【実施例】
【0086】
以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
【0087】
(実施例1)
<実験>ALucsのEFハンド様領域
本発明者らは最近、動物プランクトン試料からのカイアシ類ルシフェラーゼ配列のアラインメントで頻度の高いアミノ酸を繋ぎ合わせることで一連の人工ルシフェラーゼ(ALuc)を作成した(非特許文献4、7)。
図2(A)におけるALuc30の分子構造は、アミノ酸配列のテンプレートに基づいたモデリングによって事前に予想された(非特許文献7及びIzumi, H., et al., Data Mining of Supersecondary Structure Homology between Light Chains of Immunogloblins and MHC Molecules: Absence of the Common Conformational Fragment in the Human IgM Rheumatoid Factor. Journal of Chemical Information and Modeling, 2013. 53(3): p. 584-591.)。今回のテンプレートに基づいたモデリング(TBM)アプローチの詳細な手順は以前に実証されている。
簡単に言えば、本発明者らは公共のデータベースから入手可能な既存の海洋ルシフェラーゼの既知の結晶学的情報を再調査した。データベース内の構造が入手可能なルシフェラーゼ中、ALucsが、Renilla muelleri由来のセレンテラジン結合タンパク質(CBP)(PDB id: 2hpsと2hq8)と最も高い配列相同性を共有することを見つけた(16.7%)。そこで、ALucsの分子構造テンプレートにCBPを選択した。CBPの配列を、超二次構造コード(SSC)の視点からALuc30の配列と整列させた。アライメントでは、CBP内すべての共通アミノ酸は、最初ALuc30のものと置換した。最終的に、ALuc30の分子構造は、Polak-Ribiereアルゴリズムに基づく分子力学法(MM)により最適化された。
本発明者らは、典型的なCa
2+結合タンパク質を伴うALucsの多重配列アライメントをClustalW 2.1(SFI)を使用して行った。アライメントは、ヘリックス-ループ-ヘリックス構造を示すSSCパターンを繰り返す、特異的な推定EF様モチーフを明らかにした(
図2、3)。
【0088】
重要なアミノ酸を確認するためのALuc25のポイント変異導入
ALuc25変異体をコードするpcDNA3.1プラスミドを、PCRおよび適当なプライマーを用いて「QuikChange」と呼ばれる部位特異的突然変異誘発技術によって作製した(
図2(B))(Sawano, A. and A. Miyawaki, Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. , 2000. 28(16): p. e78.)。変異体はALuc25m1(変異部位:E150Y、A182Y)、m2(変異部位:E150W、A182W)、m3(変異部位:E150Y)とm4(変異部位:E150W)と命名された。参考文献に従って、GLucとRLuc8.6-535をコードする同じpcDNA3.1プラスミドが準備された。プラスミドの一部は一時的にリポフェクション試薬のTransIT-LT1(Mirus)を用いてCOS-7細胞にトランスフェクトされた。トランスフェクション16時間後、細胞は溶解バッファー(Promega)で溶解され、溶解液の一部(10 μL)はオプティカルボトムの96穴プレートに移された。特定の基質(ネイティブセレンテラジン; nCTZ)をプレートへ同時注入した後、直ちに、光強度をイメージアナライザー(LAS-4000、富士フィルム)を用いて評価した。
【0089】
<結果と考察>
ALucsのEFハンド様構造はALuc活性のために極めて重要な部位である。
ClustalW 2.1(SFI)を使用して、典型的なCa
2+結合タンパク質でALucsの多重配列アラインメントを行った(
図3)。ALucsの結合タンパク質は天然ルシフェラーゼとCa
2+に対しての配列相同性は乏しかったが、SSC配列のアラインメントは、へリックス-ループ-へリックス構造を示すユニークな繰り返しSSCパターンを明らかにし(
図2(A)、3)、それはセレンテラジン結合タンパク質(CBP)のような既知のCa
2+結合タンパク質のEFハンド構造に対応する部位に現れた(Petri, E.T., et al., Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc. Natl. Acad. Sci. U. S. A., 2010. 107(20): p. 9176-9181)。構造は、非Ca
2+結合タンパク質の中ではまれである。
提案されたEFハンド様構造におけるアミノ酸(E150Y、A182Y、E150W、及びA182W)の点突然変異はALuc25の光強度を完全に破壊した(
図2(B))。これらの結果は、EFハンド様構造がALuc活性の構造中心であることを示唆した。
この研究では異なるALucsからの結果を検討するが、我々は、それら間の逐次類似性を考慮し、ALucsの共通の光学的特徴であると予想した(
図1、2(A))。例えば、ALuc30と34間の唯一の違いは、アミノ酸20〜27(下線)でのエピトープ配列である。
【0090】
(実施例2)
<実験>ALucsのプロトン依存光強度
ALucsのプロトン駆動型の光強度は、プロトンと生物発光の関係の解明を助けるために算出された(
図4)。アフリカミドリザル腎臓由来COS-7細胞を96穴プレートで培養し、Gluc、RLuc8.6-535、ALuc23、またはALuc34をコードするpcDNA3.1(+)ベクター(Invitrogen)をトランスフェクトした。細胞は培養され、
図2(B)と同様の方法で溶解された。次に、プレート中の溶解物の10μLは同時に、pH 4〜9のユニバーサル緩衝液のアリコートとネイティブセレンテラジン(nCTZ)原液(
図4(B))を混合して調製された基質溶液40μL(基質最終濃度:0.1mg/ml)と混合された。基質注入後直ちに、プレートは、イメージアナライザー(LAS-4000、富士フィルム)に移され、相対光強度は30秒間積算された。強度の経時変化は、20分間、5分毎に評価された(
図4(D))。
【0091】
<結果と考察>低プロトン濃度がALucsの光強度を高める
ALuc活性の最小カチオン(H
+)駆動機能を解明するために、プロトン濃度(pH)による光強度を測定した(
