特許第6790393号(P6790393)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱レイヨン株式会社の特許一覧

<>
  • 特許6790393-α−オレフィン低重合体の製造方法 図000002
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6790393
(24)【登録日】2020年11月9日
(45)【発行日】2020年11月25日
(54)【発明の名称】α−オレフィン低重合体の製造方法
(51)【国際特許分類】
   C07C 2/30 20060101AFI20201116BHJP
   C07C 11/107 20060101ALI20201116BHJP
   B01J 31/14 20060101ALI20201116BHJP
   C07B 61/00 20060101ALN20201116BHJP
【FI】
   C07C2/30
   C07C11/107
   B01J31/14 Z
   !C07B61/00 300
【請求項の数】5
【全頁数】16
(21)【出願番号】特願2016-52522(P2016-52522)
(22)【出願日】2016年3月16日
(65)【公開番号】特開2017-165680(P2017-165680A)
(43)【公開日】2017年9月21日
【審査請求日】2018年10月31日
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱ケミカル株式会社
(74)【代理人】
【識別番号】100086911
【弁理士】
【氏名又は名称】重野 剛
(74)【代理人】
【識別番号】100144967
【弁理士】
【氏名又は名称】重野 隆之
(72)【発明者】
【氏名】江本 浩樹
【審査官】 西澤 龍彦
(56)【参考文献】
【文献】 特開平10−036431(JP,A)
【文献】 特開平08−134131(JP,A)
【文献】 特開2011−219474(JP,A)
【文献】 特開2014−159391(JP,A)
【文献】 特表平03−505225(JP,A)
【文献】 特開2006−218438(JP,A)
【文献】 米国特許出願公開第2013/0172650(US,A1)
【文献】 特表2009−518291(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C07C
C08F
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
遷移金属原子含有化合物(a)、窒素原子含有化合物(b)及びアルキルアルミニウム化合物(c)を含む触媒と、反応溶媒の存在下に、α−オレフィンの低重合反応を行ってα−オレフィン低重合体を製造する方法において、
該低重合反応系への該遷移金属原子含有化合物(a)の遷移金属原子の供給量に対し0.1以上30以下(モル比)の範囲で一酸化炭素の供給を行う、α−オレフィン低重合体の製造方法。
【請求項2】
前記遷移金属原子含有化合物(a)における遷移金属がクロムを含み、前記窒素原子含有化合物(b)がピロール化合物を含む請求項1に記載のα−オレフィン低重合体の製造方法。
【請求項3】
前記触媒が、更に、塩素原子含有化合物(d)を含む請求項1又は請求項2に記載のα−オレフィン低重合体の製造方法。
【請求項4】
前記低重合反応系への一酸化炭素の供給方法が、前記一酸化炭素を前記α−オレフィン中に含有させて、前記α−オレフィンと共に前記低重合反応系へ供給する方法であって、該α−オレフィン中の一酸化炭素の濃度が1.5モルppm以上30モルppm以下である請求項1〜3のいずれか1項に記載のα−オレフィン低重合体の製造方法。
【請求項5】
前記α−オレフィンがエチレンであり、前記α−オレフィン低重合体が1−ヘキセンである、請求項1〜4のいずれか1項に記載のα−オレフィン低重合体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、α−オレフィン低重合体の製造方法に関する。
【背景技術】
【0002】
α−オレフィン低重合体は、通常、触媒及び反応溶媒の存在下に、α−オレフィンを低重合反応させる方法で製造される。例えば、クロム化合物、ピロール化合物、アルキルアルミニウム化合物、及びハロゲン含有化合物を含む触媒と反応溶媒の存在下のエチレンの三量化反応により、1−ヘキセンを製造する方法が開示され、ハロゲン含有化合物としては、直鎖状炭化水素類のハロゲン化物(特許文献1)、ハロゲン化ベンジル化合物(特許文献2)、ジエチルアルミニウムクロリド(特許文献3)が例示されている。
【0003】
また、特許文献4には、クロム化合物、ピロール化合物、アルキルアルミニウム化合物、ハロゲン含有化合物に、更にハロゲン化オレフィンを含む触媒と反応溶媒の存在下に、エチレンの三量化反応で1−ヘキセンを製造する方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平8−134131号公報
【特許文献2】特開2011−219474号公報
【特許文献3】国際公開WO2005/082816号パンフレット
【特許文献4】特開2014−159391号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
α−オレフィンの低重合反応によるα−オレフィン低重合体の製造においては、α−オレフィンの低重合反応における触媒活性のさらなる改善が望まれている。
【0006】
本発明は、α−オレフィンの低重合反応によるα−オレフィン低重合体の製造において、触媒活性の更なる向上により、α−オレフィン低重合体を効率的に製造する方法を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者は、上記課題を解決すべく鋭意検討した結果、α−オレフィンの低重合反応の触媒原料として遷移金属原子含有化合物(a)、窒素原子含有化合物(b)及びアルキルアルミニウム化合物(c)を用いた場合、反応系内の遷移金属原子含有化合物(a)の遷移金属原子に対する一酸化炭素のモル比を所定の割合とすることにより、上記課題を解決することができることを見出した。
