子を用いることで、ざらついた食感を与えることなく、融点の高い粉末油脂組成物をチョコレートに添加することができる。さらに、20μm以下の粒子を用いることで、融点の高い粉末油脂組成物をチョコレートに添加しても、ファットブルーム現象(チョコレート中に含まれるカカオ脂が温度の上昇により製品表面に溶け出し、白い結晶となって浮き出てくる現象のことをいう。以下、単に「ブルーム」という。)の発生に影響を与えない。これらのことは、本発明の粉末油脂組成物をチョコレートに用いる大きな利点である。
【0028】
<粉末油脂組成物の特性>
本発明の粉末油脂組成物は、常温(20℃)で粉末状の固体である。
本発明の粉末油脂組成物のゆるめ嵩密度は、例えば実質的に油脂成分のみからなる場合、0.05〜0.6g/cm
3、好ましくは0.1〜0.5g/cm
3であり、より好ましくは0.1〜0.4g/cm
3又は0.15〜0.4g/cm
3であり、さらに好ましくは0.2〜0.3g/cm
3である。ここで「ゆるめ嵩密度」とは、粉体を自然落下させた状態の充填密度である。ゆるめ嵩密度(g/cm
3)の測定は、例えば、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物の適量を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、mL当たりの当該粉末油脂組成物の質量(g)を算出することで求めることができる。また、ゆるめ嵩密度は、(株)蔵持科学器械製作所のカサ比重測定器を使用し、JIS K-6720(又はISO 1060-1及び2)に基づいて測定したカサ比重から算出することもできる。具体的には、試料120mLを、受器(内径40mm×高さ85mmの100mL円柱形容器)の上部開口部から38mmの高さの位置から、該受器に落とす。受器から盛り上がった試料はすり落とし、受器の内容積(100mL)分の試料の質量(Ag)を秤量し、以下の式からゆるめ嵩密度を求めることができる。
ゆるめ嵩密度(g/mL)=A(g)/100(mL)
測定は3回行ってその平均値を取ることが好ましい。
【0029】
また、本発明の粉末油脂組成物は、通常、その粒子が板状形状の形態を有し、例えば、5〜200μm、好ましくは10〜150μm、より好ましくは20〜120μm、殊更好ましくは、25〜100μmの平均粒径(有効径)を有する。ここで、当該平均粒径(有効径)は、粒度分布測定装置(例えば、日機装株式会社製 Microtrac MT3300ExII)でレーザー回折散乱法(ISO133201、ISO9276-1)に基づいて求めることができる。有効径とは、測定対象となる結晶の実測回折パターンが、球形と仮定して得られる理論的回折パターンに適合する場合の、当該球形の粒径を意味する。このように、レーザー回折散乱法の場合、球形と仮定して得られる理論的回折パターンと、実測回折パターンを適合させて有効径を算出しているので、測定対象が板状形状であっても球状形状であっても同じ原理で測定することができる。ここで、板状形状は、アスペクト比が1.1以上であることが好ましく、より好ましくは、1.2以上のアスペクト比であり、さらに好ましくは1.2〜3.0、特に好ましくは、1.3〜2.5、殊更好ましくは1.4〜2.0のアスペクト比である。なお、ここでいうアスペクト比とは、粒子図形に対して、面積が最小となるように外接する長方形で囲み、その長方形の長辺の長さと短辺の長さの比と定義される。また、粒子が球状形状の場合は、アスペクト比は1.1より小さくなる。従来技術である、極度硬化油等の常温で固体脂含量の高い油脂を溶解し直接噴霧する方法では、粉末油脂組成物の粒子が表面張力によって、球状形状となり、アスペクト比は1.1未満となる。そして、前記アスペクト比は、例えば、光学顕微鏡や走査型電子顕微鏡などによる直接観察により、任意に選択した粒子について、その長軸方向の長さおよび短軸方向の長さを計測することによって、計測した個数の平均値として求めることができる。
【0030】
<粉末油脂組成物の製造方法>
本発明の粉末油脂組成物は、以下の工程、
(a)XXX型トリグリセリドを含む油脂組成物原料を準備する工程、
(b)工程(a)で得られた油脂組成物原料を任意に加熱等し、前記油脂組成物原料中に含まれるトリグリセリドを溶解して溶融状態の前記油脂組成物原料を得る任意の工程、(d)前記油脂組成物原料を冷却固化して、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を得る工程、
を含む方法によって製造することができる。
また、上記工程(b)と(d)の間に、工程(c)として粉末生成を促進するための任意工程、例えば(c1)シーディング工程、(c2)テンパリング工程、及び/又は(c3)予備冷却工程を含んでいてもよい。さらに上記工程(d)で得られる粉末油脂組成物は、工程(d)の冷却後に得られる固形物を粉砕して粉末状の油脂組成物を得る工程(e)によって得られるものであってもよい。以下、上記工程(a)〜(e)について説明する。
【0031】
(a)原料準備工程
工程(a)で準備されるXXX型トリグリセリドを含む油脂組成物原料は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む通常のXXX型トリグリセリド等の油脂の製造方法に基づいて製造され、もしくは容易に市場から入手され得る。ここで、上記炭素数x及び脂肪酸残基Xで特定されるXXX型トリグリセリドは、最終的に得られる目的の油脂成分のものと結晶多形以外の点で同じである。当該原料にはβ型油脂が含まれていてもよく、例えば、β型油脂の含有量が0.1質量%以下、0.05質量%以下、又は0.01質量%以下含んでいてもよい。但し、β型油脂は、当該原料を加熱等により溶融状態にすることにより消失するので、当該原料は溶融状態の原料であってもよい。当該原料が、例えば溶融状態である場合に、β型油脂を実質的に含まないことは、XXX型トリグリセリドに限らず、実質的に全ての油脂成分がβ型油脂ではない場合も意味し、β型油脂の存在は、上述したX線回折測定によりβ型油脂に起因する回折ピーク、示差走査熱量測定法によるβ型油脂の確認等によって確認することができる。「β型油脂を実質的に含まない」場合のβ型油脂の存在量は、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比率[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](ピーク強度比)から想定できる。上記油脂組成物原料の当該ピーク強度比は、例えば0.2以下であり、好ましくは、0.15以下であり、より好ましくは、0.10以下である。油脂組成物原料には、上述したとおりのXXX型トリグリセリドを1種類又は2種以上含んでいてもよく、好ましくは1種類又は2種類であり、より好ましくは1種類である。
