特許第6791741号(P6791741)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミツトヨの特許一覧

<>
  • 特許6791741-電子式アブソリュート型エンコーダ 図000038
  • 特許6791741-電子式アブソリュート型エンコーダ 図000039
  • 特許6791741-電子式アブソリュート型エンコーダ 図000040
  • 特許6791741-電子式アブソリュート型エンコーダ 図000041
  • 特許6791741-電子式アブソリュート型エンコーダ 図000042
  • 特許6791741-電子式アブソリュート型エンコーダ 図000043
  • 特許6791741-電子式アブソリュート型エンコーダ 図000044
  • 特許6791741-電子式アブソリュート型エンコーダ 図000045
  • 特許6791741-電子式アブソリュート型エンコーダ 図000046
  • 特許6791741-電子式アブソリュート型エンコーダ 図000047
  • 特許6791741-電子式アブソリュート型エンコーダ 図000048
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6791741
(24)【登録日】2020年11月9日
(45)【発行日】2020年11月25日
(54)【発明の名称】電子式アブソリュート型エンコーダ
(51)【国際特許分類】
   G01D 5/245 20060101AFI20201116BHJP
   G01D 5/244 20060101ALI20201116BHJP
【FI】
   G01D5/245 110B
   G01D5/245 B
   G01D5/244 F
【請求項の数】19
【全頁数】20
(21)【出願番号】特願2016-240712(P2016-240712)
(22)【出願日】2016年12月12日
(65)【公開番号】特開2017-106922(P2017-106922A)
(43)【公開日】2017年6月15日
【審査請求日】2019年11月11日
(31)【優先権主張番号】14/966,379
(32)【優先日】2015年12月11日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】000137694
【氏名又は名称】株式会社ミツトヨ
(74)【代理人】
【識別番号】100166545
【弁理士】
【氏名又は名称】折坂 茂樹
(72)【発明者】
【氏名】ダニエル ジョン カプナー
【審査官】 清水 靖記
(56)【参考文献】
【文献】 特開昭62−161001(JP,A)
【文献】 特開平10−153402(JP,A)
【文献】 特開平10−213408(JP,A)
【文献】 米国特許第04991125(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/00−5/62
(57)【特許請求の範囲】
【請求項1】
測定軸方向に沿って延在するスケールであって、前記スケールに沿った位置の関数として、空間波長λを有する第1の周期的パターン部と、前記スケールに沿った位置の関数として、空間波長λを有する第2の周期的パターン部とを含む信号変調スケールパターンを含む、前記スケールと、
前記測定軸方向に沿って配置される検知要素を含む検出器と、
前記検出器によって提供される検出器信号に基づいて、前記スケールに沿った前記検出器の絶対位置を決定する信号処理部と、
を含み、
前記検知要素は、
前記信号変調スケールパターンに対応する検出器信号の第1のセットを提供するように構成される第1の波長検知要素のセットと、
前記信号変調スケールパターンに対応する検出器信号の第2のセットを提供するように構成される第2の波長検知要素のセットと、
を含み、
前記第1の波長検知要素のセットは、
それぞれ前記第1及び第2の周期的パターン部を跨ぐ前記第1の波長検知要素のセットの第1のフィルタリングサブセットと、
それぞれ前記第1及び第2の周期的パターン部を跨ぐ前記第1の波長検知要素のセットの第2のフィルタリングサブセットと、
を含み、
前記第1の波長検知要素のセットの前記第1及び第2のフィルタリングサブセットは、前記第1のフィルタリングサブセットの各検知要素が、前記空間波長λについて180度の整数倍の空間位相差で、前記測定軸方向に沿って、前記各検知要素から離間されている前記第2のフィルタリングサブセットにおける検知要素と相補的対を形成するように配置され、
前記第2の波長検知要素のセットは、
それぞれ前記第1及び第2の周期的パターン部を跨ぐ前記第2の波長検知要素のセットの第1のフィルタリングサブセットと、
それぞれ前記第1及び第2の周期的パターン部を跨ぐ前記第2の波長検知要素のセットの第2のフィルタリングサブセットと、
を含み、
前記第2の波長検知要素のセットの前記第1及び第2のフィルタリングサブセットは、前記第1のフィルタリングサブセットの各検知要素が、前記空間波長λについて180度の整数倍の空間位相差で、前記測定軸方向に沿って、前記各検知要素から離間されている前記第2のフィルタリングサブセットにおける検知要素と相補的対を形成するように配置される、電子式アブソリュート型エンコーダ。
【請求項2】
前記信号処理部は、第1の波長空間位相測定信号を提供するように、前記検出器信号の第1のセットを処理するように構成され、前記第2の周期的パターン部による信号成分は抑制され、また、第2の波長空間位相測定信号を提供するように、前記検出器信号の第2のセットを処理するように構成され、前記第1の周期的パターン部による信号成分は抑制される、請求項1に記載の電子式アブソリュート型エンコーダ。
【請求項3】
前記信号処理部は、前記第1の波長空間位相測定信号を処理し、前記空間波長λに対する前記第1の波長検知要素のセットの空間位相測定値を決定し、また、前記第2の波長空間位相測定信号を処理し、前記空間波長λに対する前記第2の波長検知要素のセットの空間位相測定値を決定するように構成される、請求項2に記載の電子式アブソリュート型エンコーダ。