図4)。低いpH領域、例えばpH4および5(酸性条件)では、光強度はバックグラウンドレベルまで抑制された。これとは対照的に、ALuc23とALuc34の光強度は、pH6に比べてpH7で約5倍まで大幅に上昇した(
図4(C))。GLucとRLuc8.6-535が低い光安定性を示し、20分後に初期強度の30%未満を保持するようなpH9において、20分後でもALucsは、初期光強度の51〜53%を維持した(
図4(D))。
ALucsの対応する特徴は、レンテラジン類似体共存下で観察した(
図4(A))。最大光強度はpH9で得られ、基質注入から20分後でさえ、強度は初期強度の41%(ALuc23)と60%(ALuc34)であった(
図4(A))。
【0092】
このALuc活性のpH駆動による上昇は、例えばOplophorus(エビ)ルシフェラーゼ(OLuc)、Gaussia(カイアシ類)ルシフェラーゼ(GLuc)、Cypridina(ウミホタル)ルシフェラーゼ(CLuc)とPeriphylla(クロカムリクラゲ)ルシフェラーゼ(PLuc)のような他の海洋ルシフェラーゼのものより非常に独特である。他の海洋ルシフェラーゼの最大光強度は通常、約pH7.5で確認され、pH8よりも高いpHですぐに減少し、約pH9において強度を殆ど失う(非特許文献1及びInouye, S. and S. Sasaki, Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp, Oplophorus gracilirostris. Protein Expression and Purification, 2007. 56(2): p. 261-268.;Ruecker, O., et al., Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 2008. 280(2): p. 153-162.)。
【0093】
nCTZのヒドロキシル基のpKa値は、水溶液相(水相)で約7.6であることから(Ohmiya, Y. and T. Hirano, Shining the light: The mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chemistry & Biology, 1996. 3(5): p. 337-347.)、nCTZは約pH9で脱プロトン化されたアニオン形態であると考えられている(
図4)。pH9でのALucsの最高光強度は、他のルシフェラーゼと比較して、ALucsがアニオン性nCTZおよびその類似体を順応させるための光学プラットフォームを提供することを強く示唆している(
図4(B))。
【0094】
(実施例3)
<実験>ALucsの金属カチオン駆動型光強度
金属カチオン駆動の光学特性はALuc16を用いて推定された(
図6)。ALuc16の金属カチオンを含まない試料は、予め以下のように調製した:我々は最初にPCRを用いてC末端にStrep-IIタグを持つALuc16のDNAコンストラクトを生成した。次いで、コンストラクトをpOPTHMベクター(切断可能なN末端His
6-MBPタグを持つ)にクローニングし、0.3mM IPTG誘導で、細菌株Shuffle T7 Express(New England Biolabs)で発現させた。細胞は再懸濁され、氷冷溶解緩衝液(50mM Tris-HCl pH8.0、500mM KCl、5mMイミダゾール、0.2mg/mL HEWL、1 EDTA-freeプロテアーゼ阻害剤カクテル錠剤(Roche Diagnostics社製))で超音波処理された。溶解物は18000rpmで40分間遠心分離され、その後上清は5 mL HisTrap HPカラム(GE Healthcare)に通された。AKTA精製システム(GE Healthcare)は、カラムを洗浄し、ALuc16融合タンパク質を溶出するために以下のように使用した:カラムを100mLの洗浄緩衝液(20mM Tris-HCl pH8.0、50mMリン酸カリウムpH8.0、100mM NaCl、15mM イミダゾール pH8.0)で洗浄し、80mL以上のイミダゾール勾配(15〜300mM)(an imidazole gradient over 80mL)で溶出した。溶出された試料は、4℃で24時間金属カチオンを含まないTris-HCl緩衝液(0.05M、pH8.2)に対して透析され、最終的に1mg/mlの濃度に希釈された。
【0095】
精製されたALuc16ストックは、実験の前に、さらに金属カチオンを含まないTris-HCl緩衝液(0.05M、pH8.2)で2μg/mLになるように500倍希釈された。次いで、45μLの混合液は、
図6(A)の実験の為に、96穴オプティカルボトムプレート(Nunc)中の5μLのさまざまな濃度の金属カチオン(Ca(II)、Mg(II)、Mn(II)、Co(II)、Ni(II)、Cu(II)、Zn(II)、Cd(II)、Pb(II)、Al(III)、Fe(III)、Mo(IV)もしくはCr(VI))と混合された(Solution A)。一方、nCTZ(Promega)を持つ対応する基質溶液は、カチオンを含まないTris-HCl緩衝液で100倍に希釈された(Solution B)。50 μLのSolution Bは同時に多チャンネルマイクロピペット(Gilson)で、96穴プレート内のSolution Aに注入された。マイクロプレートは直ちに冷却電荷結合素子(CCD)カメラを装備したイメージアナライザー(LAS-4000、富士フィルム)に移され、光強度を同時に高精度モードで評価された。測定は3回行った(n = 3)。光学像はマルチゲージV3.2(富士フィルム)を用いて分析された。
対応する生物発光スペクトル(
図6(B))はまた、
図6(A)のものと同様の方法を用いて測定された。 200μL PCRチューブ中で、50μLのALuc16と金属カチオン(Ca(II)、Fe(III)、Ni(II)、Zn(II)、Mg(II)もしくはCr(VI);濃度100μg/mL)の金属カチオンを含まないTris-HCl緩衝液中での混合物(Solution A)は、さらに10 μLのnCTZ溶液と混合された(Solution B)。チューブは直ちに精密分光光度計(AB-1850、ATTO)(
図6(B))のチャンバーに移され、結果として生じるスペクトルは、30秒積算で採取された。
ALuc活性の詳細な用量反応曲線は、さまざまな濃度のPb(II)とネガティブコントロールとしての基質単体を用いて決定された(
図7)。実験は、