具体的には、例えば、上記XXX型トリグリセリドは、脂肪酸または脂肪酸誘導体とグリセリンを用いた直接合成によって製造することができる。XXX型トリグリセリドを直接合成する方法としては、(i)炭素数Xの脂肪酸とグリセリンとを直接エステル化する方法(直接エステル合成)、(ii)炭素数xである脂肪酸Xのカルボキシル基がアルコキシル基と結合した脂肪酸アルキル(例えば、脂肪酸メチル及び脂肪酸エチル)とグリセリンとを塩基性または酸性触媒条件下にて反応させる方法(脂肪酸アルキルを用いたエステル交換合成)、(iii)炭素数xである脂肪酸Xのカルボキシル基の水酸基がハロゲンに置換された脂肪酸ハロゲン化物(例えば、脂肪酸クロリド及び脂肪酸ブロミド)とグリセリンとを塩基性触媒下にて反応させる方法(酸ハライド合成)が挙げられる。
XXX型トリグリセリドは前述の(i)〜(iii)のいずれの方法によっても製造できるが、製造の容易さの観点から、(i)直接エステル合成又は(ii)脂肪酸アルキルを用いたエステル交換合成が好ましく、(i)直接エステル合成がより好ましい。
【0032】
XXX型トリグリセリドを(i)直接エステル合成によって製造するには、製造効率の観点から、グリセリン1モルに対して脂肪酸Xまたは脂肪酸Yを3〜5モルを用いることが好ましく、3〜4モルを用いることがより好ましい。
XXX型トリグリセリドの(i)直接エステル合成における反応温度は、エステル化反応によって生ずる生成水が系外に除去できる温度であればよく、例えば、120℃〜300℃が好ましく、150℃〜270℃がより好ましく、180℃〜250℃がさらに好ましい。反応を180〜250℃で行うことで、特に効率的にXXX型トリグリセリドを製造することができる。
【0033】
XXX型トリグリセリドの(i)直接エステル合成においては、エステル化反応を促進する触媒を用いても良い。触媒としては酸触媒、及びアルカリ土類金属のアルコキシド等が挙げられる。触媒の使用量は、反応原料の総質量に対して0.001〜1質量%程度であることが好ましい。
XXX型トリグリセリドの(i)直接エステル合成においては、反応後、水洗、アルカリ脱酸及び/又は減圧脱酸、及び吸着処理等の公知の精製処理を行うことで、触媒や原料未反応物を除去することができる。更に、脱色・脱臭処理を施すことで、得られた反応物をさらに精製することができる。
【0034】
上記油脂組成物原料中に含まれるXXX型トリグリセリドの量は、例えば、当該原料中に含まれる全トリグリセリドの全質量を100質量%とした場合、100〜50質量%、好ましくは95〜55質量%、より好ましくは90〜60質量%である。さらに殊更好ましくは85〜65質量%である。
【0035】
<その他のトリグリセリド>
XXX型トリグリセリドを含む油脂組成物原料となるその他のトリグリセリドとしては、上記XXX型トリグリセリドの他、本発明の効果を損なわない限り、各種トリグリセリドを含めてもよい。その他のトリグリセリドとしては、例えば、上記XXX型トリグリセリドの脂肪酸残基Xの1つが脂肪酸残基Yに置換したX2Y型トリグリセリド、上記XXX型トリグリセリドの脂肪酸残基Xの2つが脂肪酸残基Yに置換したXY2型トリグリセリド等を挙げることができる。
上記その他のトリグリセリドの量は、例えば、XXX型トリグリセリドの全質量を100質量%とした場合、0〜100質量%、好ましくは0〜70質量%、より好ましくは1〜40質量%である。
【0036】
また、本発明の油脂組成物原料としては、上記XXX型トリグリセリドを直接合成する代わりに、天然由来のトリグリセリド組成物に対し水素添加、エステル交換又は分別を行ったものを使用してもよい。天然由来のトリグリセリド組成物としては、例えば、ナタネ油、大豆油、ヒマワリ油、ハイオレイックヒマワリ油、サフラワー油、パームステアリン及びこれらの混合物等を挙げることができる。特に、これらの天然由来のトリグリセリド組成物の硬化油、部分硬化油、極度硬化油が好ましいものとして挙げられる。さらに好ましくは、ハードパームステアリン、ハイオレイックヒマワリ油極度硬化油、菜種極度硬化油、大豆極度硬化油が挙げられる。
【0037】
さらに、本発明の油脂組成物原料としては、市販されている、トリグリセリド組成物又は合成油脂を挙げることができる。例えば、トリグリセリド組成物としては、ハードパームステアリン(日清オイリオグループ株式会社製)、菜種極度硬化油(横関油脂工業株式会社製)、大豆極度硬化油(横関油脂工業株式会社製)を挙げることができる。また、合成油脂としては、トリパルミチン(東京化成工業株式会社製)、トリステアリン(シグマアルドリッチ製)、トリステアリン(東京化成工業株式会社製)、トリアラキジン(東京化成工業株式会社製)トリベヘニン(東京化成工業株式会社製)を挙げることができる。
その他、パーム極度硬化油は、XXX型トリグリセリドの含量が少ないので、トリグリセリドの希釈成分として使用できる。
【0038】
<その他の成分>
上記油脂組成物原料としては、上記トリグリセリドの他、任意に部分グリセリド、脂肪酸、抗酸化剤、乳化剤、水などの溶媒等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、XXX型トリグリセリドの全質量を100質量%とした場合、0〜5質量%、好ましくは0〜2質量%、より好ましくは0〜1質量%である。
【0039】
上記油脂組成物原料は、成分が複数含まれる場合、任意に混合してもよい。混合は、均質な反応基質が得られる限り公知のいかなる混合方法を用いてもよいが、例えば、パドルミキサー、アジホモミキサー、ディスパーミキサー等で行うことができる。
当該混合は、必要に応じて加熱下で混合してもよい。加熱は、後述の工程(b)における加熱温度と同程度であることが好ましく、例えば、50〜120℃、好ましくは60〜100℃、より好ましくは70〜90℃、さらに好ましくは80℃で行われる。
【0040】
(b)溶融状態の前記油脂組成物を得る工程
上記(d)工程の前に、上記工程(a)で準備された油脂組成物原料は、準備された時点で溶融状態にある場合、加熱せずにそのまま冷却されるが、準備された時点で溶融状態にない場合は、任意に加熱され、該油脂組成物原料中に含まれるトリグリセリドを融解して溶融状態の油脂組成物原料を得る。
ここで、油脂組成物原料の加熱は、上記油脂組成物原料中に含まれるトリグリセリドの融点以上の温度、特にXXX型トリグリセリドを融解できる温度、例えば、70〜200℃、好ましくは、75〜150℃、より好ましくは80〜100℃であることが適当である。また、加熱は、例えば、0.1〜3時間、好ましくは、0.3〜2時間、より好ましくは0.5〜1時間継続することが適当である。
【0041】
(d)溶融状態の油脂組成物を冷却して粉末油脂組成物を得る工程
上記工程(a)又は(b)で準備された溶融状態の油脂組成物原料は、さらに冷却固化されて、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を形成する。