【0008】
即ち、本発明の要旨は、以下の[1]〜[5]に存する。
【0009】
[1] 遷移金属原子含有化合物(a)、窒素原子含有化合物(b)及びアルキルアルミニウム化合物(c)を含む触媒と、反応溶媒の存在下に、α−オレフィンの低重合反応を行ってα−オレフィン低重合体を製造する方法において、該低重合反応系への該遷移金属含有化合物(a)の遷移金属原子の供給量に対し0.1以上30以下(モル比)の範囲で一酸化炭素の供給を行う、α−オレフィン低重合体の製造方法。
【0010】
[2] 前記遷移金属原子含有化合物(a)における遷移金属がクロムを含み、前記窒素原子含有化合物(b)がピロール化合物を含む[1]に記載のα−オレフィン低重合体の製造方法。
【0011】
[3] 前記触媒が、更に、塩素原子含有化合物(d)を含む[1]又は[2]に記載のα−オレフィン低重合体の製造方法。
【0012】
[4] 前記α−オレフィン中の一酸化炭素の濃度が1.5モルppm以上30モルppm以下である[1]〜[3]のいずれかに記載のα−オレフィン低重合体の製造方法。
【0013】
[5] 前記α−オレフィンがエチレンであり、前記α−オレフィン低重合体が1−ヘキセンである、[1]〜[4]のいずれかに記載のα−オレフィン低重合体の製造方法。
【発明の効果】
【0014】
本発明によれば、α−オレフィンの低重合反応によるα−オレフィン低重合体の製造において、触媒活性が向上し、α−オレフィン低重合体を効率的に製造することができる。
【図面の簡単な説明】
【0015】
図1図1は、本発明のα−オレフィン低重合体の製造方法の一形態を示すプロセスフロー図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0017】
本発明のα−オレフィン低重合体の製造方法は、遷移金属原子含有化合物(a)、窒素原子含有化合物(b)及びアルキルアルミニウム化合物(c)を含む触媒と、反応溶媒の存在下に、原料α−オレフィンの低重合反応(オリゴマー化)を行ってα−オレフィン低重合体を製造するに当たり、低重合反応系に、遷移金属含有化合物(a)の遷移金属原子の供給量に対し0.1以上30以下(モル比)の範囲で、一酸化炭素を供給することを特徴とする。
【0018】
本発明においては、反応系への一酸化炭素の供給量を、遷移金属含有化合物(a)の遷移金属原子の供給量に対し0.1以上30以下(モル比)の範囲とすることにより、触媒活性の向上効果が得られる。そのメカニズムの詳細は明らかではないが、以下の通り推定される。
従来、一酸化炭素が反応系内に存在していると、触媒活性種の遷移金属に一酸化炭素が強く配位し、触媒活性は低下すると考えられていたが、本発明において意外にも触媒活性は向上した。これは、一酸化炭素が反応系内でアルキルアルミニウム化合物(c)と反応してアシルアルミニウム化合物となり、この生成物が触媒活性種と相互作用することで触媒がより活性化されることによると考えられる。
【0019】
[原料α−オレフィン]
本発明のα−オレフィン低重合体の製造方法において、原料として使用するα−オレフィンとしては、例えば、炭素数が2〜8の置換又は無置換のα−オレフィンが挙げられる。このようなα−オレフィンの具体例としては、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、3−メチル−1−ブテン、4−メチル−1−ペンテン等が挙げられる。中でも、本発明の原料のα−オレフィンとしてはエチレンが好適である。
原料のα−オレフィンは1種を単独で用いても、複数用いてもよい。
【0020】
また、エチレンを原料として用いる場合、通常、ポリマーグレードエチレンと呼ばれる高純度エチレン(純度99.90モル%以上)を用いるが、原料中に不活性ガス成分を含んでいても構わない。具体的な不活性ガス成分としては、メタン、エタン、窒素、プロパン等が挙げられる。
一方、原料エチレン中の反応性不純物成分は、存在させない又は極力少なくする方が望ましいと一般的に考えられている。具体的な反応性不純物成分は、プロピレン、プロパジエン、1,3−ブタジエン、メタノール、プロパノール、水素、酸素、水、アセチレン、二酸化炭素、一酸化炭素、硫化水素、硫化カルボニル、アルシン、オイル、窒素含有化合物類、カルボニル化合物類、酸素含有化合物類、塩素含有化合物類等が挙げられる。
なお、通常ポリマーグレードエチレンに不純物として一酸化炭素を含む場合であっても、その含有量は実質0.1モルppm未満であり、このように不純物として一酸化炭素を含むエチレンを原料として供給するのみでは、本発明で必要とする一酸化炭素供給量を満たすことはできない。
【0021】
[α−オレフィン低重合体]
本発明で製造されるα−オレフィン低重合体とは、前記原料α−オレフィンを低重合反応させたものである。α−オレフィンの低重合反応とは、原料α−オレフィンをオリゴマー化することである。
【0022】
α−オレフィン低重合体とは、原料α−オレフィンが数個結合したオリゴマーを意味し、得られるα−オレフィン低重合体は1種でも複数種が含まれた混合物でもよい。
α−オレフィン低重合体は、具体的には、原料であるα−オレフィンが2個〜10個、好ましくは2個〜5個結合したオリゴマーである。エチレンを原料とした場合、目的生成物であるα−オレフィン低重合体としては、炭素数4〜10の置換又は無置換の直鎖又は分岐鎖のα−オレフィンが好ましく、炭素数4〜10の無置換の直鎖のα−オレフィンがより好ましい。具体的には、エチレンの二量体である1−ブテン、三量体である1−ヘキセン、四量体である1−オクテン、五量体である1−デセン等が挙げられ、1−ヘキセン又は1−オクテンが好ましく、1−ヘキセンがより好ましい。目的生成物が1−ヘキセンである場合、生成物の混合物中、1−ヘキセンの含有率は90重量%以上が好ましい。
【0023】
[触媒]
本発明で使用する触媒は、遷移金属原子含有化合物(a)、窒素原子含有化合物(b)及びアルキルアルミニウム化合物(c)を含有する。また、更に塩素原子含有化合物(d)を含有してもよい。
【0024】
<遷移金属原子含有化合物(a)>