図6と同様の方法で行われた。挿入図は、LAS-4000(富士フィルム)で撮影された光学像を示している。
【0096】
試薬
図6中の標準的な金属カチオンは、和光純薬から購入した。対アニオンは塩化物である。 ALuc16、23、25、30および34をエンコードするpcDNA3.1(+)プラスミドは、我々の以前の研究からのものである(非特許文献4、7)。Renilla reinformisルシフェラーゼ8.6-535(RLuc8.6-535)とGaussia princepesルシフェラーゼ(GLuc)をエンコードするプラスミドは、Eurofins Genomics社によりカスタム合成され、pcDNA3.1(+)ベクター(Invitrogen)にサブクローニングされた。リポフェクション試薬(TransIT-LT1)は、Mirus社から購入した。天然型セレンテラジン(nCTZ)は商用RLucアッセイキット(E2820、Promega社)から入手した(Nishihara, R., et al., Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution. Chem. Commun., 2014. 51: p.391-394.)。ユニバーサル緩衝液(クエン酸、ホウ酸、KH
2PO
4)のための材料は和光純薬から入手したが、トリズマ塩基塩は、金属カチオンを含まないTris-HCl緩衝液を調製するために、Sigma-Aldrichから購入して使用した。我々の試薬で起こりうる金属カチオンの混入は簡単に、事前に誘導結合プラズマ質量分析(ICP-MS)によって推定され、その結果、カチオンの濃度は全て1μg/mL未満であり、多価金属カチオンの濃度は0.1μg/mL未満であることが分かった(表2)。
【0097】
【表2】
【0098】
<結果と考察> 金属カチオンはALucsの光強度を支配する
ALuc16の金属カチオン駆動型光強度を調べた(
図6)。例えば、Li
+、Na
+、K
+やNH
4+のような一価カチオンは、ALuc16の光強度に少し影響を及ぼした(
図5(B))。一価カチオン駆動型機能と同様の結論が先にOLucで報告されている(非特許文献9)。対照的に、多価カチオンが大幅にALuc16の光強度を支配することが分かった(
図6)。二価カチオンの中でもCa(II)およびMg(II)は、その他のMg(II)、Co(II)、Cu(II)、Zn(II)、及びPb(II)のような二価カチオンが金属カチオンを含まないTris-HCl緩衝液(pH8.2、0.05M)中でALuc16活性を抑制するのに対し、1.5倍までALuc16活性を高める(非特許文献9、Inouye, S. and Y. Sahara, Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochem. Biophys. Res. Comm., 2008. 365(1): p. 96-101.)。OLucとGLucにおけるCu(II)およびZn(II)の対応する抑制効果は、以前に報告されている。多価カチオンのうち、Cr(VI)もALuc16の光強度を約2倍に高めた。全体的な光強度順位は降順で以下のように示される:Cr(VI)、Mg(II)、Ca(II)>Ni(II)>Mo(IV)、Cd(II)、Fe(III)、Zn(II) >Mn(II)やその他(Co(II)、Cu(II)、及びPb(II))。
EFハンド構造を結合するための最適な二価カチオンの半径は、Mg(II)(0.81オングストローム)およびCa(II)(1.06オングストローム)の半径の間にあることが決定されている(Snyder, E.E., B.W. Buoscio, and J.J. Falke, Calcium(Ii) Site Specificity - Effect of Size and Charge on Metal-Ion Binding to an Ef-Hand-Like Site. Biochemistry, 1990. 29(16): p. 3937-3943;Ozawa, T., K. Sasaki, and Y. Umezawa, Metal ion selectivity for formation of the calmodulin-metal-target peptide ternary complex studied by surface plasmon resonance spectroscopy. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 1999. 1434(2): p. 211-220.)。EFハンドとその変異体は、Ca
2+のほかに多価カチオンとの幅広い相互結合親和性を有することが知られている(Rowe, L., M. Ensor, and S. Daunert, EF-hand Ca2+-binding bioluminescent proteins: Effects of mutations and alternative divalent cations - art. no. 64490T. Genetically Engineered and Optical Probes for Biomedical Applications IV, 2007. 6449: p. T4490-T4490.;Falke, J.J., et al., Quantitating and Engineering the Ion Specificity of an Ef-Hand-Like Ca2+ Binding-Site. Biochemistry, 1991. 30(35): p. 8690-8697.;Gifford, J.L., M.P. Walsh, and H.J. Vogel, Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 2007. 405: p. 199-221.)。半径範囲を考慮すると、試験された金属カチオンのほとんどは潜在的にEFハンド構造に結合する。当面のカチオン駆動型のALuc16活性の特徴は以下のように説明することができる:(i)カチオンであるCa(II)とMg(II)は、直接ALuc16のEFハンド様構造を結合し、光強度を変調する、(ii)多価カチオンは、酵素反応で活性化エネルギー(Ea)を減らす結果、nCTZの遷移状態におけるアミドアニオンを安定化させることができる、または(iii)上記の効果は相乗的にALuc活性の上昇に寄与する。相乗効果は、Cr(VI)によるALuc16の光強度上昇を考慮すると、多価カチオンとが妥当である。