ここで、「溶融状態の油脂組成物原料を冷却固化」するためには、冷却温度の上限値として、溶融状態の油脂組成物原料を、当該油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度に保つことが必要である。「油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度」とは、例えば、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、β型油脂の融点は74℃であるので(表1)、当該融点より1〜30℃低い温度(即ち44〜73℃)、好ましくは当該融点より1〜20℃低い温度(即ち54〜73℃)、より好ましくは当該融点より1〜15℃低い温度(即ち59〜73℃)、特に好ましくは、1℃、2℃、3℃、4℃、5℃、6℃、7℃、8℃、9℃または10℃低い温度である。
より好ましくは、β型油脂を得るためには、冷却温度の下限値として、以下の式から求められる冷却温度以上に保つことが適当である。
冷却温度(℃) = 炭素数x × 6.6 ― 68
(式中、炭素数xは、油脂組成物原料中に含まれるXXX型トリグリセリドの炭素数x)
このような冷却温度以上とするのは、XXX型トリグリセリドを含有するβ型油脂を得るために、当該油脂の結晶化の際、冷却温度をβ型油脂以外のα型油脂やβ’型油脂が結晶化しない温度に設定する必要があるためである。冷却温度は、主にXXX型トリグリセリドの分子の大きさに依存するので、炭素数xと最適な冷却温度の下限値との間には一定の相関関係があることが理解できる。
例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドである場合、冷却温度の下限値は50.8℃以上となる。従って、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、「溶融状態の油脂組成物原料を冷却固化」する温度は、50.8℃以上72℃以下がより好ましいこととなる。
また、XXX型トリグリセリドが2種以上の混合物である場合は、炭素数xが小さい方の冷却温度に合わせてその下限値を決定することができる。例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が16のパルミチン酸残基を3つ有するXXX型トリグリセリドと炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドとの混合物である場合、冷却温度の下限値は小さい方の炭素数16に合わせて37.6℃以上となる。
【0042】
別の態様として、上記冷却温度の下限値は、XXX型トリグリセリドを含む油脂組成物原料の、当該β型油脂に対応するα型油脂の融点以上の温度であることが適当である。例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドである場合、当該ステアリン酸残基を3つ有するXXX型トリグリセリドのα型油脂の融点は55℃であるから(表1)、かかる場合の「溶融状態の油脂組成物原料を冷却固化」する温度は、55℃以上72℃以下が好ましいこととなる。
【0043】
さらに別の態様として、溶融状態にある油脂組成物原料の冷却は、例えばxが10〜12のときは最終温度が、好ましくは−2〜46℃、より好ましくは12〜44℃、更に好ましくは14〜42℃の温度になるように冷却することによって行われる。冷却における最終温度は、例えばxが13又は14のときは、好ましくは24〜56℃、より好ましくは32〜54℃、更に好ましくは40〜52℃であり、xが15又は16のときは、好ましくは36〜66℃、より好ましくは44〜64℃、更に好ましくは52〜62℃であり、xが17又は18のときは、好ましくは50〜72℃、より好ましくは54〜70℃、更に好ましくは58〜68℃であり、xが19又は20のときは、好ましくは62〜80℃、より好ましくは66〜78℃、更に好ましくは70〜77℃であり、xが21又は22のときは、好ましくは66〜84℃、より好ましくは70〜82℃、更に好ましくは74〜80℃である。上記最終温度において、例えば、好ましくは2時間以上、より好ましくは4時間以上、更に好ましくは6時間以上であって、好ましくは2日間以下、より好ましくは24時間以下、更に好ましくは12時間以下、静置することが適当である。
【0044】
(c)粉末生成促進工程
さらに、工程(d)の前、上記工程(a)又は(b)と(d)との間に、(c)粉末生成を促進するための任意工程として、工程(d)で使用する溶融状態の油脂組成物原料に対し、シーディング法(c1)、テンパリング法(c2)及び/又は(c3)予備冷却法による処理を行ってもよい。これらの任意工程(c1)〜(c3)は、いずれか単独で行ってもよいし、複数の工程を組み合わせて行ってもよい。ここで、工程(a)又は(b)と工程(d)との間とは、工程(a)又は(b)中、工程(a)又は(b)の後であって工程(d)の前、工程(d)中を含む意味である。
シーディング法(c1)及びテンパリング法(c2)は、本発明の粉末油脂組成物の製造において、溶融状態にある油脂組成物原料をより確実に粉末状とするために、最終温度まで冷却する前に、溶融状態にある油脂組成物原料を処置する粉末生成促進方法である。 ここで、シーディング法(c1)とは、粉末の核(種)となる成分を溶融状態にある油脂組成物原料の冷却時に少量添加して、粉末化を促進する方法である。具体的には、例えば、工程(b)で得られた溶融状態にある油脂組成物原料に、当該油脂組成物原料中のXXX型トリグリセリドと炭素数が同じXXX型トリグリセリドを好ましくは80質量%以上、より好ましくは90質量%以上含む油脂粉末を核(種)となる成分として準備する。この核となる油脂粉末を、溶融状態にある油脂組成物原料の冷却時、当該油脂組成物原料の温度が、例えば、最終冷却温度±0〜+10℃、好ましくは+5〜+10℃の温度に到達した時点で、当該溶融状態にある油脂組成物原料100質量部に対して0.1〜1質量部、好ましくは0.2〜0.8質量部添加することにより、油脂組成物の粉末化を促進する方法である。
また、テンパリング法(c2)とは、溶融状態にある油脂組成物原料の冷却において、最終冷却温度で静置する前に一度、工程(d)の冷却温度よりも低い温度、例えば5〜20℃低い温度、好ましくは7〜15℃低い温度、より好ましくは10℃程度低い温度に、好ましくは10〜120分間、より好ましくは30〜90分間程度冷却することにより、油脂組成物の粉末化を促進する方法である。
