特許第6796561号(P6796561)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクの特許一覧
<>
  • 特許6796561-生体試料分析装置、及び方法 図000003
  • 特許6796561-生体試料分析装置、及び方法 図000004
  • 特許6796561-生体試料分析装置、及び方法 図000005
  • 特許6796561-生体試料分析装置、及び方法 図000006
  • 特許6796561-生体試料分析装置、及び方法 図000007
  • 特許6796561-生体試料分析装置、及び方法 図000008
  • 特許6796561-生体試料分析装置、及び方法 図000009
  • 特許6796561-生体試料分析装置、及び方法 図000010
  • 特許6796561-生体試料分析装置、及び方法 図000011
  • 特許6796561-生体試料分析装置、及び方法 図000012
  • 特許6796561-生体試料分析装置、及び方法 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6796561
(24)【登録日】2020年11月18日
(45)【発行日】2020年12月9日
(54)【発明の名称】生体試料分析装置、及び方法
(51)【国際特許分類】
   G01N 27/00 20060101AFI20201130BHJP
   C12Q 1/68 20180101ALI20201130BHJP
【FI】
   G01N27/00 Z
   C12Q1/68
【請求項の数】11
【全頁数】15
(21)【出願番号】特願2017-149585(P2017-149585)
(22)【出願日】2017年8月2日
(65)【公開番号】特開2019-27980(P2019-27980A)
(43)【公開日】2019年2月21日
【審査請求日】2020年3月12日
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール特許業務法人
(72)【発明者】
【氏名】柴原 匡
(72)【発明者】
【氏名】大浦 剛
(72)【発明者】
【氏名】井上 剛志
【審査官】 吉田 将志
(56)【参考文献】
【文献】 特開2017−116435(JP,A)
【文献】 特開2017−015541(JP,A)
【文献】 特表2011−501681(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/00
C12M 1/00
C12Q 1/6869
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
DNAの塩基配列を分析する生体分析装置であって、
測定対象物が通過するナノメートルサイズの穴を有するナノポア基板と、
前記ナノポア基板により内部が区切られ、電解質溶液で満たされる槽と、
前記ナノポア基板に対向して位置し、前記DNAが固定されるDNA固定基板と、
前記DNA固定基板を駆動する駆動機構と、
前記ナノポア基板の両側に電圧を印加する電圧印加部と、
前記DNAが前記ナノポア基板を通過する際のイオン電流を検出する検出部と、
前記生体分析装置の振動を検知する振動検知部と、
前記振動検知部によって検知した振動情報を記録する記録部と、
前記振動検知部により振動を検知した場合に警報を発する警報部と、を備え、
前記警報部は、警報を発している際に検出した前記イオン電流を塩基配列解読に使用しないよう制御し、
前記警報部は、警報を発している間は、前記駆動機構による前記DNA固定基板の駆動を停止するよう制御する、
ことを特徴とする生体試料分析装置。
【請求項2】
請求項に記載の生体試料分析装置であって、
前記警報部は、前記振動検知部により振動の収まりを検出した場合に、前記駆動機構による前記DNA固定基板の駆動を再開し、前記検出部により前記イオン電流を検出するよう制御する、
ことを特徴とする生体試料分析装置。
【請求項3】
請求項に記載の生体試料分析装置であって、
前記警報部は、前記振動検知部により振動を検知した場合に、前記振動情報を伝達関数により前記駆動機構へフィードバック制御し、前記DNAの振動を抑制するよう前記DNA固定基板を駆動する、
ことを特徴とする生体試料分析装置。