現在までに、多価カチオンとルシフェラーゼ活性との相関関係は十分には検討されていない。いくつかの研究ではこの問題を扱っているが、作用メカニズムは不明なままである。 Rodionovaらは、Ca(II)、Mn(II)、およびMg(II)がシベリア発光ミミズFridericia heliotaから得られたFridericiaルシフェラーゼの活性を上昇させることを報告した(Rodionova, N.S. and V.N. Petushkov, Effect of different salts and detergents on luciferin-luciferase luminescence of the enchytraeid Fridericia heliota. Journal of Photochemistry and Photobiology B-Biology, 2006. 83(2): p. 123-128.)。しかし、Mn(II)によるブースト効果は、このALuc16では観察されなかった。OLucにおける結果は、以前にInouyeらによって報告された、彼らはいくつかの多価カチオン(Ca(II)、Mg(II)、Cu(II)、Zn(II)及びCd(II))のOLucへの影響を評価した。そこでは、一価カチオンはOLucの光強度にほとんど影響を与えなかったが、対照的に、Cu(II)、Zn(II)及びCd(II)は光強度を阻害した。
Pb(II)の阻害効果は、さらに長期の濃度範囲(
図7)で調べた。用量応答曲線は、ALuc16活性がPb(II)の濃度を上昇させることによって迅速に阻害されることを示す。ネガティブコントロールとしての溶媒(Tris-HCl、pH8.2)によっては阻害されなかった。線形範囲は1-100μg/mLの間であった。光強度は、Pb(II)で1μg/mLまで素早く減衰した(
図7)。この結果は、カラム精製されたALucが多価金属カチオンへの特異的な金属カチオン選択性と感度を示す新規な光センサーであることを示している。
【0099】
金属カチオンは、生物発光スペクトルにほとんど影響を及ぼさない
本発明者らはさらに、生物発光スペクトルにおける金属カチオンの寄与を調べた。我々が、生物発光スペクトルの金属カチオン駆動型分散を調べたところ(
図6(B))、
図6に示された効果的な金属カチオンが選択された、すなわち、Ca(II)、Fe(III)、Ni(II)、Zn(II)、Mg(II)又はCr(VI)。しかし、我々の推測とは対照的に、金属カチオンでスペクトルのシフトはほとんど見られなかった。例えば、Ca(II)およびNi(II)は、スペクトルのたった2 nmのブルーシフトおよび4nmのレッドシフトを誘導した。スペクトルにおける金属カチオンの無視していい程度の影響は、多価カチオンがALucsの発光の化学反応においてnCTZの中間体の電気的状態を調節しないことを示唆している。
【0100】
(実施例4)
<実験>
光強度の長期安定性は、
図6(A)のものと同じ方法を用いて推定した(
図8(A))。マイクロプレートは、LAS-4000のチャンバー内に配置し、光強度は基質の注射後、60分間、5分毎に観察した。
<結果と考察>
Ca(II)はALuc活性の長期安定性に寄与する
ルシフェラーゼの長期安定性は、バイオアッセイで生物発光マーカーのための重要な決定要因である。そのためALuc活性へのブースト効果から、我々は、カチオン駆動の長期安定性のためにCa(II)、Mg(II)とCr(VI)を選択した(
図8)。対照的な効果はCa(II)とMg(II)の効果の比較で見出された。Ca(II)およびMg(II)の両方が光強度を高めるが、唯一Ca(II)は、濃度依存的に生物発光強度を延長した(
図8(A))。Ca(II)はnCTZ注射後13分間、初期光強度の60%を維持し、さらに60分後でも光強度の4%を保持した(
図8(A)、光学像)。対照的に、Mg(II)濃度は依存的にALuc活性を上昇させるが、めったに長期的な安定性に影響を与えない(
図8(A)及び
図9(B))。
長期安定性は、Ca(II)がALuc16の構造的堅牢性を変化させることを示唆している。そこで我々は、Ca(II)がALuc16のEFハンド様構造を結合し、ALucsの光強度の長期化をサポートしていることを推測している。
【0101】
金属カチオン混合ALuc16の円偏光二色性(CD)測定
円偏光二色性(CD)測定は、さらにALuc16活性のカチオン駆動の劣化を推論するために行われた(
図9)。試料はPb(II)又はAl(III)とカラム精製と透析されたALuc16が様々な濃度で混合されたものを調製し、調製後、CD分光計(JASCO、日本)を用いて測定された。
222nmレベルでのCDスペクトルのモル楕円率すなわちα-ヘリックス部の変化がAl(III)濃度の上昇によって徐々に減少する。同様の特徴は、Pb(II)でも観察された。1μg/mL以上のPb(II)レベルで、基礎ノイズスペクトルを示した。全ての結果は、Pb(II)及びAl(III)等の金属カチオンがALuc16の三次構造を破壊し、分解に至ることを示唆している。
【0102】
(実施例5)分子歪みセンサー
プラスミドの設計
本発明者らはPPIsを感知することが可能な分子歪みセンサーとして、それらの可能性を評価するためにデザインされた23種類の異なる分子をエンコードするDNAコンストラクト群(series)を作製した(表3)。TPv1とTPv2シリーズのプローブの基礎的な分子コンストラクトは、N末端からそれらのタンパク質成分の番号順に異なる。cDNAコンストラクトの概略図は
図10(B)と
図11に示してある。
ポリメラーゼ連鎖反応(PCR)のテンプレートとして、以下のコンポーネントをエンコードするcDNAは、対応するプロバイダーから入手した:ウミシイタケルシフェラーゼ8(RLuc8)はGambhir教授より譲渡していただいた;ALucs16、23、24、30は我々の以前の研究から得られた(非特許文献4、7);ヒトFKBP(12kD、Genebank access number: AAP36774.1)とFRB(11kD、PDB access number: 1AUE_A)は公開されているデータベース(NCBI)の配列情報に基づいて、Europins Genomics(東京)によって注文合成された;ヒトエストロゲン受容体(ER LBD、305-550 AA)のリガンド結合ドメインとSH2ドメインであるν-Srcは我々の以前の研究から得られた(非特許文献11)。
【表3】