本発明の触媒の構成成分として好適に使用される遷移金属原子含有化合物(a)(以下「触媒成分(a)」と称す場合がある。)に含有される金属としては、遷移金属であれば特に限定されないが、中でも、周期表第4〜6族の遷移金属が好ましく用いられる。具体的に、好ましくはクロム、チタン、ジルコニウム、バナジウム及びハフニウムからなる群より選ばれる1種類以上の金属であり、更に好ましくはクロム又はチタンであり、最も好ましくはクロムである。
【0025】
遷移金属原子含有化合物(a)は、通常一般式MeZnで表される1種以上の化合物である。ここで、一般式MeZn中、Meは遷移金属元素であり、Zは任意の有機基又は無機基もしくは陰性原子である。nは1から6の整数を表し、2以上が好ましい。nが2以上の場合、Zは同一又は相互に異なっていても良い。
【0026】
有機基としては、置換基を有していても良い炭素数1〜30の炭化水素を含有した各種有機基が挙げられ、具体的には、カルボニル基、アルコキシ基、カルボキシル基、β−ジケトナート基、β−ケトカルボキシル基、β−ケトエステル基、アミド基等が挙げられる。
無機基としては、硝酸基、硫酸基等の金属塩形成基が挙げられる。
陰性原子としては、酸素、ハロゲン等が挙げられる。なお、ハロゲンが含まれる遷移金属原子含有化合物(a)は、後述する塩素原子含有化合物(d)には含まれない。
【0027】
遷移金属がクロムである遷移金属原子含有化合物(a)(以下、クロム含有化合物と呼ぶことがある)の場合、具体例としては、クロム(IV)−tert−ブトキシド、クロム(III)アセチルアセトナート、クロム(III)トリフルオロアセチルアセトナート、クロム(III)ヘキサフルオロアセチルアセトナート、クロム(III)(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)、Cr(PhCOCHCOPh)(但し、ここでPhはフェニル基を示す。)、クロム(II)アセテート、クロム(III)アセテート、クロム(III)2−エチルヘキサノエート、クロム(III)ベンゾエート、クロム(III)ナフテネート、クロム(III)ヘプタノエート、Cr(CHCOCHCOOCH、塩化第一クロム、塩化第二クロム、臭化第一クロム、臭化第二クロム、ヨウ化第一クロム、ヨウ化第二クロム、フッ化第一クロム、フッ化第二クロム等が挙げられる。
【0028】
遷移金属がチタンである遷移金属原子含有化合物(a)(以下、チタン含有化合物と呼ぶことがある)の場合、具体例としては、TiCl、TiBr、TiI、TiBrCl、TiBrCl、Ti(OC、Ti(OCCl、Ti(O−n−C、Ti(O−n−CCl、Ti(O−iso−C、Ti(O−iso−CCl、Ti(O−n−C、Ti(O−n−CCl、Ti(O−iso−C、Ti(O−iso−CCl、Ti(O−tert−C、Ti(O−tert−CCl、TiCl(thf)(左記化学式中、thfはテトラヒドロフランを表す。)、Ti((CHN)、Ti((CN)、Ti((n−CN)、Ti((iso−CN)、Ti((n−CN)、Ti((tert−CN)、Ti(OSOCH、Ti(OSO、Ti(OSO、Ti(OSO、TiCpCl、TiCpClBr(左記化学式中、Cpはシクロペンタジエニル基を表す。以下のジルコニウム含有化合物においても同様である。)、Ti(OCOC、Ti(OCOCCl、Ti(OCOC、Ti(OCOCCl、Ti(OCOC、Ti(OCOCCl、Ti(OCOC、Ti(OCOCClなどが挙げられる。
【0029】
遷移金属がジルコニウムである遷移金属原子含有化合物(a)(以下、ジルコニウム含有化合物と呼ぶことがある)の場合、具体例としては、ZrCl、ZrBr、ZrI、ZrBrCl、ZrBrCl、Zr(OC、Zr(OCCl、Zr(O−n−C、Zr(O−n−CCl、Zr(O−iso−C、Zr(O−iso−CCl、Zr(O−n−C、Zr(O−n−CCl、Zr(O−iso−C、Zr(O−iso−CCl、Zr(O−tert−C、Zr(O−tert−CCl、Zr((CHN)、Zr((CN)、Zr((n−CN)、Zr((iso−CN)、Zr((n−CN)、Zr((tert−CN)、Zr(OSOCH、Zr(OSO、Zr(OSO、Zr(OSO、ZrCpCl、ZrCpClBr、Zr(OCOC、Zr(OCOCCl、Zr(OCOC、Zr(OCOCCl、Zr(OCOC、Zr(OCOCCl、Zr(OCOC、Zr(OCOCCl、ZrCl(HCOCFCOF)、ZrCl(CHCOCFCOCHなどが挙げられる。
【0030】
遷移金属がハフニウムである遷移金属原子含有化合物(a)(以下、「ハフニウム含有化合物」と呼ぶことがある。)の場合、具体例としては、ジメチルシリレンビス{1−(2−メチル−4−イソプロピル−4H−アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−メチル−4−(4−フルオロフェニル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−メチル−4−(3−クロロフェニル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス[1−{2−メチル−4−(2,6−ジメチルフェニル)−4H−アズレニル}]ハフニウムジクロリド、ジメチルシリレンビス{1−(2−メチル−4,6−ジイソプロピル−4H−アズレニル)}ハフニウムジクロリド、ジフェニルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ハフニウムジクロリド、メチルフェニルシリレンビス{1−(2−メチル−4−フェニル−4H−アズレニル)}ハフニウムジクロリド、メチルフェニルシリレンビス〔1−{2−メチル−4−(1−ナフチル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス{1−(2−エチル−4−フェニル−4H−アズレニル)}ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−エチル−4−(1−アントラセニル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−エチル−4−(2−アントラセニル