【請求項4】
請求項に記載の生体試料分析装置であって、
前記警報部は、前記振動検知部により振動を検知し、かつ前記DNAの配列順序の反転を検知した場合に、前記検出部により検出した前記イオン電流を補正する、
ことを特徴とする生体試料分析装置。
【請求項5】
請求項に記載の生体試料分析装置であって、
前記ナノポア基板は、前記ナノメートルサイズの穴を複数備えており、
前記DNA固定基板は、未知配列のDNAと既知配列のDNAとが固定される、
ことを特徴とする生体試料分析装置。
【請求項6】
請求項に記載の生体試料分析装置であって、
前記振動検知部は、前記既知配列のDNAに対する前記イオン電流を用いて振動を検知する、
ことを特徴とする生体試料分析装置。
【請求項7】
DNAの塩基配列を分析する生体分析装置の生体分析方法であって、
前記生体分析装置は、測定対象物が通過するナノメートルサイズの穴を有し、両側に電圧が印加されるナノポア基板により内部が区切られ、電解質溶液で満たされる槽と、前記ナノポア基板に対向して位置し、前記DNAが固定されるDNA固定基板と、前記DNA固定基板を駆動させる駆動機構と、前記DNAが前記ナノポア基板を通過する際のイオン電流を検出する検出部と、前記生体分析装置の振動情報を検知する振動検知部と、を備えており、
検出した前記イオン電流と、検知した前記振動情報を用いて前記塩基配列の分析を行い、
前記振動情報を検知した場合に警報を発し、前記警報を発している際に検出した前記イオン電流を塩基配列解読に使用しなく
前記警報を発している間は、前記駆動機構による前記DNA固定基板の駆動を停止する、
ことを特徴とする生体試料分析方法。
【請求項8】
請求項に記載の生体試料分析方法であって、
前記振動情報により、振動の収まりを検出したら、前記駆動機構による前記DNA固定基板の駆動を再開し、前記イオン電流を検出する、
ことを特徴とする生体試料分析方法。
【請求項9】
請求項に記載の生体試料分析方法であって、
前記振動情報を検知し、かつ前記DNAの配列順序の反転を検知した場合に、前記検出部により検出した前記イオン電流を補正する、
ことを特徴とする生体試料分析方法。
【請求項10】
DNAの塩基配列を分析する生体分析装置の生体分析方法であって、
前記生体分析装置は、測定対象物が通過するナノメートルサイズの穴を有し、両側に電圧が印加されるナノポア基板により内部が区切られ、電解質溶液で満たされる槽と、前記ナノポア基板に対向して位置し、前記DNAが固定されるDNA固定基板と、前記DNA固定基板を駆動させる駆動機構と、前記DNAが前記ナノポア基板を通過する際のイオン電流を検出する検出部と、前記生体分析装置の振動情報を検知する振動検知部と、を備えており、
検出した前記イオン電流と、検知した前記振動情報を用いて前記塩基配列の分析を行い、
前記ナノポア基板は、前記ナノメートルサイズの穴を複数備えており、前記DNA固定基板は、未知配列と既知配列のDNAとが固定される、
ことを特徴とする生体試料分析方法。
【請求項11】
請求項10に記載の生体試料分析方法であって、
前記振動検知部は、前記既知配列のDNAに対する前記イオン電流を用いて振動を検知する、
ことを特徴とする生体試料分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノサイズのポアが開いた薄膜による核酸の配列解析等を行う分析装置に係り、特に、環境振動に対する塩基配列解読精度の向上技術に関する。
【背景技術】
【0002】
本技術分野の背景技術として、ナノポアDNAシーケンスに関する特許文献1がある。この公報には、「ナノポアの内径は約10nmであった。」と記載されており、ナノポアDNAシーケンサは、伸長反応や蛍光ラベルは行わずに、DNAの塩基配列を電気的に直接計測する手法が注目を浴びている。この直接計測法にはいくつかの手法が提案されているが、その一つに封鎖電流方式がある。薄膜に透過電子顕微鏡などによって数nmのポア(ナノポア)を作製し、その薄膜の両側に電解質溶液を満たした液槽を設ける。それぞれの液槽に電極を設け、これらの電極間に電圧をかけると、ナノポアを通してイオン電流が流れる。イオン電流は一次近似としてナノポアの断面積に比例する。DNAがナノポアを通過する際に、DNAがナノポアを封鎖し、イオンが通過できる有効断面積が減少するため、イオン電流が減少する。この減少量を封鎖電流と呼ぶ。封鎖電流の大きさを元に、DNAの1本鎖と2本鎖との差異や、塩基の種類を判別する。