【請求項4】
前記第1の波長検知要素のセットの各相補的対における前記検知要素は、前記空間波長λについてK1*180度の空間位相差で離間され、ここで、K1は整数であり、
前記第2の波長検知要素のセットの各相補的対における前記検知要素は、前記空間波長λについてK2*180度の空間位相差で離間され、ここで、K2は整数であり、
K1及びK2は、偶数の整数である、請求項1から3の何れか1項に記載の電子式アブソリュート型エンコーダ。
【請求項5】
前記信号処理部は、各相補的対の前記検知要素に生じる信号間に差信号を提供するように構成され、
前記第1の波長検知要素のセットの前記差信号は、第1の波長空間位相測定信号を提供し、前記第2の周期的パターン部による信号成分は抑制され、
前記第2の波長検知要素のセットの前記差信号は、第2の波長空間位相測定信号を提供し、前記第1の周期的パターン部による信号成分は抑制され、
前記信号処理部は、前記第1の波長空間位相測定信号を処理し、前記空間波長λに対する前記第1の波長検知要素のセットの空間位相測定値を決定し、また、前記第2の波長空間位相測定信号を処理し、前記空間波長λに対する前記第2の波長検知要素のセットの空間位相測定値を決定するように構成される、請求項4に記載の電子式アブソリュート型エンコーダ。
【請求項6】
前記第1の波長検知要素のセットは、前記空間波長λについて360/N度の空間位相差で離間されるN個の空間位相に対応するN個の検出器信号の第1のセットを含む検出器信号を提供するように構成され、
前記第2の波長検知要素のセットは、前記空間波長λについて360/N度の空間位相差で離間されるN個の一意の空間位相に対応するN個の検出器信号の第2のセットを含む検出器信号を提供するように構成される、請求項1から5のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【請求項7】
N=3である、請求項6に記載の電子式アブソリュート型エンコーダ。
【請求項8】
N=4である、請求項6に記載の電子式アブソリュート型エンコーダ。
【請求項9】
前記第1の波長検知要素のセットの前記第1のフィルタリングサブセットは、距離λ/Nで離間されるN個の検知要素を含み、
前記第2の波長検知要素のセットの前記第1のフィルタリングサブセットは、距離λ/Nで離間されるN個の検知要素を含む、請求項6から8のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【請求項10】
前記スケールは、前記測定軸方向と平行に位置合わせされる円柱軸を有する円筒形であり、前記第1の周期的パターン部は、前記スケールに沿って配置されるノッチ又は溝として形成され、前記第2の周期的パターン部は、前記スケールに沿って配置されるノッチ又は溝として形成され、
前記検知要素は、前記スケールを取り囲むループを含む、請求項1に記載の電子式アブソリュート型エンコーダ。
【請求項11】
前記第1及び第2の周期的パターン部は、前記スケールに沿った第1及び第2のトラックにそれぞれ形成されるノッチを含む、請求項1から10のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【請求項12】
前記スケールは、第1の材料を含む平坦基板を含み、
前記第1の周期的パターン部及び前記第2の周期的パターン部は、前記平坦基板上に組み付けられる又は前記平坦基板内に埋め込まれる第2の材料から形成され、前記第2の材料は、前記第1の材料とは異なる磁性を有する、請求項1から9のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【請求項13】
前記スケールは、前記測定軸方向に沿って延在する第1の平坦基板を含み、前記第1の周期的パターン部及び前記第2の周期的パターン部は、前記スケールの前記測定軸方向に沿って形成され、
前記検知要素は、それぞれ、前記第1の平坦基板との間に間隙を有して、前記第1の平坦基板の付近に配置される第2の平坦基板上に形成されるほぼ平面状のループ巻線を含み、各検知要素は、前記測定軸方向よりも前記測定軸方向を横断する方向に沿って長く、各検知要素は、前記測定軸方向を横断する前記方向に沿って前記第1及び第2の周期的パターン部を跨ぐ、請求項1から9のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【請求項14】
前記第1の周期的パターン部及び前記第2の周期的パターン部は、前記測定軸方向に沿って、別々のトラックに形成される、請求項13に記載の電子式アブソリュート型エンコーダ。
【請求項15】
前記第1の周期的パターン部及び前記第2の周期的パターン部は、前記測定軸方向に沿って、単一のトラックに重ね合わされて形成される、請求項13に記載の電子式アブソリュート型エンコーダ。
【請求項16】
前記第1の周期的パターン部及び前記第2の周期的パターン部の、前記測定軸方向に沿って、単一のトラックに重ね合わされる場合に形成されるパターンは、前記測定軸方向に沿って延在するパターンの中央線に対し左右対称であるパターンである、請求項15に記載の電子式アブソリュート型エンコーダ。
【請求項17】
前記検出器の前記検知要素は、電磁巻線を含み、前記電磁巻線は、前記信号変調スケールパターンに沿った位置の関数として、前記電磁巻線によって検知されるインダクタンスの変化に対応する検出器信号を提供するように構成される、請求項1から16のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【請求項18】
前記検出器及び前記スケールは、変化する磁場を発生させることによって動作する渦電流トランスデューサとして構成される、請求項17に記載の電子式アブソリュート型エンコーダ。
【請求項19】
