(58)【調査した分野】(Int.Cl.,DB名)
前記導光板を準備する工程において、前記導光板の前記第2主面に複数の凹部を形成し、前記複数の凹部に波長変換材料を配置して、複数の波長変換部を形成する、請求項1に記載の発光モジュールの製造方法。
第1主面と第2主面とを備える導光板と、前記導光板の前記第2主面にそれぞれ離間して配置された複数の波長変換部と、前記複数の波長変換部にそれぞれ接合された複数の発光素子と、前記複数の発光素子の少なくとも側面と前記導光板の前記第2主面とを封止する光反射性部材と、前記複数の発光素子と接続された配線と、を備える、発光モジュール。
【発明を実施するための形態】
【0009】
以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
さらに以下に示す実施形態は、本発明の技術思想を具体化するための発光モジュールを例示するものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
【0010】
(液晶ディスプレイ装置1000)
図1は、本実施形態にかかる液晶ディスプレイ装置1000の各構成を示す構成図である。
図1で示す液晶ディスプレイ装置1000は、上側から順に、液晶パネル120と、2枚のレンズシート110a、110b、拡散シート110cと、発光モジュール100とを備える。本実施形態にかかる液晶ディスプレイ装置1000は、液晶パネル120の下方に発光モジュール100を配置するいわゆる直下型の液晶ディスプレイ装置である。液晶ディスプレイ装置1000は、発光モジュール100から照射される光を、液晶パネル120に照射する。なお、上述の構成部材以外に、さらに偏光フィルムやカラーフィルタ等の部材を備えてもよい。
【0011】
(発光モジュール100)
本実施形態の発光モジュールの構成を
図2Aから
図2Cに示す。
図2Aは、本実施形態にかかる発光モジュールの模式平面
図100である。
図2Bは、本実施形態にかかる発光モジュール100を示す一部拡大模式断面図である。
図2Cは、実施形態にかかる導光板の光学機能部と凹部の一例を示す一部拡大模式平面図と一部拡大模式断面図である。
発光モジュール100は、導光板1と、複数の導光板1に接合された複数の発光素子11とを備える。複数の発光素子11は導光板1上にマトリクス状に配置されている。発光モジュール100の導光板1の第2主面1dには、複数の凹部1bが設けられており、該凹部1b内に波長変換材料が配置された離間した複数の波長変換部12を有している。この波長変換部のそれぞれに1つの発光素子11が接合されている。
【0012】
本開示に係る発光モジュールは、導光板上に発光素子を接合しているため、薄型化が可能となる。また、導光板上に発光素子を搭載、接着するため、基板上に発光素子を実装したものと導光板とを組み合わせる場合と比べ、発光素子と導光板と位置ずれが発生しづらい。これにより、良好な光学特性を備える発光モジュールとすることができる。特に、後述のように、導光板に発光素子それぞれと対応する光学機能部1aが設けられている場合に特に好ましい。
【0013】
直下型の液晶ディスプレイ装置では、液晶パネルと発光モジュールとの距離が近いため、発光モジュールの輝度ムラが液晶ディスプレイ装置の輝度ムラに影響を及ぼす可能性がある。そのため、直下型の液晶ディスプレイ装置の発光モジュールとして、輝度ムラの少ない発光モジュールが望まれている。
【0014】
本実施形態の発光モジュール100の構成をとれば、発光モジュール100の厚みを、5mm以下、3mm以下、1mm以下等、薄くすることができる。
【0015】
本実施形態にかかる発光モジュール100を構成する各部材および製造方法について以下に詳述する。
【0016】
(導光板1)
導光板1は、光源からの光が入射され、面状の発光を行う透光性の部材である。
本実施形態の導光板1は、発光面となる第1主面1cと、第1主面1cと反対側の第2主面1dと、を備える。
この導光板1の第2主面1dに複数の発光素子11を接合する。これにより、導光板1と発光素子11との距離を縮めることができ、発光モジュール100の薄型化が可能になる。