【0003】
ナノポア内を通過するDNAのブラウン運動が大きいことや、ナノポア内を通過するスピードが速すぎて検出器の測定スピードが追い付かないなどの課題があるため、各塩基を判別する測定精度を確保しにくい。DNAのブラウン運動や通過スピードをコントローするために、DNAの一端を固定して運動を制御した上で測定する手法がいくつか提案されている。AFM(Atomic Force Microscope)などで用いられるカンチレバーにDNAを固定する方式(特許文献2)、ステージ搭載されたナノステッパーアームに生体試料を固定する方式(特許文献3)などが開示されている。
【0004】
そして、DNAの1本鎖や2本鎖の一端を、ナノポアが作成された平面と平行な面に固定し、その面に垂直な軸に駆動するステージによって、DNAのナノポア通過速度を制御する場合や、さらに、DNAの1本鎖や2本鎖の位置を、ナノポア上の所望の場所に位置付けることが可能な試料移動ステージが設けられている場合もある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開番号WO2012−043028A1
【特許文献2】米国特許公開公報第2004−0144658号
【特許文献3】特開2006−078491号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した従来のDNA搬送技術に関する1つの欠点は、検出器であるナノポアが開けられた薄膜と、DNAの通過速度を制御する駆動部品との間の振動である。塩基配列を正確に解読することを求められるDNAシーケンサにとって、塩基間距離がサブナノメートルであるDNAの配列順序を反転させることなく、超精密に制御することは非常に難しく、床振動や音響振動などの環境振動により、検出器であるナノポアが開けられた薄膜と、DNAの通過速度を制御する駆動部品との間の振動が発生する可能性がある。一方、アクティブ除振台などにより、物理的に環境振動を抑制し、DNAの配列順序を反転させない方法も考えられる。このように、ナノポアDNAシーケンサシステムにおいて、環境振動によって塩基配列の順序が反転すると正確な配列解析を行うことができない。
【0007】
特許文献2に開示された技術によれば、カンチレバーに、DNAの一端を固定し、上下動作を行う。一般的なAFMはカンチレバーのたわみ量を何らかの方法で計測し、フィードバック制御を行っている。計測出来るものは、カンチレバーのたわみ量であるため、検出器であるナノポアが開けられた薄膜と、DNAの通過速度を制御するカンチレバーとの間の振動を計測できない課題があった。
【0008】
また、特許文献3に開示された技術によれば、ナノステッパーと呼ばれる静電アクチュエータ、一般的にはピエゾステージにDNAの一端を固定し、2軸動作を行う。ピエゾステージは可動部分を何らかの方法で計測し、フィードバック制御を行っている。こちらの構成であっても、計測出来るものは、ピエゾステージの移動量であるため、検出器であるナノポアが開けられた薄膜と、DNAの通過速度を制御するナノステッパーとの間の振動を計測できない課題があった。
【0009】
このように従来の構成では、検出器であるナノポアが開けられた薄膜と、DNAの通過速度を制御する駆動部品との間の振動を直接計測する構成になっておらず、床振動や音響振動などの環境振動により、相対振動が発生した場合、DNAの塩基配列の順序が反転し、正確な配列解析できないという課題があった。
【0010】
本発明の目的は、上記の課題を解決し、環境振動による塩基配列解読精度低下を解決することが可能な生体試料分析装置、及びその分析方法を提供することにある。
【課題を解決するための手段】
【0011】
上記の目的を達成するため、本発明においては、DNAの塩基配列を分析する生体分析装置であって、測定対象物が通過するナノメートルサイズの穴を有するナノポア基板と、ナノポア基板により内部が区切られ、電解質溶液で満たされた槽と、ナノポア基板に対向して位置し、DNAが固定されるDNA固定基板と、DNA固定基板を駆動させる駆動機構と、ナノポア基板の両側に電圧を印加する電圧印加部と、DNAがナノポア基板を通過する際のイオン電流を検出する検出部と、生体分析装置の振動を検知する振動検知部と、振動検知部によって検知した振動情報を記録する記録部を備える構成の生体試料分析装置を提供する。