前記第2の波長検知要素のセットの前記第1のフィルタリングサブセットは、前記測定軸方向に沿って、前記第1の波長検知要素のセットの前記第1のフィルタリングサブセットと、前記第1の波長検知要素のセットの前記第2のフィルタリングサブセットとの間に配置される、請求項1から18のいずれか1項に記載の電子式アブソリュート型エンコーダ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、精密測定器に関し、特に、アブソリュート型エンコーダに関する。
【背景技術】
【0002】
光学式、静電容量式又は電磁誘導式トランスデューサといった様々な位置トランスデューサが利用可能である。これらのトランスデューサは、読取ヘッド内の送信器及び受信器を使用して、スケールに対するその動きを測定する。幾つかのタイプのトランスデューサは、汚れに敏感であるため、それらを製造又は店舗環境において使用することは非現実的である。これに対し、電磁誘導式センサは、粒子、油、水及び他の流体による汚れの影響を受けない。特許文献1は、高精度応用に使用可能である誘導電流式位置トランスデューサについて説明している。特許文献2及び特許文献3は、信号発生及び処理回路を含む電磁誘導式インクリメンタル型ノギス及びリニアスケールについて説明している。特許文献4、特許文献5及び特許文献6は、誘導電流式トランスデューサを使用する電磁誘導式アブソリュート型ノギス及び電子式巻き尺について説明している。これらの特許に説明されるように、誘導電流式トランスデューサは、既知のプリント回路基板技術を使用して容易に製造可能である。
【0003】
誘導電流式トランスデューサ(及び他のタイプのトランスデューサ)の様々な実施態様が、インクリメンタル型又はアブソリュート型エンコーダとして実施されうる。一般に、インクリメンタル型エンコーダは、スケールを使用し、当該スケールに対する読取ヘッドの変位量を、スケールに沿った初期点から開始して、変位量のインクリメンタル単位を蓄積することによって、求めることを可能にする。しかし、エンコーダが低電力消費デバイスにおいて使用されるような用途では、アブソリュート型エンコーダを使用することがより望ましい。アブソリュート型エンコーダは、スケールに沿った(読取ヘッドの)各位置において、一意の出力信号又は信号の組み合わせを提供する。アブソリュート型エンコーダは、位置を特定するために、インクリメンタル変位量の継続的な蓄積を必要としない。したがって、アブソリュート型エンコーダは、幾つかある利点の中で、様々な電力節約スキームを可能にする。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第6011389号明細書
【特許文献2】米国特許第5973494号明細書
【特許文献3】米国特許第6002250号明細書
【特許文献4】米国特許第5886519号明細書
【特許文献5】米国特許第5841274号明細書
【特許文献6】米国特許第5894678号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
米国特許第6,034,624号は、アブソリュート型エンコーダに適している2つの異なる波長を有する2つの周期的パターン部を有するスケールについて開示している。しかし、この参照文献に開示される検出器は、その受信コイルがスケール全体の周囲に延在しないため、回転位置ずれに対する許容値が低い。更に、受信コイルが、トラック全体の周囲に延在したとしても、受信コイルは、2つの波長のそれぞれに対応する信号成分を分離することができない。位置合わせ誤差に対してロバストであるアブソリュートエンコーダの改良された構造が望ましい。
【課題を解決するための手段】
【0006】
この概要は、詳細な説明において、以下に更に説明される簡略化された形式の概念のセレクションを紹介するために提供される。この概要は、請求項に係る主題の重要な特徴を特定することも、請求項に係る主題の範囲を決定する助けとして使用されることも意図していない。
【0007】
例えば高精度電子式デジタルインジケータ、ノギス、マイクロメータ又はリニアスケールにおいて具体化できる電子式アブソリュート型エンコーダが提供される。エンコーダは、測定軸方向に沿って延在するスケールと、検出器と、検出器によって提供される検出器信号に基づいて、スケールに沿った検出器の絶対位置を決定する信号処理部とを含む。スケールは、スケールに沿った位置の関数として、空間波長λを有する第1の周期的パターン部と、スケールに沿った位置の関数として、空間波長λを有する第2の周期的パターン部とを含む信号変調スケールパターンを含む。検出器は、測定軸方向に沿って配置される検知要素を含む。検知要素は、信号変調スケールパターンに対応する検出器信号の第1のセットを提供するように構成される第1の波長検知要素のセットと、信号変調スケールパターンに対応する検出器信号の第2のセットを提供するように構成される第2の波長検知要素のセットとを含む。第1の波長検知要素のセットは、それぞれ第1及び第2のパターン部を跨ぐ第1の波長検知要素の第1のフィルタリングサブセットと、それぞれ第1及び第2のパターン部を跨ぐ第1の波長検知要素の第2のフィルタリングサブセットとを含む。第1の波長検知要素のセットの第1及び第2のフィルタリングサブセットは、第1のフィルタリングサブセットの各検知要素が、空間波長λについて180度の整数倍の空間位相差で、測定軸方向に沿って、上記各検知要素から離間されている第2のフィルタリングサブセットにおける検知要素と相補的対を形成するように配置される。第2の波長検知要素のセットは、それぞれ第1及び第2のパターン部を跨ぐ第2の波長検知要素の第1のフィルタリングサブセットと、それぞれ第1及び第2のパターン部を跨ぐ第2の波長検知要素の第2のフィルタリングサブセットとを含む。第2の波長検知要素のセットの第1及び第2のフィルタリングサブセットは、第1のフィルタリングサブセットの各検知要素が、空間波長λについて180度の整数倍の空間位相差で、測定軸方向に沿って、上記各検知要素から離間されている第2のフィルタリングサブセットにおける検知要素と相補的対を形成するように配置される。