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−エチル−4−(9−フェナンスリル)−4H−アズレニル}〕ハフニウムジクロリド、ジメチルメチレンビス[1−{2−メチル−4−(4−ビフェニリル)−4H−アズレニル}]ハフニウムジクロリド、ジメチルゲルミレンビス[1−{2−メチル−4−(4−ビフェニリル)−4H−アズレニル}]ハフニウムジクロリド、ジメチルシリレンビス{1−(2−エチル−4―(3,5−ジメチル−4−トリメチルシリルフェニル−4H−アズレニル)}ハフニウムジクロリド、ジメチルシリレン[1−{2−メチル−4−(4−ビフェニリル)−4H−アズレニル}][1−{2−メチル−4−(4−ビフェニリル)インデニル}]ハフニウムジクロリド、ジメチルシリレン{1−(2−エチル−4−フェニル−4H−アズレニル)}{1−(2−メチル−4,5−ベンゾインデニル)}ハフニウムジクロリド、ジメチルシリレンビス{1−(2−メチル−4−フェニルインデニル)}ハフニウムジクロリド、ジメチルシリレンビス{1−(2−メチル−4,5−ベンゾインデニル)}ハフニウムジクロリド、ジメチルシリレンビス〔1−{2−メチル−4−(1−ナフチル)インデニル}〕ハフニウムジクロリド等が挙げられる。
【0031】
これらの遷移金属原子含有化合物(a)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの遷移金属原子含有化合物(a)の中でも、クロム含有化合物が好ましく、クロム含有化合物の中でも特に好ましくはクロム(III)2−エチルヘキサノエートである。
【0032】
<窒素原子含有化合物(b)>
本発明において、触媒の構成成分として好適に使用される窒素原子含有化合物(b)(以下「触媒成分(b)」と称す場合がある。)は、特に限定されないが、アミン類、アミド類又はイミド類等が挙げられる。
【0033】
アミン類としては、例えばピロール化合物、インドール化合物が挙げられ、ピロール化合物の具体例としては、ピロール及び2,4−ジメチルピロール、2,5−ジメチルピロール、2,5−ジエチルピロール、2,4−ジエチルピロール、2,5−ジ−n−プロピルピロール、2,5−ジ−n−ブチルピロール、2,5−ジ−n−ペンチルピロール,2,5−ジ−n−ヘキシルピロール、2,5−ジベンジルピロール,2,5−ジイソプロピルピロール、2−メチル−5−エチルピロール、2,5−ジメチル−3−エチルピロール、3,4−ジメチルピロールのようなアルキルピロール、3,4−ジクロロピロール、2,3,4,5−テトラクロロピロールのようなハロゲン化ピロール、2−アセチルピロールのようなアセチルピロール、2つのピロール環が置換基を介して結合したジピロール等のピロール又はこれらの誘導体が挙げられる。インドール化合物としては、インドール及び2−メチルインドールのようなアルキルインドールが挙げられる。
【0034】
誘導体としては、例えば、金属ピロライド誘導体が挙げられ、具体例としては、例えば、ジエチルアルミニウムピロライド、エチルアルミニウムジピロライド、アルミニウムトリピロライド、ジエチルアルミニウム(2,5−ジメチルピロライド)、エチルアルミニウムビス(2,5−ジメチルピロライド)、アルミニウムトリス(2,5−ジメチルピロライド)、ジエチルアルミニウム(2,5−ジエチルピロライド)、エチルアルミニウムビス(2,5−ジエチルピロライド)、アルミニウムトリス(2,5−ジエチルピロライド)等のアルミニウムピロライド類、ナトリウムピロライド、ナトリウム(2,5−ジメチルピロライド)等のナトリウムピロライド類、リチウムピロライド、リチウム(2,5−ジメチルピロライド)等のリチウムピロライド類、カリウムピロライド、カリウム(2,5−ジメチルピロライド)等のカリウムピロライド類が挙げられる。なお、アルミニウムピロライド類は、後述のアルキルアルミニウム化合物(c)には含まれない。また、ハロゲンを含有するピロール化合物は、後述の塩素原子含有化合物(d)には含まれない。
【0035】
また、ビス(ジエチルホスフィノ−エチル)アミン、ビス(ジフェニルホスフィノ−エチル)アミン、N,N−ビス(ジフェニルホスフィノ)メチルアミン、N,N−ビス(ジフェニルホスフィノ)イソプロピルアミン、N,N−ビス(ジフェニルホスフィノ)−1,2−ジメチルプロピルアミンのようなジホスフィノアミン類でもよい。
【0036】
アミド類としては、例えば、アセトアミド、N−メチルヘキサンアミド、スクシンアミド、マレアミド、N−メチルベンズアミド、イミダゾール−2−カルボキソアミド、ジ−2−テノイルアミン、β−ラクタム、δ−ラクタム、ε−カプロラクタム又はこれらと周期表の第1、2若しくは13族の金属との塩が挙げられる。
【0037】
イミド類としては、例えば、1,2−シクロヘキサンジカルボキシイミド、スクシンイミド、フタルイミド、マレイミド、2,4,6−ピペリジントリオン、ペルヒドロアゼシン−2,10−ジオン又はこれらと周期表の第1、2若しくは13族の金属との塩が挙げられる。
【0038】
スルホンアミド類およびスルホンイミド類としては、例えば、ベンゼンスルホンアミド、N−メチルメタンスルホンアミド、N−メチルトリフルオロメチルスルホンアミド、又はこれらと周期表の第1、2若しくは13族の金属との塩が挙げられる。
【0039】
これらの窒素原子含有化合物(b)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明では、これらの中でも、アミン類が好ましく、中でもピロール化合物がより好ましく、特に好ましくは2,5−ジメチルピロール又はジエチルアルミニウム(2,5−ジメチルピロライド)である。
【0040】
<アルキルアルミニウム化合物(c)>
本発明の触媒成分として好適に使用されるアルキルアルミニウム化合物(c)(以下「触媒成分(c)」と称す場合がある。)は、特に限定されないが、トリアルキルアルミニウム化合物、アルコキシアルキルアルミニウム化合物、水素化アルキルアルミニウム化合物、アルキルアルミノキサン化合物などが挙げられる。
なお、塩素化アルキルアルミニウム化合物は、アルキルアルミニウム化合物(c)には含まれず、後述の塩素原子含有化合物(d)に含まれるものとする。