【0012】
また、上記の目的を達成するため、本発明においては、DNAの塩基配列を分析する生体分析装置の生体分析方法であって、生体分析装置は、測定対象物が通過するナノメートルサイズの穴を有し、その両側に電圧が印加されるナノポア基板により内部が区切られ、電解質溶液で満たされた槽と、ナノポア基板に対向して位置し、DNAが固定されるDNA固定基板と、DNA固定基板を駆動させる駆動機構と、DNAがナノポア基板を通過する際のイオン電流を検出する検出部と、生体分析装置の振動情報を検知する振動検知部とを備えており、検出したイオン電流と、検知した振動情報を用いて塩基配列の分析を行う生体試料分析方法を提供する。
【発明の効果】
【0013】
本発明によれば、塩基配列順序が反転する振動が発生しても検知、記録し、振動発生時の封鎖信号を除外、または補正することで塩基配列解読向上を行うことができる。
【図面の簡単な説明】
【0014】
図1】生体試料分析装置の構成と生体試料分析チップの拡大図の一例を示す図である。
図2】生体試料分析チップによって取得される配列読取信号の一例を示す図である。
図3】生体試料分析装置で振動無しの封鎖電流が計測された場合の一例を示す図である。
図4】生体試料分析装置で振動有りの封鎖電流が計測された場合の一例を示す図である。
図5】実施例1に係る、生体試料分析装置、及び分析方法の一構成例を示す図である。
図6】実施例1に係る、生体試料分析チップによって取得される配列読取例と同時計測された振動信号の一例を示す図である。
図7】実施例2に係る、生体試料分析装置、及び方法の一構成例を示す図である。
図8】実施例3に係る、生体試料分析装置、及び方法の一構成例を示す図である。
図9】実施例4に係る、生体試料分析装置、及び方法の一構成例を示す図である。
図10】実施例5に係る、生体試料分析方法の一構成例を示す図である。
図11】実施例6に係る、生体試料分析装置、及び方法の一構成例を示す図である。
【発明を実施するための形態】
【0015】
以下、図面を参照して本発明の実施例について説明する。なお、図面には本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、本発明を限定的に解釈するために用いられるものではない分析する生体としてデオキシリボ核酸(DNA)を例示するが、DNAに限定されずリボ核酸(RNA)などの核酸等であっても良い。
【0016】
本明細書の各実施例で述べる「ナノポア」とは、薄膜に設けたナノサイズの孔であり、薄膜の表裏を貫通する。薄膜は主に無機材料から形成される。また、DNA断片の一端が固定される基板またはビーズは、主に無機材料から形成される。薄膜、基板またはビーズの材料は、他に有機物質、高分子材料などを含むこともできる。
【実施例1】
【0017】
まず、実施例1に係る、ナノポアデバイスを用いた生体試料分析装置を説明する。図1は、本実施例の生体試料分析装置の構成の一例を示す図であり、生体試料分析チップによる塩基配列読取機構を示す。
【0018】
図1に示すように、例えばDNA解析装置のような生体試料分析装置100は、仕切り体101により分けられた二つの槽102A、102Bを備える。仕切り体101には、ナノポアを有する生体試料分析チップ(以下、ナノポアデバイスと呼ぶ)が設置されている。二つの槽102A、102Bには、電解質溶液103が満たされている。二つの槽102A、102Bは、ナノポアデバイスの両側に電圧を印加する電圧印加部である電極104及び電源105Aで電気的に接続されている。このナノポアデバイスで仕切られた流路全体をフローセル106と呼ぶ。
【0019】
図1の円形100A内の拡大図に示すように、プローブ107に取り付けられたDNA固定基板108に化学的にDNAの一端を固定し、駆動機構109によって、フローセル開口部110から進入すると、液中のDNA111は、仕切り体101のナノポアデバイスのナノポア112を通して、一方の槽102Aから反対側の槽102Bに泳動するが、通り過ぎることはない。ナノポア112に導入されたDNA111の一端を駆動機構109によって引き抜いたり、押し込んだりすることで、イオン電流を検出する検出部である電流計105Bで電流値を計測する。電流値は、DNA111がナノポアデバイスのナノポア112を通過する際に変化するので、この電流値から塩基配列を読み取る。電流計105Bで計測された電流値は、アンプ(図示せず)で増幅されて、A/Cコンバータ(図示せず)を介して図示を省略したパーソナルコンピュータ(PC)の記憶部に記録される。