【図面の簡単な説明】
【0008】
図1図1は、電子式アブソリュート型エンコーダの第1の実施形態の模式図である。
図2A図2Aは、図1の電子式アブソリュート型エンコーダに使用されうる検出器の第1の波長検知要素のセットの模式図である。
図2B図2Bは、図1の電子式アブソリュート型エンコーダに使用されうる検出器の第2の波長検知要素のセットの模式図である。
図3A図3Aは、電子式アブソリュート型エンコーダに使用されうる検出器の模式図である。
図3B図3Bは、電子式アブソリュート型エンコーダに使用されうる検出器の模式図である。
図4図4は、電子式アブソリュート型エンコーダ内のスケールに沿って空間波長に対する検出器のフィルタ係数を示すチャートである。
図5図5は、電子式アブソリュート型エンコーダ内のスケールの第1の信号変調スケールパターン及び第2の信号変調スケールパターンの波長の様々な組み合わせに対するフィルタ係数及び合成空間波長を示すチャートである。
図6A図6Aは、電子式アブソリュート型エンコーダに使用されうる検出器の第1の波長検知要素のセットの模式図である。
図6B図6Bは、図6Aに示される検出器の第2の波長検知要素のセットの模式図である。
図7図7は、電子式アブソリュート型エンコーダの第2の実施形態に使用されうるスケールの構造を示す模式図である。
図8図8は、電子式アブソリュート型エンコーダの第3の実施形態に使用されうるスケール及び検出器を示す図である。
【発明を実施するための形態】
【0009】
図1は、電子式アブソリュート型エンコーダ100の第1の実施形態の模式図である。電子式アブソリュート型エンコーダ100は、測定軸方向MAに沿って延在するスケール110と、検出器120と、検出器120によって提供される検出器信号に基づき、スケール110に沿った検出器120の絶対位置を決定する信号処理部130とを含む。スケール110は、スケール110に沿った位置の関数として、空間波長λを有する第1の周期的パターン部111と、スケール110に沿った位置の関数として、空間波長λを有する第2の周期的パターン部112とを含む信号変調スケールパターンを含む。スケール110は、測定軸方向と平行に位置合わせされる円柱軸を有する円筒形を有し、第1の周期的パターン部111が、片側に配置されるノッチ又は溝として形成され、第2の周期的パターン部112が、もう片側に配置されるノッチ又は溝として形成されている。スケール110は、アルミニウム又はスチールといった材料から形成されてよい。検出器120は、測定軸方向MAに沿って配置される検知要素を含む。検知要素は、スケールを取り囲むループを含む。検知要素は、信号変調スケールパターンに対応する検出器信号の第1のセットを提供するように構成される第1の波長検知要素のセット121と、信号変調スケールパターンに対する第2の波長検知要素のセット122とを含む。第1の波長検知要素のセット121は、それぞれ第1及び第2のパターン部111及び112を跨ぐ第1の波長検知要素の第1のフィルタリングサブセット123と、それぞれ第1及び第2のパターン部111及び112を跨ぐ第1の波長検知要素の第2のフィルタリングサブセット123’とを含む。第1の波長検知要素のセット121の第1及び第2のフィルタリングサブセット123及び123’は、第1のフィルタリングサブセット123の各検知要素が、空間波長λについて180度の整数倍の空間位相差で、測定軸方向MAに沿って、当該各検知要素から離間されている第2のフィルタリングサブセット123’における検知要素と相補的対を形成するように配置される。各波長検知要素は、簡単にするために、破線としてマークされる。第2の波長検知要素のセット122は、それぞれ第1及び第2のパターン部111及び112を跨ぐ第2の波長検知要素の第1のフィルタリングサブセット124と、それぞれ第1及び第2のパターン部111及び112を跨ぐ第2の波長検知要素の第2のフィルタリングサブセット124’とを含む。第2の波長検知要素のセットの第1及び第2のフィルタリングサブセット124及び124’は、第1のフィルタリングサブセット124の各検知要素が、空間波長λについて180°の整数倍の空間位相差で、測定軸方向MAに沿って、当該各検知要素から離間されている第2のフィルタリングサブセット124’における検知要素と相補的対を形成するように配置される。様々な実施形態において、検出器の検知要素は、電磁巻線を含む。電磁巻線は、信号変調スケールパターンに沿った位置の関数として、当該電磁巻線によって検知されるインダクタンス(インピーダンスとして測定される)の変化に対応する検出器信号を提供するように構成される。
【0010】
検出器120及びスケール110は、一実施態様では、変化する磁場を発生させることによって動作する渦電流トランスデューサとして構成される。幾つかの実施形態では、各波長検知要素に変化する電流を提供することによって提供される変化する磁場は、スケール110において、渦電流として知られている循環する電流をもたらし、これは、第1の周期的パターン部111及び第2の周期的パターン部112に沿ったスケール110の材料の厚さに応じて変化する。検出器120の波長検知要素の実効インダクタンスは、各渦電流によって影響され、これに対応して、スケール110のアブソリュート信号範囲に沿って検出器120の各位置を一意に示すように、アブソリュート信号範囲に沿って変化する信号特性を有する絶対位置検出器信号を提供する。或いは、本明細書に開示される原理に従って構成される電子式アブソリュート型エンコーダは、検出器120の検知要素と同様に配置される送信及び受信巻線を含む特許文献1に開示される構造と同様のトランスタイプの構造を使用してもよい。
【0011】
測定軸方向MAに沿った位置xの関数として、単一の波長検知素子によって提供される信号は、基本信号、第2高調波及び一定オフセットの和としてモデリングできる:
【数1】
【0012】