表3に示されたコンポーネントをエンコードするcDNA断片の一群は、特異的な制限サイトを導入するために対応するプライマーを用いてPCRによって作製された。特異的な制限サイトとは、5’末端と3’末端がそれぞれHindIII/BamHI、BamHI/KpnI、もしくはKpnI/XhoIである。プローブコンポーネントにつながるリンカーは、プローブ内の分子内歪み(intramolecular tension)を効率的に開発するために最小限にされた。cDNA断片は、対応する制限酵素(NEB)によって切断され、ライゲーションキット(Takara Bio)でライゲートされ、最終的に、pcDNA3.1(+)哺乳類発現ベクター(Invitrogen)へHindIIIとXhoIサイトを用いてサブクローニングされた。プローブは、分子デザイン(表3)に基づいて5つのグループ(TPv0、TPv1、TPv2、TPv3とTPv4群)に分けられた。
TPv1とTPv2シリーズのプローブをエンコードするcDNAコンストラクトは、5’末端からの断片の順番が異なっている(
図10(B))。TPv3シリーズプローブをエンコードするコンストラクトは、それらがALuc23をエンコードするcDNAセグメントを短縮型C末端に持つということでその他と比較して、特徴づけられる。TPv4シリーズプローブをエンコードするコンストラクトが一般的に使用されている現存のプローブデザインとその他のPPIモデルとを調査するために設計されたのに対して、TPv0シリーズプローブをエンコードするコンストラクトはネガティブコントロールを確認するために設計された。
全てのコンストラクトのDNA配列は、DNA配列シーケンサー(GenomeLab GeXP, Beckman Coulter)により確認された。
【0103】
分子TPsのための光学分子デザインの進化
16種類の分子デザインは、効率的な分子TPsを設計するために調べられた(
図10(C))。
アフリカミドリサル肝臓由来のCOS-7細胞は、10% 牛胎児血清(FBS; Gibco)と1%ペニシリン/ストレプトマイシンを含んだDulbecco’s modified Eagle’s medium(DMEM)を用いて、96穴プレート(Nunc)で37℃の細胞培養器(5% CO
2;Sanyo)中で培養された。プレート上の細胞は、TPv1やTPv2シリーズプローブをエンコードするベクターの一つであるpcDNA3.1(+)の溶液(0.2μg/well)とリポフェクション試薬(TransIT-LT1;Mirus)を用いて、
図10(C)で明記されているように一過性トランスフェクションされ、先の実験に進む前に、5% CO
2条件下で37℃、16時間培養された。
プレートの細胞は、コントロール(0.1%エタノールを培養培地に溶かしたもの)もしくは10
-6Mラパマイシンで4時間刺激され、その後、溶解試薬(Promega)で溶解された。溶解液の一部(10μL)は、新しい96穴オプティカルボトムプレート(Thermo Scientific)に移され、同時に、マルチチャンネルピペット(Gilson)でnative coeloenterazine(nCTZ)を含むアッセイ溶液(Promega)10μLと混合された。プレートは直ちに冷却CCDカメラ(-25℃)が装備されたイメージアナライザー(LAS-4000;FujiFilm)のチャンバーにセットされた。光強度は、イメージ取得ソフト(Image Reader V2.0)で計測され、特定イメージ分析ソフト(Multi Gauge v3.1)で分析された。
発光強度は、相対的な発光輝度(RLU)の倍数発光輝度、すなわち、RUL ratio(+/-)で表現される。RLU(+)とRLU(-)はそれぞれ、ラパマイシン有と無の状態で培養後の1μgの細胞溶解物の発光強度である;RLUは、イメージアナライザーで作製した光子数の増幅値である。
相対光スペクトラは、ラパマイシンの存在状態もしくは不在状態で測定された(
図10C, inset a)。TPv2.4によって発現したCOS-7細胞は、10
-5Mラパマイシンで4時間刺激され、溶解試薬で溶解された。溶解液5μLは、nCTZを含む35μLのアッセイ試薬(Promega)と200μLマイクロチューブ中で混合された。相対光スペクトラは、ワンショットで全光をキャプチャー出来る冷却電化結合素子(CCD)カメラを装備した高精度分校即光計(AB-1850; ATTO)で30秒積分された。
【0104】
タンパク質間相互作用(PPIs)による分子歪み下の蛍光はそれらの光強度を強める
分子間PPIsによって誘導される発光分子歪みの可視化の為に、一連の生物発光プローブがデザインされた(
図10(C))。
16個のデザインされた候補プローブのいくつかは、光強度の有意な強化、もしくは抑制をラパマイシンに対して示した:TPv1.3やTPv1.7が10
-6 Mラパマイシンに反応して光強度が1/3に抑制されたのに対して、TPv2はvehicle(1%エタノールを含む培養培地)単体と比較して10
-6 Mラパマイシン存在下で、生物発光強度の6.7倍の増加を示した。TPv2.7とTPv2.8は、同じリガンドによる刺激に対して約2倍強い生物発光という結果だった。
相対光強度は、TPv2.4を持つCOS-7細胞において、vehicle(0.1%エタノール)もしくは10
-6Mラパマイシンによる刺激で得られた。スペクトラの光強度は、ラパマイシンによって大いに強化され、最大光強度(λ
max)は約530nmで確認された。すべての発光の約13%は高い組織透過性を示し、通常「光学窓」と呼ばれる赤色と近赤外線領域の600nmよりも長波長に存在した(
図10(C), inset a)。
【0105】
分泌タンパク質(SP)包埋型と欠損型プローブは典型的なリガンド感受性を示す
カイアシ類ルシフェラーゼが、N末端領域の変化の多い領域とそのそばにある2回繰り返しの鏡像様触媒型ドメインによって成り立つことは多重整列によって以前から予測されていた(非特許文献7Inouye, S. and Y. Sahara, Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps. Biochem. Biophys. Res. Comm., 2008. 365(1): p. 96-101.、)。変化の多いドメインはN末端で独特な分泌タンパク質(SP)を成す(非特許文献6)。
16個の分子デザインのSP包埋型とSP欠損型プローブのリガンド感受性を比較することは興味深い(
図10(C))。(i)SPを持つ分子デザインは全て、光強度を上昇させることに失敗した、(ii)SP包埋型のプローブ(TPv1.1、TPv1.3、TPv1.7とTPv2.1)においてのみ、有意な光強度の減衰が確認された。