【0041】
トリアルキルアルミニウム化合物としては、1つのアルキル基の炭素数が1〜8であるトリアルキルアルミニウム化合物が挙げられ、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが挙げられる。アルコキシアルミニウム化合物としては、例えばジエチルアルミニウムエトキシドが挙げられる。水素化アルキルアルミニウム化合物としては、例えばジエチルアルミニウムヒドリドが挙げられる。アルキルアミノキサン化合物としては、例えばメチルアルミノキサンが挙げられる。
【0042】
これらのアルキルアルミニウム化合物(c)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、トリアルキルアルミニウム化合物が好ましく、トリエチルアルミニウムが更に好ましい。
【0043】
<塩素原子含有化合物(d)>
本発明においては、触媒として更に塩素原子含有化合物(d)(以下、「触媒成分(d)」と称す場合がある。)を用いてもよい。塩素原子含有化合物(d)としては、塩素化炭化水素化合物、塩素化典型金属原子含有化合物から選ばれる少なくとも1種の化合物が好ましい。このうち、塩素化典型金属原子含有化合物としては、周期表第12〜15族の典型金属原子を含有する塩素化合物が挙げられ、具体的には、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、三塩化アルミニウム、エチルアルミニウムエトキシクロリド、塩化錫(II)、塩化錫(IV)、四塩化ゲルマニウム、塩化アンチモン(III)、塩化アンチモン(V)、塩化亜鉛等が挙げられる。これらの中でも、アルミニウムクロリド類が好ましく、ジエチルアルミニウムクロリドが更に好ましい。
【0044】
塩素化炭化水素化合物としては、例えば、四塩化炭素、アリルクロリド、1、2−ジクロロエタン、1,2−ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン(パークロロエチレン)、塩素化飽和炭化水素化合物、塩素化ベンジル化合物、塩素化芳香族多環化合物が挙げられる。中でも、塩素化飽和炭化水素化合物及び塩素化ベンジル化合物の少なくともいずれか一方を含むことがα−オレフィンの低重合反応によるα−オレフィン低重合体の選択率向上の点から好ましく、塩素化飽和炭化水素化合物の炭素数は2以上10以下がより好ましい。
【0045】
炭素数2以上10以下の塩素化飽和炭化水素化合物としては、1,1,2,2−テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン等が挙げられる。これらの中でも、1,1,2,2−テトラクロロエタン又はヘキサクロロエタンが好ましい。
【0046】
塩素化ベンジル化合物としては、ベンジルクロリド、(1−クロロエチル)ベンゼン、2−メチルベンジルクロリド、3−メチルベンジルクロリド、4−メチルベンジルクロリド、4−エチルベンジルクロリド、4−イソプロピルベンジルクロリド、4−tert−ブチルベンジルクロリド、4−ビニルベンジルクロリド、α−エチル−4−メチルベンジルクロリド、α,α’−ジクロロ−o−キシレン、α,α’−ジクロロ−m−キシレン、α,α’−ジクロロ−p−キシレン、2,4−ジメチルベンジルクロリド、2,5−ジメチルベンジルクロリド、2,6−ジメチルベンジルクロリド、3,4−ジメチルベンジルクロリド、2,4,5−トリメチルベンジルクロリド、2,4,6−トリメチルベンジルクロリド、2,4,6−トリイソプロピルベンジルクロリド、2,3,5,6−テトラメチルベンジルクロリド、2−クロロベンジルクロリド、3−クロロベンジルクロリド、4−クロロベンジルクロリド、2−ブロモベンジルクロリド、3−ブロモベンジルクロリド、4−ブロモベンジルクロリド、2−フルオロベンジルクロリド、3−フルオロベンジルクロリド、4−フルオロベンジルクロリド、2−ニトロベンジルクロリド、3−ニトロベンジルクロリド、4−ニトロベンジルクロリド、2−シアノベンジルクロリド、3−シアノベンジルクロリド、4−シアノベンジルクロリド、2−メトキシベンジルクロリド、3−メトキシベンジルクロリド、4−メトキシベンジルクロリド、2−フェノキシベンジルクロリド、4−(メチルチオ)ベンジルクロリド、4−(トリフルオロメトキシ)ベンジルクロリド、1−(1−クロロエチル)−4−ニトロベンゼン、2,3−ジクロロベンジルクロリド、2,4−ジクロロベンジルクロリド、2,6−ジクロロベンジルクロリド、3,4−ジクロロベンジルクロリド、2,4−ジフルオロベンジルクロリド、2,6−ジフルオロベンジルクロリド、2−クロロ−4−フルオロベンジルクロリド、2−クロロ−6−フルオロベンジルクロリド、4−ブロモ−2−フルオロベンジルクロリド、2−メチル−3−ニトロベンジルクロリド、4−メチル−3−ニトロベンジルクロリド、5−メチル−2−ニトロベンジルクロリド、2−メチル−2−フェノキシベンジルクロリド、α,α’,2,3,5,6−ヘキサクロロ−p−キシレン、α,α’,2,4,5,6−ヘキサクロロ−m−キシレン等が挙げられる。これらの中でも、ベンジルクロリドが好ましい。
【0047】
また、塩素化芳香族多環化合物としては、1−(クロロメチル)ナフタレン、1−(クロロメチル)−2−メチルナフタレン、1,4−ビス−クロロメチル−2,3−ジメチルナフタレン、1,8−ビス−クロロメチル−2,3,4,5,6,7−ヘキサメチルナフタレン、9−(クロロメチル)アントラセン、9,10−ビス(クロロメチル)アントラセン、7−(クロロメチル)ベンズアントラセン、7−クロロメチル−12−メチルベンズアントラセン等が挙げられる。
【0048】
<触媒成分の供給量>
遷移金属原子含有化合物(a)、窒素原子含有化合物(b)、及びアルキルアルミニウム化合物(c)の各構成成分の比率は、特に限定されないが、通常、遷移金属原子含有化合物(a)の遷移金属原子1モルに対し、窒素原子含有化合物(b)が1モル〜100モル、好ましくは2モル〜50モルであり、アルキルアルミニウム化合物(c)のアルミニウム原子が1モル〜2000モル、好ましくは10モル〜500モルである。また、塩素原子含有化合物(d)を用いる場合、遷移金属原子含有化合物(a)の遷移金属原子1モルに対し、塩素原子含有化合物(d)の下限は通常1モル、好ましくは2モル、更に好ましくは3モル、上限は通常200モル、好ましくは150モル、より好ましくは100モル、更に好ましくは50モルである。なお、遷移金属原子含有化合物(a)の遷移金属原子1モルに対するモル数とは、低重合反応系内における遷移金属原子に対するモル倍量と同義である。