及びL項は、それぞれ、各自の位相オフセットθ及びθを有する第1の波長λ及び第2の波長λの基本信号である。L及びL項は、それぞれ、各自の位相オフセットθ及びθを有する第1の波長λ及び第2の波長λの第2高調波である。β項は、一定オフセットである。
【0013】
当然ながら、スケール110は、電子式インジケータゲージのシャフト上に組み立てられるのに適した円筒形である。しかし、例えば図7に示されるように、同様の構造体を平面配置で使用してもよい。
【0014】
本明細書に開示される原理に従って構成される幾つかの実施形態では、信号処理部130は、第2の周期的パターン部112による信号成分(例えば式1のL及びL項)を抑制して、第1の波長空間位相測定信号を提供するように、検出器信号の第1のセットを処理し、また、第1の周期的パターン部111による信号成分(例えば式1のL及びL項)を抑制して、第2の波長空間位相測定信号を提供するように、検出器信号の第2のセットを処理するように構成される。幾つかの実施形態では、信号処理部130は、第1の波長空間位相測定信号を処理し、空間波長λに対する第1の波長検知要素のセット121の空間位相測定値を決定し、また、第2の波長空間位相測定信号を処理し、空間波長λに対する第2の波長検知要素のセット122の空間位相測定値を決定するように構成されてよい。
【0015】
図2Aは、電子式アブソリュート型エンコーダ100に使用されうる検出器220の第1の波長検知要素のセット221の摸式図であり、さらなる詳細を示す。第1の波長検知要素のセット221は、第1の波長検知要素の第1のフィルタリングサブセット223と、第1の波長検知要素の第2のフィルタリングサブセット223’とを含む。図2Aに示されるように、第1の波長検知要素の第1のフィルタリングサブセット223は、測定軸方向MAに沿って位相位置A1、B1、C1及びD1をサンプリングするように構成される検知要素を含む。より具体的には、位相信号A1、B1、C1及びD1は、第1の波長λの0、90、180及び270度の相対位相位置に対応する。第1の波長検知要素の第2のフィルタリングサブセット223’は、測定軸方向MAに沿って位相A1’、B1’、C1’及びD1’をサンプリングするように構成される検知要素を含む。より具体的には、位相信号A1’、B1’、C1’及びD1’は、第1の波長λの0、90、180及び270度の相対位相位置に対応する。第1の波長検知要素の第1のフィルタリングサブセット223は、当該第1のフィルタリングサブセット223の各検知要素が、第2の空間波長λについて180度の整数倍の空間位相差で、測定軸方向MAに沿って、当該各検知要素から離間されている第2のフィルタリングサブセット223’における検知要素と相補的対を形成するように配置される。より具体的には、A1とA1’とは、測定軸方向MAに沿って距離KA1(0.5λ)で離間されている相補的対であり、B1とB1’とは、測定軸方向MAに沿って距離KB1(0.5λ)で離間されている相補的対であり、C1とC1’とは、測定軸方向MAに沿って距離KC1(0.5λ)で離間されている相補的対であり、D1とD1’とは、測定軸方向MAに沿って距離KD1(0.5λ)で離間されている相補的対である。値KA1、KB1、KC1及びKD1は、整数である。図2Aに示される実施形態では、値KA1、KB1、KC1及びKD1はすべて2であるが、当然ながら、この値は例示であり、限定ではない。更に、値KA1、KB1、KC1及びKD1は同じ値である必要はない。
【0016】
第1の波長位相φに対応する信号を提供するために、各相補的対の信号は、信号処理部130において、電子的又は数学的に加算されうる。これは、次式:
【数2】
によって与えられる直交信号


及び
を提供する。
【0017】
式2乃至式5中、KA1、KB1、KC1及びKD1が偶数値の場合、差が使用され、奇数値の場合、和が使用されてよい。直交信号


及び
は、次に、次式:
【数3】
によって、第1の波長位相φを決定するように使用されうる。
【0018】
第2の空間波長λについて180度の整数倍の空間位相差で、相補的対を離間することで、各直交信号


及び
を決定することは、空間波長λに対応するコモンモード値を取り去ることを理解すべきである。より具体的には、KA1、KB1、KC1及びKD1が偶数値の場合、各相補的対によって提供される信号は、それぞれ、第2の波長λに関し同位相を有し、KA1、KB1、KC1及びKD1が奇数値の場合、各相補的対によって提供される信号は、それぞれ、第2の波長λに関し逆位相を有する。
【0019】
図2Bは、電子式アブソリュート型エンコーダ100に使用されうる検出器220の第2の波長検知要素のセット222の摸式図であり、さらなる詳細を示す。第2の波長検知要素のセット222は、第2の波長検知要素の第1のフィルタリングサブセット224と、第2の波長検知要素の第2のフィルタリングサブセット224’とを含む。図2Bに示されるように、第2の波長検知要素の第1のフィルタリングサブセット224は、測定軸方向MAに沿って位相位置A2、B2、C2及びD2をサンプリングするように構成される検知要素を含む。より具体的には、位相信号A2、B2、C2及びD2は、第2の波長λの0、90、180及び270度の相対位相位置に対応する。第2の波長検知要素の第2のフィルタリングサブセット224’は、測定軸方向に沿って位相A2’、B2’、C2’及びD2’をサンプリングするように構成される検知要素を含む。より具体的には、位相信号A2’、B2’、C2’及びD2’は、第2の波長λの0、90、180及び270度の相対位相位置に対応する。第2の波長検知要素の第1のフィルタリングサブセット224は、当該第1のフィルタリングサブセット224の各検知要素が、第1の空間波長λについて180度の整数倍の位相差で、測定軸方向に沿って、当該各検知要素から離間されている第2のフィルタリングサブセット224’における検知要素と相補的対を形成するように配置される。より具体的には、A2とA2’とは、測定軸方向MAに沿って距離KA2(0.5λ)で離間されている相補的対であり、B2とB2’とは、測定軸方向MAに沿って距離KB2(0.5λ)で離間されている相補的対であり、C2とC2’とは、測定軸方向MAに沿って距離KC2(0.5λ)で離間されている相補的対であり、D2とD2’とは、測定軸方向MAに沿って距離KD2(0.5λ)で離間されている相補的対である。値KA2、KB2、KC2及びKD2は、整数である。図2Bに示される実施形態では、値KA2、KB2、KC2及びKD2はすべて2であるが、当然ながら、この値は例示であり、限定ではない。更に、値KA2、KB2、KC2及びKD2は同じ値である必要はない。