さらに、予備冷却法(c3)とは、前記工程(a)又は(b)で得られた溶融状態の油脂組成物原料を、工程(d)にて冷却する前に、前記XXX型トリグリセリドを含む油脂組成物原料を準備した時の温度と前記油脂組成物原料の冷却時の冷却温度との間の温度で一旦冷却する方法、言い換えれば、工程(a)又は(b)の溶融状態の温度よりも低く、工程(d)の冷却温度よりも高い温度で一旦予備冷却する方法である。(c3)予備冷却法に続いて、工程(d)の油脂組成物原料の冷却時の冷却温度で冷却することが行われる。工程(d)の冷却温度より高い温度とは、例えば、工程(d)の冷却温度よりも2〜40℃高い温度、好ましくは3〜30℃高い温度、より好ましくは4〜30℃高い温度、さらに好ましくは5〜10℃程度高い温度であり得る。前記予備冷却する温度を低く設定すればするほど、工程(d)の冷却温度における本冷却時間を短くすることができる。すなわち、予備冷却法とは、シーディング法やテンパリング法と異なり、冷却温度を段階的に下げるだけで油脂組成物の粉末化を促進できる方法であり、工業的に製造する場合に利点が大きい。
【0045】
(e)固形物を粉砕して粉末油脂組成物を得る工程
上記工程(d)の冷却によって粉末油脂組成物を得る工程は、より具体的には、工程(d)の冷却によって得られる固形物を粉砕して粉末油脂組成物を得る工程(e)によって行われてもよい。
詳細に説明すると、まず、上記油脂組成物原料を融解して溶融状態の油脂組成物を得、その後冷却して溶融状態の油脂組成物原料よりも体積が増加した空隙を有する固形物を形成する。空隙を有する固形物となった油脂組成物は、軽い衝撃を加えることで粉砕でき、固形物が容易に崩壊して粉末状となる。
ここで、軽い衝撃を加える手段は特に特定されないが、振る、篩に掛ける等により、軽く振動(衝撃)を与えて粉砕する(ほぐす)方法が、簡便で好ましい。
なお、該固形物を公知の粉砕加工手段により粉砕してもよい。このような粉砕加工手段の一例としては、ハンマーミル、カッターミル等が挙げられる。
【0046】
<改良ハードバター又は改良チョコレート中の粉末油脂組成物の含有量>
本発明のチョコレート用粉末油脂組成物は、「油分」を基準として含有される。最終製品が改良ハードバターである場合、ハードバター(全てが油分に相当)を基準にしてハードバター中に含有され、本発明の改良ハードバターを得ることができる。すなわち、ハードバター100質量%に対して、1〜10質量%で含有される。より好ましくは、1〜8質量%であり、さらに好ましくは、1〜5質量%である。また、最終製品が改良チョコレートである場合、チョコレート中の油分を基準にしてチョコレート中に含有され、本発明の改良チョコレートを得ることができる。すなわち、チョコレート中の油分100質量%に対して、1〜10質量%で含有される。より好ましくは、1〜8質量%であり、さらに好ましくは、1〜5質量%である。
改良ハードバター又は改良チョコレート中の油分に対して、本発明のチョコレート用粉末油脂組成物を少なくとも1質量%以上含有させれば、本発明の所望の効果が得られる。また、改良ハードバター又は改良チョコレート中の油分100質量%に対して、10質量%以下の粉末油脂組成物を含有させると、物性や食感等への悪影響が出ないので好ましい。なお、上記チョコレート用粉末油脂組成物はチョコレートの製造過程で熱により溶融することもあり得るので、上記チョコレート用粉末油脂組成物に代えて、溶融状態の上記チョコレート用油脂組成物を加えることも可能である。当該チョコレート用油脂組成物の含有量は上記粉末油脂組成物で定義したのと同様である。
【0047】
ここで、本発明の改良チョコレート中に含まれる油分には、上記で定義したハードバターと、下記段落で定義する食用油脂以外に、チョコレートの含油原料(カカオマス、ココアパウダー、全脂粉乳など)に由来する油分も含まれる。例えば、一般的に、カカオマスの55質量%はココアバター(油分)であり、ココアパウダー中の11質量%はココアバター(油分)であり、全脂粉乳の25質量%は乳脂(油分)である。したがって、本発明において改良チョコレート中に含まれる「油分」とは、ハードバターと、改良チョコレートに配合される食用油脂と、チョコレートの含油原料に由来する油分とを合計した値であり得る。なお、改良チョコレート中の油分は、粉末油脂組成物の含有量の基準になるものであるから、本発明において、前記改良チョコレート中の「油分」に、本発明の粉末油脂組成物は含まれない。
【0048】
<改良チョコレート中に含まれる食用油脂>
本発明の改良チョコレートは、任意の食用油脂を含むことができる。このような食用油脂としては、食用油、マーガリン、ファットスプレッド、及びショートニングなどが挙げられ、これらの一種又は2種以上を併用することができる。前記食用油脂の原料としては、例えば、ヤシ油、パーム核油、パーム油、パーム分別油(パームオレイン、パームスーパーオレイン等)、シア脂、シア分別油、サル脂、サル分別油、イリッペ脂、大豆油、菜種油、綿実油、サフラワー油、ひまわり油、米油、コーン油、ゴマ油、オリーブ油、乳脂、ココアバター等やこれらの混合油、加工油脂等を使用することができる。これら食用油脂の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、チョコレートの含油原料に由来する油分の全質量を100質量%とした場合、それに対して、0〜100質量%、好ましくは0〜75質量%、より好ましくは0〜50質量%である。
【0049】
<改良チョコレートに含まれる糖類>
本発明の改良チョコレートは、好ましくは糖類を含有する。糖類としては、例えば、ショ糖(砂糖、粉糖)、乳糖、ブドウ糖、果糖、麦芽糖、還元澱粉糖化物、液糖、酵素転化水飴、異性化液糖、ショ糖結合水飴、還元糖ポリデキストロース、オリゴ糖、ソルビトール、還元乳糖、トレハロース、キシロース、キシリトース、マルチトール、エリスリトール、マンニトール、ラフィノース、デキストリン等を使用することができる。本発明の改良チョコレート中に含まれる糖類の含量は、チョコレートの全質量を100質量%とした場合、好ましくは20〜60質量%であり、より好ましくは25〜55質量%であり、さらに好ましくは30〜50質量%である。
【0050】
<改良チョコレート中に含まれるその他の成分>
本発明の改良チョコレートは、油脂、糖類以外にも、チョコレートの製造において一般的に配合される原料を使用することができる。具体的には、例えば、全脂粉乳、脱脂粉乳等の乳製品、カカオマス、ココアパウダー等のカカオ成分、大豆粉、大豆蛋白、果実加工品、野菜加工品、抹茶粉末、コーヒー粉末等の各種粉末、ガム類、澱粉類、酸化防止剤、着色料、香料、乳化剤等を使用することができる。
【0051】
<改良チョコレートの製造方法>