導光板1の大きさは、例えば、一辺が1cm〜200cm程度とすることができ、3cm〜30cm程度が好ましい。厚みは0.1mm〜5mm程度とすることができ、0.5mm〜3mmが好ましい。
導光板1の平面形状は例えば、略矩形や略円形等とすることができる。
【0017】
導光板1の材料としては、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート、ポリエステル等の熱可塑性樹脂、エポキシ、シリコーン等の熱硬化性樹脂等の樹脂材料やガラスなどの光学的に透明な材料を用いることができる。特に、熱可塑性の樹脂材料は、射出成型によって効率よく製造することができるため、好ましい。なかでも、透明性が高く、安価なポリカーボネートが好ましい。導光板1に発光素子11を実装した後に配線基板を貼りつける本実施形態の発光装置の製造方法においては、半田リフローのような高温がかかる工程を省略できるため、ポリカーボネートのような熱可塑性であり耐熱性の低い材料であっても用いることができる。
導光板1は、例えば、射出成型やトランスファーモールドで成形することができる。導光板1が後述する光学機能部1aや凹部1bを備えている場合には、これらも一括して金型で形成することが好ましい。これにより、光学機能部1aと凹部1bの成形位置ずれを低減することができる。
【0018】
本実施形態の導光板1は単層で形成されていてもよく、複数の透光性の層が積層されて形成されていてもよい。複数の透光性の層が積層されている場合には、任意の層間に屈折率の異なる層、例えば空気の層等を設けることが好ましい。これにより、光をより拡散させやすくなり、輝度ムラを低減した発光モジュールとすることができる。このような構成は、例えば、任意の複数の透光性の層の間にスペーサを設けて離間させ、空気の層を設けることで実現することができる。
また、導光板1の第1主面1c上に透光性の層と、導光板1の第1主面1cと該透光性の層の間に屈折率の異なる層、例えば空気の層等を設けてもよい。これにより、光をより拡散させやすくなり、輝度ムラを低減した液晶ディスプレイ装置とすることができる。このような構成は、例えば、任意の導光板1と透光性の層の間にスペーサを設けて離間させ、空気の層を設けることで実現することができる。
【0019】
(光学機能部1a)
導光板1は、第1主面側に光学機能部1aを備えていてもよい。
光学機能部1aは、例えば、光を導光板1の面内で広げる機能を有することができる。例えば、導光板1の材料と屈折率の異なる材料が設けられている。具体的には、第1主面1c側に設けられた逆円錐や逆四角錐、逆六角錐等の逆多角錐形等の凹みであって、導光板1と屈折率の異なる材料(例えば空気)と凹みの傾斜面との界面で照射された光を発光素子11の側方方向に反射するものを用いることができる。また例えば、傾斜面を有する凹部に光反射性の材料(例えば金属等の反射膜や白色の樹脂)等を設けたものであってもよい。光学機能部1aの傾斜面は、断面視において直線でもよく、曲線でもよい。
光学機能部1aは、後述するように、それぞれの発光素子11に対応する、つまり、第2主面1d側に配置された発光素子11と反対側の位置に設けられることが好ましい。特に、発光素子11の光軸と、光学機能部1aの光軸とが略一致することが好ましい。
光学機能部1aの大きさは、適宜設定することができる。
【0020】
(位置決め部、凹部1b)
導光板1は、第2主面1d側に、位置決め部1bを備えていてもよい。
位置決め部1bは、発光素子11の実装位置の目標とすることができればどのような形態でもよい。具体的には、例えば、
図2B及び
図3(a)に示すような凹部1bや、凸部、溝等とすることができる。
凹部1bの平面視における大きさは、例えば、0.05mm〜10mmとすることができ、0.1mm〜1mmが好ましい。深さは0.05mm〜4mmとすることができ、0.1mm〜1mmが好ましい。光学機能部1aと凹部1bの間の距離は光学機能部1aと凹部1bが離間している範囲で適宜設定できる。