【0020】
仕切り板101のナノポアデバイスは、ナノポア112と、ナノポアが形成された例えば5nmなどの数nmのナノポア薄膜113とを備える。非常に薄いナノポア薄膜113の面積は小さく、ナノポアデバイスの設置される仕切り体101の厚みは補強のため、図示しないが、数百nmの厚みを有している。仕切り体101の上下の槽102A、102Bに電解質溶液103を満たし、ナノポアデバイスを介して上下に電圧を印加すると、電解質溶液103中のイオン由来の、ナノポア112のポア径の断面積に応じた電流が検出される。DNA111が駆動ステージによって、ナノポア112を通過すると、イオンの流れが妨げられるため、電流値は、ナノポア112中のDNA111の断面積分だけ減少する。DNA111は、説明上、球体であるビーズを用いて説明したが、塩基は化学式に基づいた形状をしている。以下、糸状(1本鎖)あるいは球体(ビーズ)状のDNA111を適宜用いて説明する。
【0021】
DNA解析装置100では、塩基種毎の電流値の変化量の違いから塩基識別を行う。図2は、電極104で電圧を印加し、駆動機構109によって引き抜いたり、押し込んだりすることにより読み取られる塩基種ごとの電流変化の一例を示す図である。配列読取例200に示されるように、4種類の塩基A、C、T、Gごとに異なる電流値が検出され、一方向にDNA111を駆動することで、塩基配列解読を行っている。
【0022】
ここで、図3を用いて生体試料分析装置の詳細を述べる。同図の(a)に、生体試料分析装置100と同一構成の生体試料分析装置300を示し、その右側にDNA111の拡大図301を示した。DNA111が取り付けられたDNA固定基板108を、駆動機構109により一方向に移動させる。ここでは、+Z方向に移動すると仮定すると、電流計105Bで計測されたイオン電流値は、同図の(b)に示す電流波形302のようなデータが記録される。正確な配列情報を得るためには、配列順序が反転することなく、一方向に移動することが重要である。
【0023】
またDNA111の拡大図301は模式図であり、塩基間距離が例えば0.34nmといったサブナノメートルであるDNA111がナノポア径1〜2nmのナノポア112を通過する所を直接計測することは、光学顕微鏡では光学分解能により非常に難しく、また観察サンプルを真空状態にしなければならない電子顕微鏡では、液体を含む生体試料を観察することは難しい。大気圧電子顕微鏡などもあるが、こちらも分解能の問題で、高精度観察は難しい。
【0024】
図4により実稼働状態を考慮した場合の生体試料分析装置300の動作を述べる。同図の(a)に示すように、生体試料分析装置300が設置される環境には、床振動401や音響振動402などの環境振動があり、生体試料分析装置300全体が振動する。DNA111の塩基間距離がサブナノメートルであるため、非常に小さい微振動でも、生体試料分析装置300が振動し、検出器であるナノポアが開けられた薄膜113と、駆動機構109にプローブ107を介して取り付けられたDNA固定基板108との間に振動が発生し、配列順序が反転する。配列順序が反転した場合の電流計105Bで計測された電流値は、同図の(b)の電流波形403のようなデータが記録される。すなわち、電流波形403の一点鎖線の時間に、配列順序を反転させる振動が入った場合、すなわちDNAの逆戻りが発生した場合の封鎖電流の値である。環境振動によって、同図の(a)の拡大図301で示す、本来のDNA111を塩基配列順序(ACTGACTGA)に対して、電流波形403から得られる配列情報は、(ACTGAGACTGA)となり、下線を引いたGAの部分でDNAの逆戻り、すなわち配列順序が反転することにより、正確な配列情報を得られず、塩基配列解読精度低下に大きく影響する。
【0025】