本発明の改良チョコレートは、従来公知の方法により製造することができる。本発明の改良チョコレートは、例えば、油脂(ハードバターを含む)、カカオ成分、糖類、乳製品、乳化剤等を原材料として、チョコレート中の最終的な油脂含量が25〜65質量%となるように、前記原材料の一部として、上記粉末油脂組成物を一旦溶かして溶融状態の油脂組成物として加えるか、又は粉末油脂組成物をそのまま加えて、混合工程、微粒化工程(リファイニング)、精練工程(コンチング)、冷却工程等を経て製造することができる。例えば、チョコレートの原材料をミキシング(混合工程)し、ロール掛けによるリファイニング(微粒化工程)した後、コンチング(精練工程)を行い、型に入れて冷却固化(冷却工程)することにより製造することができる。なお、本発明の改良チョコレートの製造方法において、テンパリングを行うかどうかは、用いるハードバターの種類による。
【0052】
<チョコレート用品質改良剤>
ところで、以上述べたように、本発明に用いる粉末油脂組成物は、従来のチョコレートを、固化速度を改善するとともに、型抜け速度が向上し、耐熱性が上昇したものへ改良するから、本発明は、上記粉末油脂組成物を有効成分とする、チョコレート用品質改良剤にも関する。以下に示すように、本発明のチョコレート用品質改良剤を従来のチョコレートの原材料中に配合することにより、当該チョコレートの固化速度を改善するとともに、型抜け速度が向上し、耐熱性が上昇したものへと変更する品質改良効果を達成することができる。
本発明のチョコレート用品質改良剤は、上述の粉末油脂組成物を含有する。本発明のチョコレート用品質改良剤は、少量で効果を発揮するため、上記の粉末油脂組成物を、好ましくは60質量%以上含有し、より好ましくは80質量%以上含有し、さらに好ましくは100質量%以上含有する。
また、本発明のチョコレート用品質改良剤は、有効成分であると上述した粉末油脂組成物を含有したものであればよく、この他に本発明の効果を損なわない範囲で、大豆油、菜種油などの油脂、デキストリン、澱粉等の賦形剤、品質改良剤等の他の成分を含有させたものであってもよい。
但し、本発明の好ましいチョコレート用品質改良剤は、実質的に当該粉末油脂組成物のみからなることが好ましい。また「実質的に」とは、チョコレート用品質改良剤中に含まれる粉末油脂組成物以外の成分が、チョコレート用品質改良剤を100質量%とした場合、例えば、0〜15質量%、好ましくは0〜10質量%、より好ましくは0〜5質量%であることを意味する。
【実施例】
【0053】
次に、実施例および比較例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに何ら制限されるものではない。また。以下において「%」とは、特別な記載がない場合、質量%を示す。
[分析方法]
・トリグリセリド組成
ガスクロマトグラフィー分析条件
DB1-ht(0.32mm×0.1μm×5m)Agilent Technologies社(123-1131)
注入量 :1.0μL
注入口 :370℃
検出器 :370℃
スプリット比 :50/1 35.1kPa コンスタントプレッシャー
カラムCT :200℃(0min hold)〜(15℃/min)〜370℃(4min hold)
・X線回折測定
X線回折装置UltimaIV(株式会社リガク社製)を用いて、CuKα(λ=1.542Å)を線源とし、Cu用フィルタ使用、出力1.6kW、操作角0.96〜30.0°、測定速度2°/分の条件で測定した。この測定により、XXX型トリグリセリドを含む油脂成分におけるα型油脂、β’型油脂、及びβ型油脂の存在を確認した。4.6Å付近のピークのみを有し、4.1〜4.2Å付近のピークを有しない場合は、油脂成分のすべてがβ型油脂であると判断した。
なお、上記X線回析測定の結果から、ピーク強度比=[β型の特徴的ピークの強度(2θ=19°(4.6Å))/(α型の特徴的ピークの強度(2θ=21°(4.2Å))+β型の特徴的ピークの強度(2θ=19°(4.6Å)))]をβ型油脂の存在量を表す指標として測定した。
【0054】
・ゆるめ嵩密度
実施例等で得られた粉末油脂組成物のゆるめ嵩密度(g/cm
3)は、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、mL当たりの当該粉末油脂組成物の質量(g)を算出することで求めた。
・結晶(顕微鏡写真)
3Dリアルサーフェスビュー顕微鏡VE-8800(株式会社キーエンス製)にて得られた粉末油脂組成物の結晶の撮影を行った。得られた顕微鏡写真を
図4(製造実施例7)及び
図5(製造比較例3)に示す。
・アスペクト比
走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ製)により直接観察し、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製 Mac−View)を用いて、任意に選択した粒子について、その長軸方向の長さおよび短軸方向の長さを計測し、計測した個数の平均値として測定した。
・平均粒径
粒度分布測定装置(日機装株式会社製 Microtrac MT3300ExII)でレーザー回折散乱法(ISO133201,ISO9276-1)に基づいて測定した。
【0055】
<原料油脂>
(1)粉末油脂組成物A
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をハンマーミルで粉砕することで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径14.4μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。この粉末油脂組成物Aを用いた。
(2)菜種極度硬化油
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)を用いた。前記菜種極度硬化油は、上記粉末油脂組成物を原料であって、上記80℃で溶融状態とする前の固体状のものを乳鉢で摺り潰したもの(平均粒径129μm)であり、β型油脂を含まず、粉末状ではない。
【0056】
<その他の原材料>
実施例における、レシチン(日清オイリオグループ株式会社製)、カカオマス(大東カカオ株式会社製)、全脂粉乳(よつ葉乳業株式会社製)、砂糖(株式会社徳倉製)はいずれも、市販されているものを用いた。
【0057】
また、実施例における、ハードバターAは以下のとおり製造した。
ハイオレイックヒマワリ油8.8質量部、パームステアリン(ヨウ素価36)48.4質量部、大豆油の極度硬化油18.8質量部及びパーム油24.0質量部を混合した。得られた混合油(パルミチン酸40.9質量%、ステアリン酸20.0質量%、オレイン酸30.6質量%、リノール酸6.3質量%、リノレン酸0.2質量%、トランス型脂肪酸0質量%)を、ナトリウムメチラートを触媒としてランダムエステル交換することにより、エステル交換油脂を得た。得られたエステル交換油脂を37±1℃でドライ分別し、高融点部を除去することで低融点部を得た。得られた低融点部を1±1℃でアセトン分別し、低融点部を除去することで高融点部(ヨウ素価32)を得た。得られた高融点部を常法に従って精製し、これを実施例で用いるハードバターAとした。
【0058】
[試験例1]固化速度の改善効果