凹部の平面視形状は、例えば、略矩形、略円形とすることができ、凹部の配列ピッチ等によって選択可能である。凹部の配列ピッチ(最も近接した2つの凹部の間の距離)が略均等である場合には、略円形または略正方形が好ましい。なかでも、略円形とすることで、発光素子11からの光を良好に広げることができる。
【0021】
(拡散部、波長変換部)
本実施形態の発光モジュールは、発光素子11からの光を拡散させる材料を有する拡散部や発光素子11からの光の波長を変換する波長変換部を備えていてもよい。
拡散部や波長変換部は、発光素子11と導光板1との間に設けられ、導光板1の第2主面1d側に配置されている。拡散部や波長変換部は、それに照射された発光素子11からの光を内部で拡散、均等化する。拡散部や波長変換部は、
図4に示すように、平坦な導光板1の第2主面1d上に配置され、第2主面1dの面から突出するように設けられていてもよいが、発光モジュール100の薄型化等の目的から、
図2Bに示すように、前述の導光板1の凹部1b内に配置されていることが好ましい。
【0022】
(波長変換部12)
本実施形態においては、発光モジュール100は、波長変換部12を備えることが好ましい。また、それぞれ離間した複数の波長変換部12を備えることが好ましい。これにより、波長変換材料を削減することができる。また、それぞれの発光素子11の1つに対して、1つの波長変換部12が設けられることが好ましい。これにより、発光素子からの光を波長変換部12において均一化させることで、輝度むらや色むらを低減することができる。
波長変換部12は、例えば、ポッティング、印刷、スプレー等の方法で形成することができる。導光板1の凹部1b内に波長変換材料を配置して波長変換部12を形成する場合には、例えば、液状の波長変換材料を導光板1の第2主面1dに載せた後、スキージ等で複数の凹部1b内にすり込むことで、量産性良く波長変換部12を形成することができる。
波長変換部の大きさや形状は、例えば、上述の凹部と同等程度とすることができる。
【0023】
なお、導光板1には、光学機能部1a以外の部分に光拡散、反射等をさせる加工を有していてもよい。例えば、光学機能部1aから離間した部分に微細な凹凸を設ける、または粗面とすることで、さらに光を拡散させ、輝度ムラを低減するようにすることができる。
波長変換部12は、例えば、母材の材料として、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、または、ガラスなどの透光性材料を用いることができる。波長変換部12の耐光性および成形容易性の観点からは、波長変換部12の母材としてシリコーン樹脂を選択すると有益である。波長変換部12の母材としては、導光板1の材料よりも高い屈折率を有する材料が好ましい。
【0024】
波長変換部12が含有する波長変換部材としては、YAG蛍光体、βサイアロン蛍光体またはKSF系蛍光体等のフッ化物系蛍光体などが挙げられる。特に、複数種類の波長変換部材を1つの波長変換部12において用いること、より好ましくは、波長変換部12が緑色系の発光をするβサイアロン蛍光体と赤色系の発光をするKSF系蛍光体等のフッ化物系蛍光体とを含むことにより、発光モジュールの色再現範囲を広げることができる。この場合、発光素子11は、波長変換部材を効率良く励起できる短波長の光を出射することが可能な窒化物半導体(In
xAl
yGa
1−x−yN、0≦X、0≦Y、X+Y≦1)を備えることが好ましい。また、例えば、青色系の光を出射する発光素子11を用いた際に、赤色系の光を得ることができるように、波長変換部12にKSF系蛍光体(赤色蛍光体)を60重量%以上、好ましくは90重量%以上含有させてもよい。つまり、特定の色の光を出射する波長変換部材を波長変換部12に含有させることで、特定の色の光を出射するようにしてもよい。また、波長変換部材は量子ドットであってもよい。
波長変換部12内において、波長変換部材はどのように配置されていてもよい。例えば、略均一に分布していてもよく、一部に偏在してもよい。また、波長変換部材をそれぞれ含有する複数の層が積層されて設けられていてもよい。
【0025】
拡散部としては、例えば上述した樹脂材料にSiO
2やTiO
2等の微粒子を含有させたものを用いることができる。