図5は、本実施例の生体試料分析装置500の分析実施装置、方法を示している。円形内に、仕切り体101のナノポアデバイスの拡大図301を示す。生体試料分析装置500内、または、設置された床など、少なくとも1つ以上、分析装置の振動を検知する振動検知部である加速度計501、A/Cコンバータ502、PC503を備えた構成である。電流計105Bで計測された電流値と加速度計501で計測される信号値は、A/Cコンバータ502を介して記録手段であるPC503に同期して記録される。なお、振動検知部は、例えば速度計や変位計でもよい。
【0026】
図6は、環境振動により、本実施例の生体試料分析装置500に、振動が発生した際の封鎖電流(Ion Current)と振動信号(Acceleration)を同時計測した際のA/Cコンバータ502経由でPC503に記録された波形600を示す。環境振動により検出器であるナノポアが開けられた薄膜113と、駆動機構109にプローブ107介して取り付けられたDNA固定基板108との間に発生した振動が封鎖電流量に影響する。本来のDNA111の塩基配列順序(ACTGACTGA)を封鎖電流のみで正確な配列解読することは難しい。
【0027】
しかし、本実施例の生体試料分析装置500においては、封鎖電流と振動信号を同時計測することで、振動信号を検出している期間は振動が発生していることを検知・記録する。そして、例えばPC503のディスプレイに警報を表示するなどの制御を行う警報部504により、振動発生時の封鎖電流値を塩基配列解読に使用せずに除外することで、精度向上することが可能である。なお、この警報部504は、PC503のプログラム作成、実行で実現することができる。
【0028】
本実施例の構成によれば、床振動や音響振動などの環境振動により、封鎖電流だけでなく、装置振動を同時計測することで、環境振動による振動をナノメートルオーダー以下に制御することなく、DNAの配列順序が反転する振動が発生しても検知、記録し、振動発生時の封鎖信号を除外することで、塩基配列解読向上を行う。したがって、塩基配列解読精度を向上でき、物理的にサブナノメートルに振動を抑制する装置、例えばアクティブ除振台などの高額な装置を削減でき、環境振動仕様も大きく広げることができるという効果がある。
【実施例2】
【0029】
図7は、実施例2の生体試料分析装置の一構成例を示している。図5の生体試料分析装置500と同様、生体試料分析装置700内、または、設置された床などに少なくとも1つ以上、分析装置の振動を検知する振動検知部である加速度計501を備えた構成である。電流計105Bで計測された電流値と加速度計501で計測される信号値は、A/Cコンバータ502を介して記録手段であるPC503に同期して記録され、更に本実施例においては、必要に応じて、PC503の警報部504のプログラム実行により、駆動機構109に指令が与えられる構成とする。また実施例1と同様、振動検知部は、たとえば、速度計や変位計でもよい。
【0030】
本実施例の構成において、環境振動により生体試料分析装置700に振動が発生した際に、封鎖電流と振動信号を同時計測し、図6に示したような波形600が計測された場合、警報を発する警報部504により、振動発生時にプローブ107を介してDNA固定基板108が取り付けられた駆動機構109の駆動を停止することを指令し、振動が収まってから、再び駆動を開始することで、精度向上することが可能である。また振動し始めた時の塩基配列の位置に駆動機構109により移動し、電流計105Bでイオン電流を計測し封鎖電流を再計測することも可能となる。
【実施例3】
【0031】
図8は、実施例3の生体試料分析装置の一構成例を示している。本実施例は、実施例2の生体試料分析装置700内にアクティブ除振台801を更に備えた構成の生体試料分析装置800の実施例である。アクティブ除振台801は、少なくとも1つ以上の分析装置の振動を検知する振動検知部であるセンサ805を備え、設置された床との絶縁ため、少なくとも1つ以上のバネ803A、Bとアクチュエータ804A、Bを備え、ナノポアシーケンサが設置される板または定盤802を備えた構成である。アクティブ除振台上に生体試料分析装置を載置することにより、床振動等の影響を軽減することができる。実施例2同様、電流計105Bで計測された電流値とセンサ805で計測される信号値は、A/Cコンバータ502を介して記録手段であるPC503に同期して記録され、必要に応じて、駆動機構109にPC503から指令が与えられるとする。また振動検知部は、たとえば、速度計や変位計でもよい。
【0032】