【0049】
本発明において、触媒成分(a)〜(d)からなる触媒の使用量は特に限定されないが、通常、後述する反応溶媒1リットルあたり、遷移金属原子含有化合物(a)の遷移金属元素換算で1.0×10−7モル〜0.5モル、好ましくは5.0×10−7モル〜0.2モル、更に好ましくは1.0×10−6モル〜0.05モルとなる量である。
【0050】
<触媒成分の供給方法>
本発明において、α−オレフィン(原料α−オレフィン)としてエチレンを用いた場合、エチレンの低重合反応は、遷移金属原子含有化合物(a)としてクロム含有化合物を用い、遷移金属原子含有化合物(a)とアルキルアルミニウム化合物(c)とが予め接触しない態様でエチレンと遷移金属原子含有化合物(a)であるクロム含有化合物とを接触させて行うのが好ましい。
このような接触態様により、選択的にエチレンの三量化反応を行わせ、原料のエチレンから選択率90%以上でエチレンの三量体である1−ヘキセンを得ることができる。さらに、この場合、ヘキセンに占める1−ヘキセンの比率を99%以上にすることができる。
ここで、「遷移金属原子含有化合物(a)とアルキルアルミニウム化合物(c)とが予め接触しない態様」とは、エチレンの低重合反応の開始時に限定されず、その後の追加的なエチレン及び触媒成分の反応器への供給においても、このような態様が維持されることを意味する。また、回分反応形式についても同様の態様を利用するのが望ましい。
【0051】
[一酸化炭素]
本発明においてはまた、低重合反応系への上記触媒の遷移金属含有化合物(a)の遷移金属原子換算の供給量に対して、一酸化炭素を通常0.1以上30以下(モル比)、好ましくは0.3以上29以下(モル比)、より好ましくは1以上28以下(モル比)、特に好ましくは3以上27以下(モル比)の割合で供給する。
低重合反応系への一酸化炭素の供給量が上記上限よりも多いと、触媒活性種への一酸化炭素とアルキルアルミニウム化合物(c)の反応生成物の配位が多くなりすぎ、原料であるα−オレフィンの配位を阻害するため、反応活性が低下するおそれがある。また、上記下限よりも少ないと、一酸化炭素を供給することによる反応活性の向上効果を十分に得ることができないおそれがある。低重合反応系への遷移金属含有化合物(a)の遷移金属原子の供給量に対する一酸化炭素の供給量を前記モル比の範囲とすることより触媒活性を向上させることができる。
【0052】
反応系への一酸化炭素の供給方法は、特に限定されない。例えば、触媒成分を連続的に反応系へ供給する場合、一酸化炭素も連続的に供給する方法が挙げられる。この場合、一酸化炭素を原料α−オレフィン中に含有させて、原料α−オレフィンと共に供給してもよい。具体的には、一酸化炭素を好ましくは0.1モルppm以上50モルppm以下、より好ましくは1モルppm以上40モルppm以下、更に好ましくは1.5モルppm以上30モルppm以下含有する原料α−オレフィンを反応系に供給する方法が挙げられる。
一酸化炭素は原料α−オレフィンとは別に供給してもよく、例えば、反応器に直接一酸化炭素供給配管を経て供給してもよいし、未反応α−オレフィン又は溶媒の循環配管に一酸化炭素供給配管を経て供給してもよい。
回分式の反応系の場合、触媒仕込み量に合わせて一酸化炭素を供給すればよい。
【0053】
反応系に供給する一酸化炭素は、例えば、コークスのガス化法(部分酸化法)、メタノール分解法、LNG改質法等により製造される。原料α−オレフィン中に所定の濃度で一酸化炭素を含有させて反応系に供給する場合、このようにして得られた一酸化炭素を原料α−オレフィンに混合すればよい。
【0054】
[反応溶媒]
本発明のα−オレフィン低重合体の製造方法では、α−オレフィンの低重合反応を反応溶媒中で行う。
反応溶媒としては特に限定されないが、飽和炭化水素が好適に使用され、好ましくは、ブタン、ペンタン、3−メチルペンタン、n−ヘキサン、n−へプタン、2−メチルヘキサン、オクタン、シクロヘキサン、メチルシクロヘキサン、2,2,4−トリメチルペンタン、デカリン等の炭素数が3〜20の、鎖状飽和炭化水素又は脂環式飽和炭化水素である。また、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン等の芳香族炭化水素や低重合反応で生成するα−オレフィン低重合体そのもの、具体的には、エチレンを三量化する際に得られる1−ヘキセンやデセン等を用いることもできる。これらは、1種を単独で用いてもよく、2種以上の混合溶媒として使用することもできる。
【0055】
これらの溶媒の中でも、ポリエチレン等の副生ポリマーの生成あるいは析出を抑制できるという点、更に、高い触媒活性が得られる傾向にあるという点から、炭素数が4〜10の、鎖状飽和炭化水素又は脂環式飽和炭化水素を用いるのが好ましく、具体的にはn−ヘプタン又はシクロヘキサンが好ましく、最も好ましくはn−ヘプタンである。
【0056】
反応溶媒の使用量については特に制限はないが、通常、反応器に供給される原料α−オレフィン供給量に対して重量比で0.5〜5.0倍、好ましくは1.0〜2.5倍である。
ここで、前記原料α−オレフィン供給量は、反応器内で反応する原料α−オレフィンの消費量と反応溶媒に溶解する原料α−オレフィンの溶解量の和に等しい。
【0057】
[低重合反応条件]
本発明におけるα−オレフィンの低重合反応の反応温度としては、特に限定されないが、通常0〜250℃であり、好ましくは50〜200℃、更に好ましくは80〜170℃である。
また、反応圧力としては、特に限定されないが、通常、常圧〜25MPaGであり、好ましくは、0.5〜15MPaG、さらに好ましくは、1〜10MPaGの範囲である。
反応器内での滞留時間は、特に限定されないが、通常1分〜10時間、好ましくは3分〜3時間、更に好ましくは5〜60分の範囲である。