【0026】
(発光素子11)
発光素子11は、発光モジュール100の光源である。発光素子11は、複数が1つの導光板1に接合される。
【0027】
発光素子11は、主に発光を取り出す主発光面11cと、主発光面11cと反対側の電極形成面11dに一対の電極11bを有する。一対の電極11bは後述する配線基板20と対向して配置され、任意に配線層15等を介して、適宜配線基板20の基板配線と電気的に接続される。発光素子11と導光板1とは透光性樹脂等の透光性を有する透光性接合部材14を介して接合される。
【0028】
発光素子11は、例えば、サファイア等の透光性基板と、透光性基板の上に積層された半導体積層構造とを有する。半導体積層構造は、発光層と、発光層を挟むn型半導体層およびp型半導体層とを含み、n型半導体層およびp型半導体層にn側電極およびp側電極11bがそれぞれ電気的に接続される。発光素子11は、例えば透光性基板を備える主発光面11cが導光板と対向して配置され、主発光面11cと反対側の電極形成面11dに一対の電極11bを有する。
【0029】
発光素子11としては、縦、横および高さの寸法に特に制限は無いが、好ましくは平面視において縦および横の寸法が1000μm以下の半導体発光素子を用い、より好ましくは縦および横の寸法が500μm以下であり、さらに好ましくは、縦および横の寸法が200μm以下の発光素子を用いる。このような発光素子を用いると、液晶ディスプレイ装置のローカルディミングを行った際に、高精細な映像を実現することができる。また、縦および横の寸法が500μm以下の発光素子11を用いると、発光素子11を安価に調達することができるため、発光モジュール100を安価にすることができる。なお、縦および横の寸法の両方が250μm以下である発光素子は、発光素子の上面の面積が小さくなるため、相対的に発光素子の側面からの光の出射量が多くなる。つまり、このような発光素子は発光がバットウィング形状になりやすくなるため、発光素子11が導光板1に接合され、発光素子11と導光板1との距離がごく短い本実施形態の発光モジュール100に好ましく用いられる。
【0030】
さらに、導光板1にレンズ等の反射や拡散機能を有する光学機能部1aを設けて、発光素子11からの光を側方に広げ、導光板1の面内における発光強度を平均化させることが好ましい。しかし、複数の発光素子11に対応する複数の光学機能部1aを導光板1に形成した場合、小さい発光素子11と光学機能部1aの位置決めが難しくなる場合がある。また、発光素子11と光学機能部1aの位置ずれが発生すると、光学機能部1aに発光素子11との位置関係が設計からずれることで、光学機能部1aによって光を十分に広げることができず、明るさが面内において部分的に低下するなどして、輝度のムラになるという問題がある。
特に、従来のように、配線基板に発光素子を実装した後に導光板を組み合わせる方法においては、配線基板と発光素子との位置ずれと導光板の光学機能部との位置ずれとを、それぞれ平面方向及び積層方向において考慮に入れる必要があるため、発光素子と光学機能部とを良好に光学的に結合することが一層困難となる場合がある。
【0031】
そこで、本実施形態における発光モジュール100は、導光板1に予め設けられた複数の位置決め部(特に、波長変換部12)もしくは光学機能部1aを目印とし、導光板1上に複数の発光素子11を実装することで、このような発光素子11の位置決めを容易に行うことができる。このことにより、発光素子11からの光を精度よく均一化させ、輝度ムラや色ムラの少ない良質なバックライト用光源とすることができる。
【0032】
また、上述のように、光学機能部1aが設けられた面の反対側の面において光学機能部1aと対応した、つまり平面透視において光学機能部1aと重なる位置に、発光素子11を位置決め可能な位置決め部1bを設けることが好ましい。なかでも、位置決め部1bとして凹部1bを形成し、また凹部1bの内部に導光板1の部材とは異なる製造装置の位置認識に利用可能な拡散部、より好ましくは波長変換部12を形成することで、発光素子11と光学機能部1aとの位置決めをより容易に行うことができる。