環境振動、特に床振動により、本実施例の生体試料分析装置800に振動が発生した際に、封鎖電流と振動信号を同時計測し、図6のような波形600が計測された場合、警報を発する警報部504の処理により、振動発生時にプローブ107介してDNA固定基板108が取り付けられた駆動機構109に停止することを指令し、振動が収まってから、再び駆動することで、精度向上することが可能である。また振動し始めた時の塩基配列の位置に駆動機構109により移動し、封鎖電流を再計測する方法もある。
【実施例4】
【0033】
図9は、実施例4の生体試料分析装置、及び方法の一構成例を示している。本実施例の生体試料分析装置900では、DNAや電解質溶液を無くし、ナノポア基板基準で、DNA固定基板108を計測する変位計902と、少なくとも1つ以上の分析装置の振動を検知する振動検知部であるセンサ901を備える構成として、環境振動を計測し、センサ901から変位計902までの伝達関数903を事前に取得する構成である。ここでも振動検知部は、たとえば、速度計や変位計でもよい。
【0034】
上記の構成で事前に取得する伝達関数903は、環境振動を計測したセンサ901の値をラプラス変換したX(s)、ナノポア基板基準で、DNA固定基板108を計測した変位計902の値をラプラス変換したY(s)とし、G(s)は、式1のように計算されることがわかっている。
【0035】
【数1】
【0036】
環境振動により、図7に示した生体試料分析装置700に振動が発生した際に、上式により事前に取得した伝達関数903より、装置振動から検出器であるナノポアが開けられた仕切り体101と、DNA固定基板108との間の振動を予測することが可能である。
【0037】
そして、封鎖電流と振動信号を同時計測し、図6のような波形600が計測された場合、伝達関数903より振動信号から検出器であるナノポアが開けられた仕切り体101と、DNA固定基板108との間の振動を予測し、警報を発する警報部504により、プローブ107を介してDNA固定基板108が取り付けられた駆動機構109にフィードバック制御することができる。すなわち、警報部504は、振動検知部により振動を検知した場合には、振動情報を伝達関数により駆動機構へフィードバック制御し、DNAの振動を抑制するようDNA固定基板108を駆動する。本実施例の構成により、ナノポアが開けられた仕切り体と、DNA固定基板との間の振動を抑制し、塩基配列解読の精度向上を図ることが可能である。
【実施例5】
【0038】
図10は、実施例5の生体試料分析方法を説明するための図である。同図の電流波形1000に示すように、封鎖電流と振動信号を同時計測し、伝達関数903により振動信号から検出器であるナノポアが開けられた仕切り体101と、DNA固定基板108との間の変位振動を予測できるメリットを述べる。実施例4の構成で伝達関数903を取得する際に、高精度な変位計902を用いることで、正確な予測を行うことができる。正確な変位振動予測から、一塩基単位のDNAの挙動を予測し、配列順序が反転しても、振動信号による補正により正確な配列情報を得ることができる。すなわち、物理的にナノメートルオーダーで制御せず、正確な配列情報を得られるメリットである。
【0039】
図10の下段に、ナノポアデバイスの拡大図1001を示す。図5のような生体試料分析装置500が設置される環境には、床振動401や音響振動402などがあり、生体試料分析装置500全体が振動した場合の電流計105Bで計測された電流値は、電流波形1000のようなデータが記録される。電流波形1000は、その点線の時間に配列順序を反転させる振動が入った場合の封鎖電流の値を示している。図10の例においては、正確な変位振動予測によって、2塩基分の配列順序を反転することが、封鎖電流と振動信号を同時計測から識別できる。
【0040】
このように、本来のDNA111を塩基配列順序(CTGACTGA)に対して、電流波形403から得られる配列情報は、(CTGAGTGACTGA)となるが、このGTGAは、振動予測から2度読みであると判断でき、この部分を補正することにより正確な配列情報を得られることで、塩基配列解読精度向上することが出来る。
【0041】