<改良ハードバターの製造>
下記表2の配合に従って、実施例1〜3の改良ハードバター及び比較例1のハードバターを製造した。より詳細には、上記ハードバターAを60℃で一旦溶解し、次いで45℃で調温した後、上記粉末油脂組成物Aを、前記ハードバター100質量%に対して1質量%、3質量%及び5質量%もしくは0質量%となるように添加して、ミキサー(万能混合撹拌機8XDML:DALTON社製)で45℃を維持するように加熱しながら約30分間均質化した。これにより、実施例1〜3の改良ハードバター及び比較例1のハードバターを製造した。
【0059】
【表2】
【0060】
<固化速度の改善効果>
実施例1〜3の改良ハードバター及び比較例1のハードバターの固体脂含量を、SFC測定装置(製品名:Minispec MQ−20、Bruker Optics社製)を用いて測定した。その結果を
図1に示した。そして、「固化速度」の改善効果は、上記ハードバターの固体脂含量(SFC)に関する曲線から求めた。すなわち、45℃の状態にある試験対象のハードバターを、20℃に冷却した時を0分とし、5分おきに測定した。また、15分後における固体脂含量(SFC、ハードバターを100質量%としたときの固体脂の質量%)を測定し、SFCが高いものほど、固化速度が速いハードバターであると判断した。
【0061】
図1によると、冷却時間(横軸)が15分後のところをみると、実施例1〜3では、比較例1に比べて、20℃における固体脂含量(縦軸)が高く出ており、固化速度が改善されていることがわかった。また、実施例1〜3を比較すると、粉末油脂組成物Aの添加量が増えるにつれて固体脂含量(縦軸)が高くなっており、粉末油脂組成物Aの用量に依存して固化速度が改善できることも判明した。このように、本発明の粉末油脂組成物を用いると、ハードバターの固化速度が改善されることから、このような改良ハードバターを用いて製造したチョコレートにおいても同様に固化速度が改善されると考えられた。また、ハードバターそのものを使用しないチョコレートにおいても同様に、本発明の粉末油脂組成物を用いれば、固化速度が改善されることも示唆された。
【0062】
[試験例2]チョコレートの型抜け速度
<改良チョコレートの製造>
下記表3の配合に従って、実施例4〜5の改良チョコレート及び比較例2〜3のチョコレートを、テンパリングを行わない常法に従って、混合処理、微粒化(リファイニング)処理、精錬(コンチング)処理を経て、冷却固化することにより製造した。より詳細には、原料(カカオマス、ハードバターA、粉末油脂組成物A等)1000gをミキサー(万能混合撹拌機8XDML:DALTON社製)で60℃に加熱しながら均質になるように約5分間混合し、チョコレート生地を得た。得られたチョコレート生地をロールリファイナー(SDY型油圧式3本ロールミル:BUHLER社製)で磨り潰し、平均粒度が20μm程度になるまで微粒化した。リファイングしたチョコレート生地を、前記ミキサーにより20分以上かけて練り込み、液化後、油分を調整し、チョコレート原液とした。チョコレート原液を45℃に調温し、型に流し込み成形した後、チョコレート原液を10〜20℃で冷却固化して上記チョコレートを得た。
なお、実施例4は、粉末油脂組成物Aがチョコレート中の油分に対して1質量%添加されたものであり、実施例5は、粉末油脂組成物Aがチョコレート中の油分に対して5質量%添加されたものである。また、比較例2は、粉末油脂組成物Aが全く添加されていない通常のチョコレートであり、比較例3は、粉末油脂組成物の代わりに菜種極度硬化油がチョコレート中の油分に対して1質量%添加されたものである。
【0063】
【表3】
【0064】
<口溶け感の評価>
上記で得たチョコレートを用いて口溶け感の評価を行った。専門パネラー5名がチョコレートを食して、得られたチョコレートの口溶けについて、以下の基準に従い評価した。評価結果は表3に示した。
○:口溶けがよく、口残り(ざらつき感)が感じられなかった。
△:口溶けがよく、口残り(ざらつき感)がほとんど感じられなかった。
×:口溶けがわるく、口残り(ざらつき感)がかなり感じられた。
【0065】
<ブルーム発生の評価>
チョコレートを15℃の温度で12時間、更に25℃の温度で12時間置き、これを1サイクルとする周期的な温度変化をかけて、19サイクル保存した。そして、19サイクル終了時に、目視によりブルームの発生を評価した。
○:ブルームの発生が確認されなかった。
×:ブルームの発生が確認された。
【0066】
<型抜け速度の評価>
上記で製造したチョコレートを融解させて、透明なポリカーボネート製の型(167mm×84mm×11mm)に120gを充填し、7℃の冷蔵庫に入れて成型した。なお、成型に用いたポリカーボネート製の型の底面は升目状(167mm×84mmの上面が開放)になっており、升目の総数は30(5×6)マスである。成型したチョコレートの離型率は、冷却開始から5分後毎にチョコレートの剥離した升目(チョコレートが剥離すると升目の中で浮き上がって見える)を目視で数えて、下記の数式で算出した。離型をし始める時間と、離型率が90%以上になる時間を測定し、その結果を
図2に示した。なお、離型性は、チョコレートの生産性の目安となる。離型率が90%以上になる時間が20分以下である場合、チョコレートの離型性(型抜け)は良好であり、生産性が良いと判断した。
離型率(%)= 剥離した升目の数 / 升目の総数 × 100
【0067】
図2によると、比較例2は型抜けが冷却時間18分から始まり、離形率90%までに約23分かかった。また、比較例3においても型抜けが冷却時間16分から始まり、離形率90%までに20分程度かかった。しかし、実施例4では冷却時間15分から始まり、離形率90%まで20分で済み、実施例5では、冷却時間16分から始まり、離形率90%までに19分しかかからなかった。実施例4〜5では、比較例2に比べて、離形率90%になる時間が明らかに短くなっており、型抜け速度が向上していることがわかった。また、実施例4〜5を比較すると、粉末油脂組成物の添加量が増えるにつれて型抜け速度が速くなっており、粉末油脂組成物の用量に依存して型抜け速度が改善できることも判明した。また、比較例3に比べると、実施例4では、型抜けが始まる時間が約1分早くなっており、型抜け速度が改善されているといえる。さらに、実施例5では、型抜けが始まる時間はほぼ同じであるが、離形率90%に達する時間が約1分早くなっており、型抜け速度が改善されているといえる。このように、本発明の粉末油脂組成物を用いると、チョコレートの型抜け速度が改善されることがわかった。
【0068】
<チョコレートの耐熱性上昇効果>
実施例4〜5の改良チョコレート及び比較例2〜3のチョコレートにおける固体脂含量を、SFC測定装置(製品名:Minispec MQ−20、Bruker Optics社製)を用いて測定した。10℃で固められたチョコレートを前記SFC測定装置に入れて温度を上げながら、20℃、25℃におけるSFCを測定し、次いで、2.5℃温度が上がるたびにSFCを測定した。その結果を