【0033】
また、発光素子11の側面を光反射性部材(封止部材13)で被覆して発光の方向を限定し、また発光素子11の主発光面11cと対向する凹部1bの内部に拡散部や波長変換部12を設け、この拡散部または波長変換部12を主に光を取り出すことで、発光を内部で拡散させることが可能な拡散部や波長変換部12を発光部とみなすことができる。これにより、拡散部や波長変換部12と対向してはいるものの、平面視の範囲内において発生する発光素子11の位置ずれの影響をより低減することができる。
【0034】
発光素子11としては、平面視において長方形の発光素子を用いることが好ましい。換言すると、発光素子11はその上面形状が長手と短手を有することが好ましい。高精細な液晶ディスプレイ装置の場合、使用する発光素子11の数は数千個以上となり、発光素子11の実装工程は重要な工程となる。発光素子11の実装工程において、複数の発光素子の一部の発光素子に回転ずれ(例えば±90度方向のずれ)が発生したとしても、平面視において長方形の発光素子を用いることで目視での確認が容易となる。また、p型電極とn型電極の距離を離して形成することができるため、後述する配線15の形成を容易に行うことができる。
一方、平面視において正方形の発光素子を用いる場合は、小さい発光素子を量産性良く製造することができる。
発光素子11の密度(配列ピッチ)は、発光素子11間の距離は、例えば、0.05mm〜20mm程度とすることができ、1mm〜10mm程度が好ましい。
【0035】
複数の発光素子11は、導光板1の平面視において、二次元または二次元に配列される。好ましくは、複数の発光素子11は、
図2Aに示すように、直交する二方向、つまり、x方向およびy方向に沿って二次元的に配列される。複数の発光素子11のx方向の配列ピッチp
xは、y方向の配列ピッチp
yは、
図2Aの例に示すように、x方向およびy方向の間でピッチが同じであってもよいし、と異なっていてもよい。配列の二方向が直交していなくてもよい。また、x方向またはy方向の配列ピッチは等間隔に限られず、不等間隔であってもよい。例えば、導光板1の中央から周辺に向かって間隔が広くなるように発光素子11が配列されていてもよい。なお、発光素子11間のピッチとは、発光素子11の光軸間の距離である。
【0036】
発光素子11には、公知の半導体発光素子を利用することができる。本実施形態においては、発光素子11として発光ダイオードを例示する。発光素子11は、例えば、青色光を出射する。また、発光素子11として、白色光を出射する光源を用いてもよい。また、複数の発光素子11として異なる色の光を発する発光素子を用いてもよい。例えば、発光モジュール100が、赤、青、緑の光を出射する発光素子を含み、赤、青、緑の光が混合されることにより白色光が出射されてもよい。
【0037】
発光素子11として、任意の波長の光を出射する素子を選択することができる。例えば、青色、緑色の光を出射する素子としては、窒化物系半導体(In
xAl
yGa
1−x−yN、0≦X、0≦Y、X+Y≦1)またはGaPを用いた発光素子を用いることができる。また、赤色の光を出射する素子としては、GaAlAs、AlInGaPなどの半導体を含む発光素子を用いることができる。さらに、これら以外の材料からなる半導体発光素子を用いることもできる。半導体層の材料およびその混晶度によって発光波長を種々選択することができる。用いる発光素子の組成、発光色、大きさ、個数などは、目的に応じて適宜選択すればよい。
【0038】
(透光性接合部材14)
発光素子11と導光板1または拡散部または波長変換部12は、透光性接合部材14によって接合されてもよい。本実施形態においては、透光性接合部材14は、発光素子の主発光面11cと導光板1の間に設けられている。
【0039】
透光性接合部材14は、発光素子11から出射される光の60%以上を透過し、好ましくは90%以上を透過する。透光性接合部材14は、発光素子11から出射される光を導光板1に伝播させる役割を有する。そのため、透光性接合部材14は、拡散部材等を含むことは可能であるが、拡散部材等を含まない透光性の樹脂材料のみで構成されてもよい。