TPsにおけるSPsの役割はいまだにはっきりしないが、これらの結果は、SPsがプローブ内部において天然の可動性リンカーとして働いていることを示唆しており、したがって、FKBP-FRB相互作用によって強まった分子内歪みを弱めるのであろう。リンカーの最短長がルシフェラーゼを挟んだ分子内歪みを効率的に誘導するためのプローブドメインの間に適していたというリンカーの長さの観点で以前に議論された(Kim, S.B., M. Sato, and H. Tao, Molecular Tension-Indexed Bioluminescent Probe for Determining Protein-Protein Interactions. Bioconjugate Chem., 2009. 20(12): p. 2324-2330)。
これらすべての結果は以下のことを示す。(i)ルシフェラーゼは光学的変異が些細であるにも関わらず、タンパク質―タンパク質相互作用によって誘導された分子内歪みに反応したそれらの酵素的活性を調節する内因性の特質をもっているであろう。(ii)分子内歪みへのプローブの感受性は、ルシフェラーゼの可動領域を含む分子デザインと可動性リンカーの長さによって支配される。
【0106】
(実施例6)
TPv2.4のリガンド依存的な発光輝度の増加
TPv2.4の発光輝度のリガンド依存性を調べるために、ラパマイシン濃度を変えながらTPv2.4の発光輝度を測定した(
図12(A))。まず、TPv2.4を発現するCOS-7細胞を以下の要領で準備した。まず、細胞をエタノール0.1%水溶液(コントロール)または10
-9から10
-4M範囲のラパマイシン刺激を4時間行った。その後、細胞はライシスバッファー(プロメガ)より溶解し、細胞溶解液の一部分(10μL)を96穴プレートの各ウェルに移動した。マイクロプレート上の溶解液に天然セレンテラジン入りのアッセイ溶液(50uL)を同時に加えた。マイクロプレートは即時にイメージアナライザーの暗箱に移しその発光輝度を測定した。得られた発光輝度(相対的発光ユニット;RLU)はタンパク質量(μg)、積算時間(sec)、発光エリア(mm
2)で標準化した。従って、ユニットはRLU/μg/s/mm
2である。
【0107】
TPv2.4の発光輝度はラパマイシン定量・依存的に増加した
TPv2.4の発光輝度のリガンド依存性を、ラパマイシン濃度を変えながら測定した(
図12)。0.1%エタノール水溶液(コントロール)に対してバックグラウンド発光を示した反面、ラパマイシン刺激に対して徐々に発光輝度を増し、10
-5Mあたりで最大値を示した。一方、ラパマイシン濃度が10
-4Mになるとむしろ発光輝度がバックグラウンドレベルまで下がった。このような弱い発光輝度は、恐らく過度なラパマイシン濃度により細胞が死んだ可能性がある。
【0108】
TPv2.4の分子歪み―発光輝度相関性を証明するためのネガティブコントロール
本発明者らは、さらにラパマイシンにより増加した発光輝度が、リガンド刺激を受けた分子プローブの分子内歪みだけによる現象であるかどうかを検証した。例えば、リガンドに依存した分子間の結合による可能性もありうる(
図11、12(B))。
予測しなかった分子間の結合による可能性を排除する検証をするために、我々はTPv0.1とTPv0.2を作りあげた。このプローブには、TP2.4の構造にそれぞれFKBPかFRBが欠損している。このような分子プローブをコードするコンストラクトをpcDNA3.1(+)にサブクローンしその配列の信頼性をDNAシーケンサーにより検証した。
COS-7細胞を96穴マイクロプレートに培養し、各ウェルの細胞に(i) TPv0.1, (ii) TPv0.2, (iii) TPv0.1 plus TPv0.2または (iv) TPv2.4をコードするpcDNA3.1 (+)ベクターを導入した。その細胞をCO2インキュベーターで16時間培養した後、ラパマイシンで4時間刺激した。その細胞を溶解し一定量のライセット(20μL)を96穴マイクロプレート(光検出用プレート)に移した。最後にマイクロプレートの各ライセットに定量の天然セレンテラジン入りのアッセイバッファー(50μL)を同時に加え発光輝度をイメージアナライジャーで各発光輝度を測定した。
TPv2.4の発現量を検証するためにウェスタンブロット実験を行った(
図12(C))。COS-7細胞にTPv2.4を一過性発現された後、10
-6Mラパマイシンで4時間刺激した。その後一定量のサンプルバッファーで溶解した。そのライセットを電気泳動しニトロセルロース紙に移した。その後、各タンパク質をラビット抗FKBP抗体やマウス抗β-アクチン抗体で染めた。その後、それぞれの2次抗体処理をし、最終的にはホースラディッシュペルオキシダーゼ(HRP) 基質溶液 (Immunostar, Wako)で発光させた。
【0109】
リガンドにより結合したFRBとFKBP間の相互作用、それからその相互作用による分子内歪みのみによりTPv2.4の発光輝度が増加された
(i) TPv0.1 alone, (ii) TPv0.2 aloneまたは(iii) TPv0.1とTPv0.2両方発現する細胞に対して10
-6Mラパマイシン刺激を加えても発光輝度が上がらなかった。一方、TPv2.4を発現する細胞の場合、同じ刺激に対して5.4倍発光輝度が増加した(
図12(B))。
TPv2.4の見かけ上の発現レベルをウェスタンブロット分析により検証した(
図12(C))。その結果、抗FKBP抗体と抗β-アクチン抗体は45kD近傍で特定的なタンパク質バンドを示した。その分子量の大きさは、TPv2.4とβ-アクチンの予測分子量と一致する。このバンドの濃さはラパマイシン刺激前後で大きい差はなかった。
このネガティブコントロール実験結果は以下のことを示す:(i)ラパマイシンより誘導されたFRBとFKBP間の相互作用は分子歪みを誘発し、ALucの発光輝度を増加する唯一なファクターであった、(ii)分子間タンパク質―タンパク質相互作用はALucの発光輝度を増加させなかった、(iii)10
-6MのラパマイシンそのものはALuc活性を増加または阻害できない、(iv)ウェスタンブロット結果は、TPv2.4が確かに発現されており、その発現量がラパマイシン刺激により大きく偏ることはない。
【0110】
(実施例7)
タンパク質―タンパク質間相互作用を可視化するためのコンビナショナルプローブの開発
前述したTPv2.4の成功を基に、分子歪みセンサーの利点とタンパク質断片相補アッセイの利点を融合したコンビナショナルプローブの開発を行った(
図13、14)。
本発明者はTPv2.4の中で、ALuc23のC末端配列がFRBPのN末端と高い相同性を示す点に注目した(