図3に示した。
チョコレートの「耐熱性」上昇効果は、上記チョコレートの固体脂含量(SFC)に関する曲線から求めた。すなわち、チョコレートが溶け切る直前の温度、例えば、SFCが10%となるときの温度が高いものほど、耐熱性が上昇したものであると判断した。
【0069】
図3によると、実施例5では、比較例2、3に比べて、SFC曲線が上側に出てきた。特に、SFC10%の温度を比較すると、実施例5では約40℃であるのに対して、比較例2、3では、約38℃である。したがって、実施例5では、明らかに耐熱性が上昇していることがわかった。ただし、実施例4は比較例2、3に比べて耐熱性に変化はなかった。つまり、耐熱性向上は、融点の高い油脂が多く添加されたことによるものであると考えられた。しかし、表3の結果から明らかであるとおり、本発明の粉末油脂組成物は粒子が相当程度小さいため、ざらつき感(口残り)が感じられないのに対して、同じ融点の高い菜種極度硬化油を添加した比較例3では、実施例5と比較して、添加量が少ないにも関わらず、ざらつき感(口残り)がかなり感じられた。このように本発明の粉末油脂組成物を用いると、ざらつき感(口残り)を感じさせることなく、チョコレートの耐熱性を上昇できることが明らかとなった。さらに、ブルームの発生を評価すると、実施例4、5(粉末油脂組成物を加える)及び比較例2(何も加えない)では、ブルームの発生が見られないのに対して、比較例3(菜種極度硬化油)ではブルームが発生した。このように融点の高い油脂を添加すると、通常、チョコレートにブルームが発生する。しかし、本発明の粉末油脂組成物を用いると、ブルームを発生させることなく、チョコレートの耐熱性を上昇できることが明らかとなった。
【0070】
さらに、本発明の粉末油脂組成物の製造実施例を以下に示す。これらの製造実施例により得られた粉末状の組成物も、前記実施例同様に、チョコレート用粉末油脂組成物として使用することができる。
(製造実施例1):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比:2.0、平均粒径:119μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.90)を得た。
【0071】
(製造実施例2):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)25gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm
3、アスペクト比1.4、平均粒径99μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。
【0072】
(製造実施例3):x=16、(c2)テンパリング法
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)15gを、80℃にて0.5時間維持して完全に融解し、30℃恒温槽にて0.01時間冷却した後、60℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径87μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。
【0073】
(製造実施例4):x=16、(c1)シーディング法
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)15gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて品温が60℃になるまで冷却した後、トリパルミチン油脂粉末を原料油脂に対して、0.1質量%添加し、60℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径92μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。
【0074】
(製造実施例5):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:99.6質量%、トリステアリン、シグマアルドリッチ製)3gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径30μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.93)を得た。
【0075】
(製造実施例6):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径31μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。
【0076】
(製造実施例7):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径54μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。
【0077】
(製造実施例8):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm
3、アスペクト比1.4、平均粒径60μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.91)を得た。
【0078】
(製造実施例9):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:84.1質量%、日清ひまわり油(S)(ハイオレイックヒマワリ油)、日清オイリオグループ株式会社製)を定法により完全水素添加処理を行い水素添加物(XXX型:83.9質量%)を得た。得られたハイオレイックヒマワリ油極度硬化油25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径48μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。
【0079】
(製造実施例10):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)18.75gと、別の1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)6.25gを混合し、原料油脂とした(XXX型:53.6質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm
3、アスペクト比1.4、平均粒径63μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.78)を得た。なお、パーム極度硬化油は、XXX型トリグリセリドの含量が極めて少ないので、希釈成分として使用した(以下、同様)。