【0020】
第2の波長位相φに対応する信号を提供するために、各相補的対の信号は、信号処理部130において、電子的又は数学的に加算されうる。これは、次式:
【数4】
によって与えられる直交信号


及び
を提供する。
【0021】
式7乃至式10中、KA2、KB2、KC2及びKD2が偶数値の場合、差が使用され、奇数値の場合、和が使用されてよい。直交信号直交信号


及び
は、次に、次式:
【数5】
によって、第2の波長位相φを決定するように使用されうる。
【0022】
空間波長λについて180度の整数倍の位相差で、相補的対を離間することで、各直交信号直交信号


及び
を決定することは、第1の空間波長λに対応するコモンモード値を取り去ることを認識すべきである。より具体的には、KA2、KB2、KC2及びKD2が偶数値の場合、各相補的対によって提供される信号は、それぞれ、第1の波長λに関し同位相を有し、KA2、KB2、KC2及びKD2が奇数値の場合、各相補的対によって提供される信号は、それぞれ、第1の波長λに関し逆位相を有する。
【0023】
第1の周期的パターン部111及び第2の周期的パターン部112の波長検知要素によって提供されるアナログ信号間の空間位相差は、波長λ及びλの積に比例し、また、それらの差の絶対値に反比例する距離に亘り、360度で変化する。この距離は、電子式アブソリュート型エンコーダ100のほぼ絶対測定範囲である合成波長λsynと呼ばれる場合もある。より具体的には、合成波長λsynの値は、次式:
【数6】
によって与えられうる。
【0024】
第1の周期的パターン部111及び第2の周期的パターン部112からの各信号間の位相差は、既知の合成波長λsynと共に使用されて、絶対位置を決定することができる。
【0025】
幾つかの実施形態では、典型的な第1の波長λは、2mmであってよく、典型的な第2の波長λは、2.308mmであってよく、これは、15mmである合成波長λsynを提供する。
【0026】
本明細書に開示される原理に従って構成される幾つかの実施形態では、第1の波長検知要素のセットは、空間波長λについて360/N度の空間位相差で離間されるN個の空間位相に対応する検出器信号を提供するように構成されてよい。第2の波長検知要素のセットは、空間波長λについて360/N度の空間位相差で離間されるN個の一意の空間位相に対応するN個の検出器信号からなる第2のセットを含む検出器信号を提供するように構成されてよい。例えば図2A及び図2Bに示される実施形態では、第1の波長検知要素のセット221は、空間波長λについて90度の空間位相差で離間される4つの空間位相に対応する4つの検出器信号からなる第1のセットを含む検出器信号を提供するように構成され、第2の波長検知要素のセット222は、空間波長λについて90度の空間位相差で離間される4つの一意の空間位相に対応する4つの検出器信号からなる第2のセットを含む検出器信号を提供するように構成される。ここでは、N=4である。図6A及び図6Bには、変形例である「3位相」システムが示され、ここでは、N=3である。
【0027】
幾つかの実施形態では、第1の波長検知要素の第1のサブセットの検知要素は、距離λ/Nで離間され、第2の波長検知要素の第1のサブセットの検知要素は、距離λ/Nで離間されていてよい。例えば図2A及び図Bに示される実施形態では、第1の波長検知要素の第1のサブセットは、λ/4で離間される検知要素を含み、第2の波長検知要素の第1のサブセットは、λ/4で離間される検知要素を含む。3位相エンコーダを使用する他の実施形態では、第1の波長検知要素の第1のサブセットは、λ/3で離間される検知要素を含み、第2の波長検知要素の第1のサブセットは、λ/3で離間される検知要素を含む。当然ながら、当該他の実施形態では、検知要素が、λ/4又はλ/4よりも広い巻線を含んでいてもよい。この場合、より広い間隔が必要でありうる。例えば本願の出願人による米国特許出願第14/871,386号(2015年9月30日出願)は、スケールと、スケールの空間波長の4分の3で離される空間位相検知要素を含む検出器とを含む4位相エンコーダについて開示している。
【0028】
図3Aは、電子式アブソリュート型エンコーダ100と同様である電子式アブソリュート型エンコーダ300Aに使用されうる検出器320Aの摸式図である。より具体的には、検出器320Aは、第1の波長検知要素のセット321Aと、第2の波長検知要素のセット322Aとの直列配置である。第1の波長検知要素のセット321Aは、第1の波長検知要素の第1のフィルタリングサブセット323Aと、第1の波長検知要素の第2のフィルタリングサブセット323A’とを含む。第2の波長検知要素のセット322Aは、第2の波長検知要素の第1のフィルタリングサブセット324Aと、第2の波長検知要素の第2のフィルタリングサブセット324A’とを含む。
【0029】
図3Bは、電子式アブソリュート型エンコーダ100と同様である電子式アブソリュート型エンコーダ300Bに使用されうる検出器320Bの摸式図である。より具体的には、検出器320Bは、第1の波長検知要素のセット321Bと、第2の波長検知要素のセット322Bとの交互配置である。第1の波長検知要素のセット321Bは、第1の波長検知要素の第1のフィルタリングサブセット323Bと、第1の波長検知要素の第2のフィルタリングサブセット323B’とを含む。第2の波長検知要素のセット322Bは、第2の波長検知要素の第1のフィルタリングサブセット324Bと、第2の波長検知要素の第2のフィルタリングサブセット324B’とを含む。第2の波長検知要素の第1のフィルタリングサブセット324Bは、測定軸方向MAに沿って、第1の波長検知要素の第1のフィルタリングサブセット323Bと第1の波長検知要素の第2のフィルタリングサブセット323B’との間に配置される。