反応形式は、特に限定されず、回分式、半回分式または連続式のいずれであってもよい。
【0058】
[α−オレフィン低重合体の製造工程]
以下に、本発明のα−オレフィン低重合体の製造方法の一態様を示す図1を参照して、本発明によるα−オレフィン低重合体の製造工程を説明する。
以下の説明では、α−オレフィンとしてエチレンを原料とする1−ヘキセン(エチレンの三量体)の製造方法を例示するが、本発明は何らエチレンからの1−ヘキセンの製造に限定されない。
【0059】
図1の装置は、エチレンを触媒存在下で重合させる完全混合撹拌型の反応器10と、反応器10から抜き出された反応液から未反応エチレンガスを分離する脱ガス槽20と、脱ガス槽20から抜き出された反応液中のエチレンを留出させるエチレン分離塔30と、エチレン分離塔30から抜き出された反応液中の高沸点物質(以下、「HB(ハイボイラー)」と記すことがある。)を分離する高沸分離塔40と、高沸分離塔40の塔頂から抜き出された反応液を蒸留し、1−ヘキセンを留出させるヘキセン分離塔50とで主として構成される。また、脱ガス槽20及びコンデンサー20Aにおいて分離された未反応エチレンを循環配管21を介して反応器10に循環させる圧縮機60が設けられている。
【0060】
図1の装置では、エチレン供給管12aから圧縮機60及び第1供給管12を介して、反応器10に原料エチレンが連続的に供給される。この圧縮機60には、脱ガス槽20及びコンデンサー20Aにおいて分離された未反応エチレンが循環配管21を介して導入されると共に、エチレン分離塔30で分離されたエチレンが循環配管31を介して導入され、エチレン供給管12aからのエチレンと共に、原料エチレンとして反応器10に循環される。第1供給管12は、反応器10の手前で複数(例えば2〜8)に分岐して反応器の液相部に導入されてもよい(図示せず)。他方、第2供給管13からは、エチレンの低重合反応に使用する反応溶媒が反応器10に供給される。この反応溶媒は、後段のヘキセン分離塔50で分離回収されたものである。この第2供給管13には、触媒供給管13aを介して触媒成分のうちの遷移金属原子含有化合物(a)及び窒素原子含有化合物(b)が、触媒供給管13bを介して塩素原子含有化合物(d)がそれぞれ供給され、反応溶媒と共に反応器10に導入される。触媒供給管13bは、複数あってもよい(図示せず)。
また、第3供給管14からアルキルアルミニウム化合物(c)が反応器10に直接導入される。アルキルアルミニウム化合物(c)は、触媒供給管13a及び13bから触媒成分が供給される前の第2供給管13の反応溶媒で希釈された後、反応器10に供給されてもよい(図示せず)。
これらの触媒成分は、反応器10内の液相部に供給されることが好ましい。
【0061】
なお、ヘキセン分離塔50からの反応溶媒を反応器10に循環供給するに際し、触媒供給管13a及び13bから触媒成分が供給される前の第2供給管13の反応溶媒の少なくとも一部を、反応器10の気相部に供給してもよい。
【0062】
一酸化炭素を原料エチレン中に含有させて反応系に供給する場合、例えば、エチレン供給管12aに一酸化炭素供給管を接続して原料エチレンに一酸化炭素を注入してもよい。また、反応器10に直接一酸化炭素を供給する場合、図示しない一酸化炭素供給管を経て反応器10に直接一酸化炭素を注入してもよい。この場合、一酸化炭素は反応器10の液相部に注入することが好ましい。更に、未反応エチレンの循環配管21,31、エチレンガスを反応器に供給する第1供給管12、又は、溶媒を反応器に供給する第2供給管13に注入してもよい。
【0063】
反応器10としては、例えば、撹拌機10a、バッフル、ジャケット等が付設された従来周知の形式のものが挙げられる。撹拌機10aとしては、パドル、ファウドラー、プロぺラ、タービン等の形式の撹拌翼が、平板、円筒、ヘアピンコイル等のバッフルとの組み合わせで用いられる。
【0064】
反応器10の運転条件は、前述の反応条件の通りである。
【0065】
エチレンの三量化反応は、反応器10内の反応液中のエチレンに対する1−ヘキセンのモル比((反応液中の1−ヘキセン)/(反応液中のエチレン))が0.05〜1.5、特に0.10〜1.0となるように行うのが好ましい。従って、連続反応の場合には、反応液中のエチレンと1−ヘキセンとのモル比が上記の範囲になるように、触媒濃度、反応圧力、その他の条件を調節し、回分反応の場合には、モル比が上記の範囲にある時点において反応を停止させるのが好ましい。このようにすることにより、1−ヘキセンよりも沸点の高い成分の副生が抑制されて、1−ヘキセンの選択率が更に高められる傾向がある。
【0066】
反応器10において所定の転化率に達した反応生成液は、反応器10の底部から配管11を介して連続的に抜き出され、脱ガス槽20に供給される。このとき、失活剤供給管11aから供給された2−エチルヘキサノール等の触媒失活剤により、エチレンの三量化反応が停止される。脱ガス槽20で脱ガスされた未反応エチレンは、脱ガス槽20の上部からコンデンサー20A、循環配管21、圧縮機60及び第1供給管12を介して反応器10に循環供給される。また、未反応エチレンが脱ガスされた反応生成液は、脱ガス槽20の槽底から抜き出される。
【0067】
脱ガス槽20の運転条件は、通常、温度90℃〜140℃、好ましくは100℃〜140℃であり、圧力は1kg/cm(常圧)〜150kg/cm(0〜14.6MPaG)、好ましくは常圧〜90kg/cm(0〜8.7MPaG)である。
【0068】
脱ガス槽20の槽底から抜き出された反応生成液は、配管22を経てエチレン分離塔30に供給される。エチレン分離塔30では、蒸留により塔頂部からエチレンが留出分離され、このエチレンは、循環配管31及び第1供給管12を介して反応器10に循環供給される。また、塔底部からエチレンが除去された反応生成液が抜き出される。
【0069】
エチレン分離塔30の運転条件は、通常、塔頂部圧力は常圧〜30kg/cm(0〜2.8MPaG)、好ましくは常圧〜20kg/cm(0〜1.9MPaG)、また、還流比(R/D)は、通常0〜500、好ましくは0.1〜100である。必要な理論段数は、通常2〜20段である。
【0070】