図13(A)、挿入図a)。この情報を基に、TPv2.4の中のALuc23のC末端にあるアミノ酸配列を幾つか削った形態の発光プローブを開発し、TPv3.1、TPv3.2、TPv3.3 と名付けた(表3、
図14(B))。この作業は全長ALuc23のDNAを、3’末端を削ったALuc23のDNAに代える作業より得られた。
上述したTPv3シリーズのプローブ(即ち、TPv2.4、TPv3.1、TPv3.2、TPv3.3)の何れかを発現するCOS-7細胞を96穴透明底プレートに他の実験と同様の方法で培養した(
図13(B))。この細部にコントロール(0.1%エタノール)か10
-6Mのラパマイシンで4時間刺激し、その後細胞ライセットを作りそこから出る発光強度を上述したイメージアナライザーで測定した。
コンビナショナルプローブは改善されたシグナル対バックグラウンド(S/B)比を示した:上述したように、分子歪みセンサーとタンパク質相補アッセイの両特徴を併せ持つ一連のコンビナショナルプローブを作成した(
図13)。
ALuc23のC末端のアミノ酸を順次に削ったことで、プローブ発光輝度も順次に弱くなった(
図13(B))。最大のS/B比を示したTPv3.3は最も短いALuc23(18-198 AA)を含有しているものであった。このように改善されたS/B比はラパマイシンより強くなった発光輝度よりは、バックグラウンド輝度が大幅に減たことで得られた。実際にコントロール(0.1%エタノール)刺激により出たTPv3.3の発光輝度は、バックグラウンドとさほど差がなかった(
図13(B)、挿入図a、点線)。この結果は、(1)まず分子歪みセンサーの利点とタンパク質断片相補アッセイの利点を融合したコンビナショナルプローブが実際に作れることを実証している。また、(2)一定の最適化プロセスを経ることにより、分子歪みセンサーとタンパク質相補アッセイが持つ一般的な利点を考えた場合、コンビナショナルプローブがより強い発光輝度とS/N比を得ることもできると思われる。
【0111】
(実施例8)
TPv2.4の輝度と経時変化の基質依存性
TPv2.4の輝度と経時変化の基質依存性を、ラパマイシン有り無しの条件で測定した(
図15)。
COS-7細胞を96穴プレートに培養し、細胞にTP2.4をコードするpcDNA3.1(+)ベクターを一過性導入した。その後2日間培養した。ラパマイシン10
-6Mで4時間刺激した後、各ウェルの細胞を細胞溶解バッファー(50μl)で20分間溶かした。その後、定量のライセット(10μL)を96穴透明ボトムプレートに移した。別途、約10種類のセレンテラジン類似体(基質、25μg)を25μLエタノールに溶かした。その溶液をさらにアッセイバッファー(Promega)で10倍希釈し最終濃度0.1μg/μLの溶液を作り上げた。これを基質溶液と名付けた。マルチピペットを用いて、この基質溶液50μLをプレート上のライセット溶液に一斉に導入し、直ちにイメージ分析機(LAS-4000, FujiFilm)に移して5分刻みで30秒積算時間モードで光測定を行った。
本研究で測定したセレンテラジン類似体は、Promokine社の「セレンテラジンサンプラーキット」から9種類であった。即ち、native coelenterazine (nCTZ), coelenterazine h (CTZ h), coelenterazine f (CTZ f), coelenterazine i (CTZ i), coelenterazine n (CTZ n), coelenterazine cp (CTZ-cp), coelenterazine hcp (CTZ hcp), coelenterazine fcp (CTZ fcp), coelenterazine ip (CTZ ip)。
【0112】
TPv2.4は強い発光輝度のためには、nCTZ, CTZ h and CTZ fを好む
TPv2.4の基質選択性と経時変化特性を様々なセレンテラジン類似体を持って調べた(
図15)。
TPv2.4のための最も強い生物発光強度は、nCTZ, CTZ h and CTZ fの場合に観察された(
図15(A))。例えば、その絶対発光輝度は、CTZ iの場合に比べて4から5倍強かった。一方、基質の中でもCTZs hcp, fcp, and ip類は、発光輝度が弱くバックグラウンドに近い発光輝度を示した。より精密な分析のために「化学構造−輝度相関性」を調べたところ、発光輝度はセレンテラジンのC-2位置にある側鎖のサイズに依存していることが分かった。即ち、この位置の側鎖のサイズは、CTZ n, CTZ i, CTZ f, CTZ hの順で小さくなるが、輝度においては大体この順で強くなる。CTZ cp, CTZ hcp, CTZ fcp, CTZ ipの弱い発光輝度は、セレンテラジンC-8位置の側鎖により説明できる。本発明者の人工生物発光酵素(ALuc)の基質依存性に関する以前研究からも同様の結果を得ている(非特許文献7)。この先行研究でも発光輝度はCTZ n, CTZ i, CTZ f, CTZ hの順で上がっていた。
天然のセレンテラジンより長い発光輝度持続性は、CTZ n, CTZ iを用いた場合に観察できた(
図15(B))。CTZ iの発光半減期は基質導入から約15分ころである。一方、CTZ nの場合は、基質導入から20分が経っても初期発光輝度の6割程度温存していた。
分子歪みセンサー(TP)が示す上記結果は以下のように解析できる。(1)基質の発光輝度と安定性は基本的にC-2、C-6、C-8番側鎖における官能基のサイズ効果により支配される。(2)セレンテラジン類似体のC-2は発光輝度と持続性を決める最も重要なサイトである。(3)セレンテラジンのC-8位置は、基質が分子歪みセンサー(TP)を認識するために保存されているところであり、どのようなC-8位置の変化も、基質の分子歪みセンサー(TP)認識を妨げる。
【0113】
(実施例9)
TPv2.4を持つCOS-7細胞の生細胞イメージング
多チャンネルマイクロスライド(μ-slide VI
0.4, ibidi)にTPv2.4を発現する生きたCOS-7細胞の生物発光イメージングを行った。まずCOS-7細胞を6チャンネルマイクロスライドに培養し、細胞にTPv2.4をコードするpcDNA3.1(+)ベクターを一過性導入し、2日間培養した。その細胞の左と右の3つのチャンネルにはそれぞれコントロール(0.1%エタノール)か10
-6Mのラパマイシン刺激を4時間行った。その後、スライド内の培養液を基質(ネイティブセレンテラジン)が含有しているHBSSバッファーに交換した。その後、直ちにスライドをイメージ分析装置のチャンバー内に移して5分刻みで30秒積算モードで発光イメージを測定した。