透光性接合部材14は、発光素子11の側面(主発光面11cと電極形成面11dをつなぐ面)を被覆していてもよい。さらに、発光素子11の発光層の側面を被覆することが好ましい。これにより、発光素子11の側面方向に出射された光を透光性接合部材14内に効率的に取り出し、発光モジュール100の発光効率を高めることができる。透光性接合部材14が発光素子11の側面を被覆する場合には、
図2Bに示すように、導光板1の方向に向かって断面視において広がる形状に形成することが好ましい。これにより、発光素子11の側面方向に出射された光を効率的に導光板1の方向に取り出すことができる。
【0040】
透光性接合部材14は、発光素子11が透光性基板を備える場合、その透光性基板の少なくとも側面の一部を被覆することが好ましい。これにより、発光層から出射される光のうち透光性基板内を伝播して横方向に出射される光を、上方に取り出すことができる。透光性接合部材14は、高さ方向において透光性基板の側面の半分以上を被覆することが好ましく、発光素子11の側面と電極形成面11dとがなす辺に接触するように形成することがさらに好ましい。
さらに、透光性接合部材14は、導光板1の第1主面1c側から見た平面視において、拡散部ないしは波長変換部12の外縁より内側の範囲に限定して配置されることが好ましい。これにより、発光素子11の光を拡散部ないしは波長変換部12に効率的に入光させることができるため、発光の輝度ムラや色ムラを低減することができる。
【0041】
透光性接合部材14の材料としては、エポキシ樹脂、シリコーン樹脂等の透光性の熱硬化性の樹脂材料等を用いることができる。
【0042】
(封止部材13)
本実施形態の封止部材13は、複数の発光素子11の側面と導光板1の第2主面1dと透光性接合部材14の側面とを封止している。これにより、発光素子11と導光板1を補強することができる。また、この封止部材13を光反射性部材とすることで、発光素子11からの発光を導光板1に効率よく取り入れることができる。また、光反射性部材13が、発光素子11を保護する部材と導光板1の出射面と反対側の面に設けられる反射部材とを兼ねることにより、発光モジュール100の薄型化を図ることができる。
なお、
図4に示すように、波長変換部12が導光板1の第2主面上に設けられ、その波長変換部12の側面等の面が導光板1から露出している場合には、その露出した部分も被覆することが好ましい。
【0043】
封止部材13は、光反射性部材であることが好ましい。
光反射性部材13は、発光素子11から出射される光に対して60%以上の反射率を有し、好ましくは90%以上の反射率を有する。
光反射性部材13の材料は、白色の顔料等を含有させた樹脂であることが好ましい。特に、酸化チタンを含有させたシリコーン樹脂が好ましい。これにより、導光板1の一面を被覆するために比較的大量に用いられる材料として酸化チタンのような安価な原材料を多く用いることで、発光モジュール100を安価にすることができる。
【0044】
(配線15)
発光モジュール100には、複数の発光素子11の電極11bと電気的に接続される配線15が設けられていてもよい。配線15は、封止部材又は光反射性部材13等の導光板1と反対側の面に形成することができる。配線15を設けることにより、例えば複数の発光素子11同氏を電気的に接続することができ、液晶ディスプレイ装置1000のローカルディミング等に必要な回路を容易に形成することができる。
配線15は、例えば、
図3(g)〜(h)に示すように、発光素子11の正負の電極11bを封止部材13の表面に露出させ、発光素子11の電極11b及び封止部材13の表面の略全面に金属膜15aを形成し、該金属膜15aをレーザ等で一部除去してパターンニングすることにより、配線15を形成することができる。
【0045】
(配線基板20)
本開示の発光モジュール100は、