【0030】
検出器320Bは、KA1、KB1、KC1、KD1、KA2、KB2、KC2及びKD2の値が大きい実施形態においてより好ましい。より具体的には、このような状況は、第1の波長検知要素のセット321Bが、第1の波長検知要素の第1のフィルタリングサブセット323Bと第1の波長検知要素の第2のフィルタリングサブセット323B’との間に広い間隔を有し、第2の波長検知要素のセット322Bが、第2の波長検知要素の第1のフィルタリングサブセット324Bと第2の波長検知要素のセットの第2のフィルタリングサブセット324B’との間に広い間隔を有する実施形態において生じる。このような場合、交互配置によって、よりコンパクトな検出器320Bを提供することができる。
【0031】
図4は、電子式アブソリュート型エンコーダ100といった4位相電子式アブソリュート型エンコーダ内のスケールに沿って空間波長に対する第1の波長λを検出するように構成される検出器のフィルタ係数を示すチャート400である。より具体的には、フィルタ係数は、第1の波長検知要素のセット221といった第1の波長検知要素のセットにおける相補的対の検知要素間のスケールの様々な空間波長の空間フィルタリングを表す伝達関数として理解されてよい。図4に示されるように、第2の空間波長λついて、フィルタ係数はゼロである。即ち、より具体的には、空間波長λは、式6によって表される直交関係にある第1の波長位相φの決定に寄与しないように、完全に減衰される。第1の空間波長λにおいて、フィルタ係数は、約1.25である。第1の空間波長λ及び第2の空間波長λの両方の第2高調波(即ち、λ/2及びλ/2)ついて、フィルタ係数はゼロである。即ち、より具体的には、第1の周期的パターン部111及び第2の周期的パターン部112の両方の第2高調波は、完全に減衰される。
【0032】
図5は、4位相電子式アブソリュート型エンコーダ内のスケールの第1の周期的パターン部及び第2の周期的パターン部の波長の様々な組み合わせ、および、偶数整数値kによって表される検知要素の相補的対の間の分離の様々な度合いについてのフィルタ係数及び合成空間波長λsynを示すチャート500である。フィルタ係数は、第1の波長検知要素のセット221といった第1の波長検知要素のセットに関連する。値kは、KA1、KB1、KC1及びKD1と同様であると理解されてよい。当然ながら、λにおけるフィルタ係数は、kの値と、λ/λの比とに依存する。これらの値の様々な組み合わせが、λについて、より優れたフィルタ係数を与える一方で、依然として、波長λ、λ/2及びλ/2を完全に減衰させる。比λ/λの所与の値について、より高い値のkが、より高いフィルタ係数を与える。例えば比λ/λ=1.1を有するスケールについて、k=2の値が、1.24のフィルタ係数を与える。同じ比λ/λについて、k=2の値をk=4に増加すると、2.35のフィルタ係数が与えられる。
【0033】
所与のk値について、比λ/λの値が高いほど、フィルタ係数はより高くなる。しかし、λ/λの値が低いほど、比λsyn/λによって表現されるように、絶対範囲はより大きくなる。例えば、比λ/λの値が1.1であり、k値が2である場合、フィルタ係数は、1.24であり、比λsyn/λは、10である。比λ/λの値が1.05であり、k値が2である場合、フィルタ係数は、0.63であり、比λsyn/λは、21である。
【0034】
図6Aは、電子式アブソリュート型エンコーダ600に使用されうる検出器620の第1の波長検知要素のセット621の摸式図である。電子式アブソリュート型エンコーダ600は、3位相エンコーダである。第1の波長検知要素のセット621は、それぞれ第1及び第2の周期的パターン部111及び112を跨ぐ第1の波長検知要素の第1のフィルタリングサブセット623と、それぞれ第1及び第2の周期的パターン部111及び112を跨ぐ第1の波長検知要素の第2のフィルタリングサブセット623’とを含む。図6Aに示されるように、第1の波長検知要素の第1のフィルタリングサブセット623は、測定軸方向に沿って位相信号A、B及びCをサンプリングするように構成される検知要素を含む。より具体的には、位相信号A、B及びCは、第1の波長λの0、120及び240度に対応する。第1の波長検知要素の第2のフィルタリングサブセット623’は、測定軸方向に沿って位相信号A’、B’及びC’をサンプリングするように構成される検知要素を含む。より具体的には、位相信号A’、B’及びC’は、第1の波長λの0、120及び240度に対応する。第1の波長検知要素の第1のフィルタリングサブセット623と第1の波長検知要素の第2のフィルタリングサブセット623’とは、距離λ/3で離間される検知要素を含む。位相信号A、B、C、A’、B’及びC’は、次の関係:
【数7】
に従って、3つの組み合わせ位相信号α、β及びγを提供するように組み合わされてよい。
【0035】
これらの3つの組み合わせ位相信号は、次の関係:
【数8】
に従って、3つのスター結線での信号Sαβ1、Sβγ1及びSγα1を提供するように使用されてよい。
【0036】
位相φは、例えば米国特許第6,005,387号に開示されているスター結線法に従って決定されてよい。位相φは、次の関係:
【数9】
によって与えられる。
【0037】