【0114】
本プローブの概念を汎用性を調べるために他のタンパク質―タンパク質間結合モデルへの適用
TPv2.4をさらに改変することにより、当該概念が他のタンパク質―タンパク質間結合モデルに一般的に適用できるかどうかを試した(
図16(B))。
TPv2.4内のFRBとFKBPをコードするDNAをそれぞれER LBDとSH2ドメインに交替してTPv4.1に名づけた。リン酸化されたER LBDとSH2ドメイン間の結合は、哺乳類細胞内のERの典型的なノンゲノミックシグナル機構を代表する。別途、TPv2.4にあるALuc23 (18-212 AA)のcDNAをRLuc8のcDNAに代えた物をTPv4.2と名付けた(表3、
図11、16(B))。生物発光輝度は上述したように基質としてnCTZを用いたイメージ分析により測定した
【0115】
TPv2.4は生細胞におけるリガンド依存的な生物発光増加を誘発する
小動物モデルにおける生物発光イメージングは医学・薬学分野で魅力的なテーマである。本発光プローブの生体応用可能性を、TPv2.4を発現する生きたCOS-7細胞を用いて試した(
図16(A))。
10
-6Mのラパマイシンで刺激した右の3チャンネルだけが、コントロール(0.1% ethanol)刺激の左3チャンネルに比べて約6倍の強い発光を示した。このモデル研究で示す高いS/B比結果は、TPv2.4を発現する生きた哺乳類細胞を生きた動物の特定臓器に移植し、そこでラパマイシン活性を生物発光強度で確認できることを意味する。
【0116】
分子歪みセンサの基礎概念は他のタンパク質―タンパク質結合モデルにも一般的に適用できる
この分子歪みセンサーの概念の汎用性を以下のタンパク質―タンパク質結合モデル(PPI)で試した:即ち(i) TPv4.1 (
ER LBD-ALuc23-
SH2)では、17β-estradiol (E
2)がER LBDとSH2との結合を促進する;(ii) TPv4.2 (
FRB-RLuc8-
FKBP)の中ではラパマイシンがFRBとFKBPの結合を促進する。
【0117】
(実施例10)
新規人工生物発光酵素の作製及び発光活性評価
新規人工生物発光酵素群を樹立するために、公知のWebLogo Displayソフト(http://weblogo.berkeley.edu/logo.cgi)を用いて、天然の生物発光酵素群のアミノ酸配列から頻度の高いアミノ酸を抽出した(
図17)。その結果、アミノ酸配列中の一部の配列を欠損させた場合であっても、発光を可能とする酵素群を見出した。頻度の高いアミノ酸が浮き彫りになり、この配列を繋ぎ合わせることによりALuc41からALuc51番に至る発光酵素群を開発した。また、既存のALucの骨格に、ALuc41番代のアミノ酸配列を参考にした新規人工生物発光酵素群(ALuc51―ALuc57)を開発した。その具体的な配列は
図18−1で示した。
図18−2は、今回新規合成した人工生物発光酵素群の相対的な遺伝系統図を示す。この相対的な遺伝系統図は、CLUSTALW 2.1により計算した。
96穴マイクロプレートを用いてアフリカミドリサル腎臓由来のCOS-7細胞を培養した。COS-7細胞を培養プレートの底面面積の9割を占めるまで増殖させ、
図19と
図20で示したように、各発光酵素をコードするpcDNA 3.1(+) vector(Invitrogen)をそれぞれlipofection試薬(TransIT-LT1, Mirus)より一過性導入した。その後、1日程度さらに培養した。培養後、細胞溶解剤(Lysis buffer, Promega)を用いて細胞溶解液を作り、各ウェルからそれぞれ細胞溶解液を5μLずつ取って計測用の96穴マイクロプレートに移した。マルチチャンネルピペットを用いて、天然のセレンテラジンが含有されているアッセイバッファー(50μL)を各ウェルに同時に添加した。アッセイバッファーを添加後直ちにイメージアナライザー(LAS-4000, FujiFilm)の暗箱に入れて、CCDカメラより発光イメージを測定した(
図19、20)。
その結果、何れの新規人工生物発光酵素も従来の天然型ルシフェラーゼ等と比較して高い発光活性を持つことが分かった。とりわけALuc45、ALuc49、ALuc50などは、従来のALuc(例えば、Aluc16、ALuc30)と比較してもさらに強い発光輝度を示すことが確認できた。一方で、ALuc41、ALuc46、ALuc47などは従来のALuc(例えば、Aluc16、ALuc30)と比較して、相対的に低い発光輝度を示した。
【0118】
(実施例11)
生物発光プローブの金属陽イオン効果
生物発光プローブの金属イオン効果を、精製した生物発光プローブを用いて調べた(
図21、22)。
まずこの実験のために、N末端とC末端にFRBとFKBPというラパマイシン結合タンパク質を配置しその間に人工生物発光酵素(ALuc23)を挿入した独特な分子プローブを開発した(
図21)。本プローブは、ラパマイシン有りの条件でFRBとFKBP間の分子内タンパク質―タンパク質間相互作用が起こり、そのためFRBとFKBPの間にあるALuc23に分子歪みがかかる。その結果、発光輝度が強くなる。
分子歪みセンサーをコードするpOPTHMベクターを大腸菌に導入し、融合タンパク質を発現させた(
図21)。その後、融合タンパク質をHisタグアフィニティ―カラムで精製し純粋な分子歪みセンサーを抽出した。この純粋な分子歪みセンサーのリガンド感受性を確認するために、ラパマイシン有り無しの条件で分子歪みセンサーの発光輝度を調べた。その結果、ラパマイシン有りの条件でより明るく発光した(
図21(B))。
さらに、本分子歪みセンサーの金属イオン効果を測定するために、ラパマイシン有り無しの条件、および様々な金属イオン添加による発光輝度の変化を測定した(
図22、23)。
この実験のために、精製した分子歪みセンサーの濃度をTris-HClバッファー(pH8.2)に希釈することで0.1mg/mLになるように合わせた。この分子歪みセンサーにラパマイシンを加え最終濃度が10
-5Mになるように調整した。その後、金属イオン入りのTris-HClバッファー(pH8.2)より希釈することで、0.01mg/mLの分子歪みセンサー溶液を調整した。この際、加えた金属イオンの最終濃度は10μg/mLであった。この溶液を96穴マイクロプレートに移し、マイクロインジェクターより基質溶液を添加しながら、金属イオンの有り無しの違いによる発光輝度を測定した。
同様の手法で、異なる金属イオン濃度に依存した発光プローブの発光安定性を調べた(
図23)。前記同様にマイクロインジェクターより基質溶液を添加した後、1分間の発光輝度の変化を測定した。