【0080】
(製造実施例11):x=18、(c1)シーディング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、70℃恒温槽にて品温が70℃になるまで冷却した後、トリステアリン油脂粉末を原料油脂に対して、0.1質量%添加し、70℃恒温槽にて12時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径36μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。
【0081】
(製造実施例12):x=18、(c2)テンパリング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)15gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて0.1時間冷却した後、65℃恒温槽にて6時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径50μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.90)を得た。
【0082】
(製造実施例13):x=18、(c2)テンパリング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)15gを、80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて0.01時間冷却した後、65℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径52μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。
【0083】
(製造実施例14):x=18、(c3)予備冷却法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、原料油脂を70℃になるまで70℃の恒温槽で保持し、65℃恒温槽にて8時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径60μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。
【0084】
(製造実施例15):x=20
1位〜3位にアラキジン酸残基(炭素数20)を有するトリグリセリド(XXX型:99.5質量%、トリアラキジン、東京化成工業株式会社製)10gを90℃にて0.5時間維持して完全に融解し、72℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径42μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.92)を得た。
【0085】
(製造実施例16):x=22
1位〜3位にベヘン酸残基(炭素数22)を有するトリグリセリド(XXX型:97.4質量%、トリベヘニン、東京化成工業株式会社製)10gを90℃にて0.5時間維持して完全に融解し、79℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比2.0、平均粒径52μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.93)を得た。
【0086】
(製造実施例17):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社)12.5gを混合し、原料油脂とした(XXX型:93.8%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて16時間冷却し、体積が増加した空隙を有する固形物を形成させた後、ほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm
3、アスペクト比1.6、平均粒径74μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.90)を得た。
【0087】
(製造実施例18):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:75.3%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて16時間冷却し、体積が増加した空隙を有する固形物を形成させた後、ほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm
3、アスペクト比1.4、平均粒径77μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。
【0088】
(製造比較例1):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、25℃恒温槽にて4時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.1Å、ピーク強度比:0.10)、粉末状の結晶組成物には至らなかった。
【0089】
(製造比較例2):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:39.6質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて12時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.2Å、ピーク強度比:0.12)、粉末状の結晶組成物には至らなかった。
【0090】
(製造比較例3):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて3時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.1Å、ピーク強度比:0.11)、粉末状の結晶組成物には至らなかった。
【0091】
(製造比較例4):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)12.5gと、別の1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:39.7質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.2Å、ピーク強度比:0.12)、粉末状の結晶組成物には至らなかった。
【0092】
上記製造実施例及び製造比較例の結果を表4にまとめる。
【表4】