このように、本実施例の生体試料分析方法によれば、振動予測により、アクティブ除振台などの高額な装置を用いることなく、装置サイズも小型化できる。またアクティブ除振台の制御範囲を超える振動が発生した場合には、アクティブ除振台は機能しないが、本実施例の分析方法によれば、封鎖電流と振動信号を同時計測し、振動自体を抑制するのではなく、振動検知部により振動を検知し、かつDNAの配列順序の反転を検知した場合に、計測後、検出部により検出したイオン電流を補正することが可能となる。
【0042】
また、DNA111の物性は剛体ではなく、一般的にバネ性があると言われている。そのため、検出器であるナノポアが開けられた薄膜101と、DNAの通過速度を制御する駆動部品109との間の振動とDNAの挙動が異なる可能性がある。
【0043】
そのため、検出器であるナノポアが開けられた薄膜101と、DNAの通過速度を制御する駆動部品109との間の振動を予測し、さらに、DNA111のバネ性をシミュレーションによって、DNA111の挙動を予測し、この情報を用いて、補正することも可能である。
【実施例6】
【0044】
図11は、実施例6に係る生体試料分析装置、及び方法を説明するための図である。一般的に、1枚のナノポア薄膜1101に複数のナノポアを設けた、いわゆるマルチナノポアを用いれば、薄膜あたりの測定効率を向上できると考えられる。本実施例は、振動検知部が既知配列のDNAに対するイオン電流を用いて振動を検知し、警報部を含むPCは未知配列のDANの配列情報を解析する構成の実施例である。
【0045】
図11に示す本実施例の生体試料分析方法1100によるマルチポアシステムにおいては、生体試料分析装置が載置された装置振動を検知する振動検知部に関して、加速度計501や、その他、速度計や変位計ではない方法も考えることができる。DNA固定基板108に複数のDNA鎖1102及び1103が固定され、マルチナノポア基板1101のナノポアを複数封鎖している。このうち、DNA鎖1103は、塩基配列が既知のものである。
【0046】
DNAシーケンサは、未知な塩基配列情報を解析する装置であるので、環境振動により塩基配列順序が反転し、塩基配列解読精度が劣化する。しかしながら、生体試料分析方法1100によって、塩基配列が既知であるDNA1103と未知であるDNA1102鎖を同時計測することで、予期しない振動が入った場合において、既知DNA鎖1103により、振動を検知することができる。そこで、未知DNA鎖1102に対して検知した振動による補正することで、未知DNA鎖の塩基配列解読精度向上が可能になる。ここでは、既知DNA鎖1103は、既知であることが重要であり、その他蛋白や識別用化合物などでも良い。
【0047】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0048】
更に、上述した警報部などの各構成、機能、処理等は、それらの一部又は全部を実現するプログラムを作成する例を説明したが、それらの一部又は全部を例えば集積回路で設計する等によりハードウェアで実現しても良いことは言うまでもない。すなわち、処理部の全部または一部の機能は、プログラムに代え、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路などにより実現してもよい。
【符号の説明】
【0049】
100、300、500、700、800、900 生体試料分析装置
100A 生体試料分析装置一部拡大図
101:ナノポアデバイスが形成される仕切り体
102A、102B 槽
103 電解質溶液
104 電極
105A 電源
105B 電流計
106 フローセル
107 プローブ
108 DNA固定基板
109 駆動機構
110 フローセル開口部
111 DNA
112 ナノポア
113 ナノポア薄膜
200 配列読取例
301 DNA111の拡大図
302 電流波形(振動無し)
401 床振動
402 音響振動
403、1000 電流波形(振動有り)
501 加速度計
502 A/Cコンバータ
503 PC
504 警報部
600 配列読取例
801 アクティブ除振台
802 定盤
803 バネ
804 アクチュエータ
805、901 センサ
902 変位計
903 伝達関数
1001 ナノポアデバイスの拡大図
1100 生体試料分析方法
1101 マルチナノポア基板
1102 未知DNA
1103 既知DNA
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11