図3(i)に示すように、配線基板20を有していてもよい。これにより、ローカルディミング等に必要な複雑な配線を容易に形成することができる。この配線基板20は、発光素子11を導光板1に実装し、任意に封止部材13及び配線15を形成した後に、別途配線層20bを備える配線基板20を発光素子の電極11bないし配線15と接合することで形成することができる。また、発光素子11と接続する配線15を設ける際、該配線15を発光素子11の電極11bの平面形状よりも大きい形状とすることで、この配線基板20と発光素子11等との電気的な接合を容易に行うことができる。
【0046】
配線基板20は、絶縁性の基材20aと、複数の発光素子11と電気的に接続される配線層20b等を備える基板である。配線基板20は、例えば、絶縁性の基材20aに設けられた複数のビアホール内に充填された導電性部材20cと、基材20aの両面側において導電性部材20cと電気的に接続された配線層20bが形成されている。
【0047】
配線基板20の材料としては、どのようなものであってもよい。例えば、セラミックスおよび樹脂を用いることができる。低コストおよび成形容易性の点から、樹脂を基材20aの材料として選択してもよい。樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)、不飽和ポリエステル、ガラスエポキシ等の複合材料等を挙げることができる。また、リジッド基板であってもよく、フレキシブル基板であってもよい。本実施形態の発光モジュール100においては、発光素子と導光板との位置関係が予め定められているため、配線基板20の材料としては、熱等で反りが発生したり、伸びたりするような材料を基材20aに用いる場合であっても、発光素子11と導光板1との位置ずれの問題が発生しづらいため、ガラスエポキシ等の安価な材料や厚みの薄い基板を適宜用いることができる。
【0048】
配線層20bは、例えば、基材20a上に設けられた導電箔(導体層)であり、複数の発光素子11と電気的に接続される。配線層20bの材料は、高い熱伝導性を有していることが好ましい。このような材料として、例えば銅などの導電材料が挙げられる。また、配線層20bは、メッキや導電性ペーストの塗布、印刷などで形成することができ、配線層20bの厚みは、例えば、5〜50μm程度である。
【0049】
配線基板20は、どのような方法で導光板1等と接合されていてもよい。例えば、シート状の接着シートを、導光板1の反対側に設けられた封止部材13の表面と、配線基板20の表面との間に配置し、圧着することで、接合することができる。また、配線基板20の配線層20bと発光素子11との電気的接続はどのような方法で行われてもよい。例えば、ビアホール内に埋め込んだ金属である導電性部材20cを加圧と加熱により溶かして配線15と接合することができる。
【0050】
なお、配線基板20は、積層構造を有していてもよい。例えば、配線基板20として、表面に絶縁層が設けられた金属板を用いてもよい。また、配線基板20は複数のTFT(Thin−Film Transistor)を有するTFT基板であってもよい。
【0051】
図3に本実施形態の発光モジュールの製造方法の一例を示す。
まず、
図3(a)に示すように、導光板1を準備する。材料としてはポリカーボネートを用い、逆円錐状の光学機能部1aと、凹部1bとをそれぞれ備える。
次に、導光板1の第2主面側に蛍光体とシリコーン樹脂とが混合された波長変換材料を塗布し、スキージで複数の凹部1b内に充填する。凹部1b内に入らなかった余分の波長変換材料は除去する。そして、波長変換材料を硬化させ、
図3(b)に示すように、複数の離間した波長変換部12を形成する。
次に、
図3(c)に示すように、それぞれの波長変換部12の上に透光性接合部材の材料14aである液状のシリコーン樹脂をそれぞれ塗布する。
次に、
図3(d)に示すように、それぞれの透光性接着剤の材料14aの上に透光性のサファイア基板を備える発光素子11を配置する。この時、サファイア基板側の面である主発光面11cが導光板1側を向き、一対の電極11bが設けられた側の電極形成面11dが導光板1と反対側を向くように形成する。また、発光素子11の、特にサファイア基板の側面に透光性接合部材14が配置される。そして、透光性接合部材14の材料を硬化させ、発光素子11と導光板1とを接合し、実装する。
次に、