図6Bは、電子式アブソリュート型エンコーダ600に使用されうる検出器620の第2の波長検知要素のセット622の摸式図である。第2の波長検知要素のセット622は、それぞれ第1及び第2の周期的パターン部111及び112を跨ぐ第2の波長検知要素の第1のフィルタリングサブセット624と、それぞれ第1及び第2の周期的パターン部111及び112を跨ぐ第2の波長検知要素の第2のフィルタリングサブセット624’とを含む。図6Bに示されるように、第2の波長検知要素の第1のフィルタリングサブセット624は、測定軸方向に沿って位相信号A、B及びCをサンプリングするように構成される検知要素を含む。より具体的には、位相信号A、B及びCは、第2の波長λの0、120及び240度に対応する。第2の波長検知要素の第2のフィルタリングサブセット624’は、測定軸方向に沿って位相信号A’、B’及びC’を、この特定の順序でサンプリングするように構成される検知要素を含む。より具体的には、位相信号A’、B’及びC’は、第2の波長λの0、120及び240度に対応する。第2の波長検知要素の第1のフィルタリングサブセット624と第2の波長検知要素の第2のフィルタリングサブセット624’とは、距離λ/3で離間される検知要素を含む。位相信号A、B、C、A’、B’及びC’は、次の関係:
【数10】
に従って、3つの組み合わせ位相信号α、β及びγを提供するように組み合わされてよい。
【0038】
これらの3つの組み合わせ位相信号は、次の関係:
【数11】
に従って、3つのスター結線での信号Sαβ2、Sβγ2及びSγα2を提供するように使用されてよい。
【0039】
位相φは、式11と同じ方法に従って決定されてよい。位相φは、次の関係:
【数12】
によって与えられる。
【0040】
図7は、電子式アブソリュート型エンコーダ700の第2の実施形態に使用されうるスケール710の構造を示す摸式図である。スケール710は、スケールに沿った位置の関数として、空間波長λを有する第1の周期的パターン部711と、スケールに沿った位置の関数として、空間波長λを有する第2の周期的パターン部712とを含む信号変調スケールパターンを含む。第1の周期的パターン部711及び第2の周期的パターン部712は共に、それらの基本パターンを示すために、別々に示されている。スケール710は、第1の周期的パターン部711及び第2の周期的パターン部712が同じ領域にあり、両方のパターンと共に示される。スケール710は、測定軸方向に沿って延在する第1の平坦基板を含み、第1の周期的パターン部711及び第2の周期的パターン部712は、スケール710の測定軸方向MAに沿って形成される。各検知要素は、第1の平坦基板との間に間隙を有して当該第1の平坦基板の付近に配置される第2の平坦基板上に形成されるほぼ平面状のループ巻線を含む。各検知要素は、測定軸方向MAに沿って比較的短く、また、測定軸方向MAを横断する方向に沿って比較的長い。すなわち、各検知要素は、測定軸方向MAよりも測定軸方向MAを横断する方向に沿って長く構成される。各検知要素は、測定軸方向MAを横断する方向に沿って第1及び第2の周期的パターン部711及び712を跨ぐ。第1の周期的パターン部711及び第2の周期的パターン部712は、第1の材料からなる基板上に組み付けられる又は基板内に埋め込まれる第2の材料から形成される。第2の材料は、第1の材料とは異なる磁性を有する。幾つかの実施形態では、第1の周期的パターン部711及び第2の周期的パターン部712は、基板上の異なる層に形成されてもよい。幾つかの実施形態では、スケール710は、第1の周期的パターン部711及び第2の周期的パターン部712が銅線として提供されるPCB基板を含んでもよい。第1の周期的パターン部711及び第2の周期的パターン部712は、測定軸方向に沿って単一のトラックに重ね合わされて形成される。当然ながら、代替実施形態では、第1の周期的パターン部及び第2の周期的パターン部は、測定軸方向MAに沿って別々のトラックとして形成されてもよい。この場合、検出器の検知要素は、別々のトラックの両方を跨ぐ。
【0041】
図8は、電子式アブソリュート型エンコーダ800の第3の実施形態に使用されうるスケール810及び検出器820を示す摸式図である。スケール810は、スケールに沿った位置の関数として、空間波長λを有する第1の周期的パターン部811と、スケールに沿った位置の関数として、空間波長λを有する第2の周期的パターン部812とを含む信号変調スケールパターンを含む。より具体的には、信号変調スケールパターンの幅は、空間波長λ及びλの2つの正弦曲線の重ね合わせに応じて変化する。
【0042】
検出器820は、検出器620と同様である3位相システムを含み、第1の波長検知要素のセット821と、第2の波長検知要素のセット822とが交互に配置されている。第1の波長検知要素のセット821は、第1の波長検知要素の第1のフィルタリングサブセット823と、第1の波長検知要素の第2のフィルタリングサブセット823’とを含む。第2の波長検知要素のセット822は、第2の波長検知要素の第1のフィルタリングサブセット824と、第2の波長検知要素の第2のフィルタリングサブセット824’とを含む。検出器820の交互配置は、検出器320Bの交互配置と同様であり、潜在的な空間制約問題を解決するコンパクトな検出器構造を提供する。
【0043】
測定軸方向MAに沿って単一のトラックに重ね合わされる第1の周期的パターン部811及び第2の周期的パターン部812によって形成されるパターンは、測定軸方向MAに沿って延在するパターンの中央線に対し左右対称であるパターンである。
【0044】
上記された様々な実施形態は、更なる実施形態を提供するように、組み合わされてもよい。本明細書において参照されたすべての米国特許及び米国特許出願は、参照することによりその全体が本明細書に組み込まれる。様々な特許及び出願の概念を使用して更に別の実施態様を提供するように、必要に応じて、実施態様の態様が変更されてもよい。
【0045】
上記詳細な説明に照らせば、これらの及び他の変更を実施形態に行うことができる。一般に、次の請求項において使用される用語は、請求項を、本明細書及び請求項に開示される特定の実施形態に限定すると解釈されるべきではなく、むしろ、当該請求項の等価物の全範囲内のあらゆる可能な実施形態を含むと解釈されるべきである。

図1
図2A
図2B
図3A
図3B
図4
図5
図6A
図6B
図7
図8