エチレン分離塔30においてエチレンが留出分離された反応生成液は、エチレン分離塔30の塔底部から抜き出され、配管32により高沸分離塔40に供給される。高沸分離塔40では、蒸留により、塔底部から配管42を経て高沸点成分(HB:ハイボイラー)が抜き出される。また、塔頂部から配管41を経て高沸点成分が分離された留出物が抜き出される。
【0071】
高沸分離塔40の運転条件は、通常、塔頂部圧力0.1〜10kg/cm(−0.09〜0.9MPaG)、好ましくは0.5〜5kg/cm(−0.05〜0.4MPaG)、また、還流比(R/D)は、通常0〜100、好ましくは0.1〜20である。必要な理論段数は、通常3〜50段である。
【0072】
続いて、高沸分離塔40の塔頂部から抜き出された留出液は、配管41によりヘキセン分離塔50に供給される。ヘキセン分離塔50では、蒸留により塔頂部から1−ヘキセンが配管51を経て留出される。また、ヘキセン分離塔50の塔底部からは、反応溶媒、例えば、n−ヘプタンが抜き出され、溶媒循環配管52、ポンプ13c、第2供給管13を介して反応溶媒として反応器10に循環供給される。
【0073】
ヘキセン分離塔50の運転条件は、通常、塔頂部圧力0.1〜10kg/cm(−0.09〜0.9MPaG)、好ましくは0.5〜5kg/cm(−0.05〜0.4MPaG)、また、還流比(R/D)は、通常0〜100、好ましくは0.2〜20である。必要な理論段数は、通常5〜100段である。
【実施例】
【0074】
以下、実施例に基づき本発明をさらに具体的に説明する。尚、本発明は、その要旨を逸脱しない限り、以下の実施例に限定されるものではない。
【0075】
なお、以下の実施例において、遷移金属原子含有化合物(a)として用いたクロム(III)−2−エチルヘキサノエートは、クロム原子を化合物中に1個有するものであり、遷移金属原子含有化合物(a)に対する一酸化炭素のモル比がそのまま反応系内の遷移金属原子に対する一酸化炭素のモル比となる。
【0076】
[実施例1]
<触媒液の調製>
140℃で2時間以上加熱乾燥させた、撹拌機を有する500mlのガラス製三つ口フラスコに、窒素雰囲気下で2,5−ジメチルピロールを0.37g(3.9mモル)とn−ヘプタンを234ml仕込み、これにn−ヘプタンで50g/Lに希釈したトリエチルアルミニウムを8.9ml(3.9mモル)添加した。その後、フラスコをオイルバスに浸した後に昇温し、窒素雰囲気下でn−ヘプタンの還流を98℃で3時間行うことで、窒素原子含有化合物であるジエチルアルミニウム(2,5−ジメチルピロライド)(b)を調製した。その後、80℃まで冷却した。続いて、n−ヘプタンで50g/Lに希釈したクロム(III)−2−エチルヘキサノエート(a)を6.3ml(0.65mモル)添加した。添加後、窒素雰囲気下で80℃で、30分間加熱、撹拌し、触媒液を調製した。その後、クロム(III)−2−エチルヘキサノエート(a)の濃度が0.88g/Lとなるよう、触媒液をn−ヘプタンで希釈した。尚、n−ヘプタンは、モレキュラーシーブ4Aで脱水されたものを使用した。(後述のn−ヘプタンも脱水品を使用した。)
【0077】
<ヘキセンの製造>
次に、140℃で2時間以上加熱乾燥させた500mlオートクレーブ一式を熱いうちに組み立て、真空窒素置換を行った。以後の操作は、窒素雰囲気下で実施し、酸素及び水分の混入を防止した。このオートクレーブには耐圧の破裂板を備えた触媒フィード管を取り付けた。フィード管には、予め上記のように調製した触媒液を2ml仕込んだ。オートクレーブの胴側には、n−ヘプタン及びトリエチルアルミニウム(c)、ヘキサクロロエタン(d)の各n−ヘプタン希釈液をクロム(III)−2−エチルヘキサノエート(a):トリエチルアルミニウム(c):
ヘキサクロロエタン(d)=1:54:6(モル比)になるように仕込んだ。
反応溶媒であるn−ヘプタンはオートクレーブの胴側で計168ml(各触媒成分を希釈したn−ヘプタンを含む)になり、更に、ガスクロマトグラフィーで組成分析する際の内部標準として使用するn−ウンデカン(モレキュラーシーブ4A 脱水品)をオートクレーブの胴側に5ml仕込んだ。
更に、オートクレーブの胴側には、クロム(III)−2−エチルヘキサノエート(a)に対して20モル比の一酸化炭素を液相に仕込んだ。
【0078】
オートクレーブを140℃まで加温した後、触媒フィード管よりエチレンを導入し、エチレンの低重合反応を開始した。反応中はオートクレーブ内の温度を140℃、全圧を7MPaGに保持した。
60分後、エチレンの導入と撹拌を停止し、オートクレーブを素早く冷却した後すぐに、気相ノズルよりガスを全量サンプリングした。そして反応液をサンプリングし、ガスクロマトグラフィーでそれぞれの組成分析を行った。また反応液を濾過して乾燥後、反応液中に含まれるポリマー重量の測定を行った。これらの結果から反応生成物の重量(単位:g)を算出した。
【0079】
触媒活性は、60分の反応により得られた反応生成物の重量(単位:g)を、反応に使用した遷移金属触媒成分(a)中の遷移金属原子量(単位:g)で除することにより算出した。その結果、触媒活性は、370000g/g−Crであった。
【0080】
[比較例1]
実施例1において、オートクレーブの胴側に、一酸化炭素を仕込まなかった以外は、全て同様の方法で行った。その結果、触媒活性は、300000g/g−Crであった。
【0081】
[比較例2]
実施例1において、オートクレーブの胴側に、クロム(III)−2−エチルヘキサノエート(a)に対して40モル比の一酸化炭素を仕込んだ以外は、全て同様の方法で行った。その結果、触媒活性は、230000g/g−Crであった。
【0082】
これらの結果から、触媒として用いる遷移金属原子含有化合物(a)の遷移金属原子換算の供給量に対して一酸化炭素を所定のモル比で供給することにより、触媒活性を向上させて、α−オレフィン低重合体の収率を高めることができることが分かる。
【0083】
以上、本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
【符号の説明】
【0084】
10 反応器
10a 撹拌機
20 脱ガス槽
30 エチレン分離塔
40 高沸分離塔
50 ヘキセン分離塔
60 圧縮機
図1