図3(e)に示すように、導光板1の第2主面1dと複数の発光素子11と複数の透光性接合部材14を埋め込むように、酸化チタンとシリコーン樹脂が混合された光反射性の封止樹脂の材料13aを、例えばトランスファーモールドで形成する。この時、発光素子11の電極11bの上面(導光板1と反対側の面)を完全に被覆するように厚く形成する。次に、
図3(f)に示すように、封止樹脂の材料13aの一部を研削し、発光素子の電極を露出させ、封止部材13を形成する。
次に、
図3(g)に示すように、発光素子11の電極11bと封止部材13上の略全面に、導光板1側からCu/Ni/Auの金属膜15aをスパッタ等で形成する。次に、
図3(h)に示すように、金属膜15aをレーザアブレーションによってパターニングし、配線15を形成する。
次に、
図3(i)に示すように、この配線15と別途準備した配線基板20の配線層20bと接着シートを間に介して圧着して接合する。この時、配線層20bの一部(例えばビア)内に充填された導電性材料を加圧と加熱によって一部溶解させることで、配線15と配線層20bとを電気的に接続する。
このようにして、本実施形態の発光モジュール100を得ることができる。
【0052】
複数の発光素子11は、それぞれが独立で駆動するように配線されてもよい。また、導光板1を複数の範囲に分割し、1つの範囲内に実装された複数の発光素子11を1つのグループとし、該1つのグループ内の複数の発光素子11同士を直列又は並列に電気的に接続することで同じ回路に接続し、このような発光素子グループを複数備えるようにしてもよい。このようなグループ分けを行うことで、ローカルディミング可能な発光モジュールとすることができる。
【0053】
このような発光素子グループの例を
図5A及び
図5Bに示す。この例では、
図5Aに示すように、導光板1を4列×4行の16個の領域Rに分割している。この1つの領域Rには、それぞれ4列×4行に並べられた16個の発光素子が備えられている。この16個の発光素子は例えば、
図5Bに示すような4並列4直列の回路に組まれて電気的に接続されている。
【0054】
本実施形態の発光モジュール100は、1つが1つの液晶ディスプレイ装置1000のバックライトとして用いられてもよい。また、複数の発光モジュール100が並べられて1つの液晶ディスプレイ装置1000のバックライトとして用いられてもよい。小さい発光モジュール100を複数作り、それぞれ検査等を行うことで、大きく実装される発光素子11の数が多い発光モジュール100を作成する場合と比べて、歩留まりを向上させることができる。
【0055】
1つの発光モジュール100は1つの配線基板20に接合されてもよい。また、複数の発光モジュール100が、1つの配線基板20に接合されてもよい。これにより、外部との電気的な接続端子(例えばコネクタ20e)を集約できる(つまり、発光モジュール1つごとに用意する必要がない)ため、液晶ディスプレイ装置1000の構造を簡易にすることができる。
【0056】
また、この複数の発光モジュール100が接合された1つの配線基板20を複数並べて一つの液晶ディスプレイ装置1000のバックライトとしてもよい。この時、例えば、複数の配線基板20をフレーム等に載置し、それぞれコネクタ20e等を用いて外部の電源と接続することができる。
【0057】
このような複数の発光モジュール100を備える液晶ディスプレイ装置の例を
図6に示す。
この例では、2つの発光モジュール100が接合された、コネクタ20eを備える配線基板20が4つ備えられ、フレーム30に載置されている。つまり、8つの発光モジュール100が2行×4列に並べられている。このようにすることで、大面積の液晶ディスプレイ装置のバックライトを安価に製造することができる。
【0058】
なお、導光板1上には、拡散等の機能を有する透光性の部材をさらに積層してもよい。その場合、光学機能部1aが凹みである場合には、凹みの開口(つまり、導光板1の第1主面1cに近い部分)を塞ぐが、凹みを埋めないように、透光性の部材を設けることが好ましい。これにより、光学機能部1aの凹み内に空気の層を設けることができ、発光素子11からの光を良好に広げることができる。