(58)【調査した分野】(Int.Cl.,DB名)
前記信号補正部が、0.1Hz〜0.5Hz間における最大パワーの最小パワーに対する比を5以下とするデジタルフィルタを含んで構成されている請求項1〜3の何れか一項に記載の心不全診断装置。
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところが、本発明者が検討したところ、感圧センサによって検出された体圧変化に基づいて呼吸を測定することは充分に可能である一方、感圧センサによって検出された呼吸信号から得られた周波数スペクトルから、例えば上述の呼吸周波数インデックス(RSI)等を求めて心不全の症状を把握する場合には、呼吸気流センサを用いた場合に比して、精度に改善の余地のあることが判った。
【0008】
本発明の解決課題は、圧電型センサによって得られた体圧変化に基づく呼吸の検出信号を用い、呼吸周波数インデックス(RSI)等による心不全の診断を行うに際しての精度の向上が図られ得る、新規な心不全診断装置を提供することにある。なお、本発明における心不全の診断は、狭義の医師の診断による判断に限定されず、被検者の心不全に関する症状の判別として、例えば心不全の予後の予測や心不全悪化の早期検出、心不全の重症度の評価などの結果信号の出力を含み、心不全に関する症状の判断情報の提供等も含む。
【課題を解決するための手段】
【0009】
以下、本発明を把握するための好ましい態様について記載するが、以下に記載の各態様は、例示的に記載したものであって、適宜に互いに組み合わせて採用され得るだけでなく、各態様に記載の複数の構成要素についても、可能な限り独立して認識及び採用することができ、適宜に別の態様に記載の何れかの構成要素と組み合わせて採用することもできる。それによって、本発明では、以下に記載の態様に限定されることなく、種々の別態様が実現され得る。
【0010】
第一の態様は、横たわる被検者の呼吸の検出信号に基づいて得られた、呼吸周波数の標準偏差を利用した指標を用いて心不全を診断する心不全診断装置であって、入力振動に応じた前記検出信号を出力する柔軟な圧電型センサシートと、該圧電型センサシートの該検出信号から呼吸に起因する振動周波数の信号を呼吸信号として取り出す呼吸信号取得部と、該呼吸信号から呼吸周波数帯域のパワースペクトルを求めるパワースペクトル演算部とを、有しており、該パワースペクトルにおいて呼吸波形の一次周波数成分の最大値が呼吸波形の二次周波数成分の最大値に対して1.5倍以上となるように該検出信号を補正して該呼吸信号とする信号補正部が設けられているものである。
【0011】
呼吸気流センサに代えて圧電型センサを採用した場合の前述の如き心不全診断精度の問題について、本発明者が検討したところ、圧電型センサに特有の出力特性が主たる原因の一つであるとの知見を得た。即ち、圧電型センサによる呼吸の検出信号(呼吸信号)に基づいて心不全診断を行うに際しては、呼吸信号から求めたパワースペクトルを利用し、呼吸周波数域に存在するパワースペクトルのピーク領域の信号を呼吸の検出信号として用いることとなる。それ故、圧電型センサの感度の周波数特性が平坦でない場合には、呼吸信号のパワースペクトルが歪む形になる。この歪みは、呼吸信号の標準偏差へ悪影響を与えてしまい、RSI値へ誤差を生じることになる。特に、一般的な圧電型センサは、そのセンサの絶縁抵抗と静電容量によって生じるハイパスフィルタ特性を持っており、呼吸信号帯域を含む低周波数領域では、平坦な周波数特性になり難い。
【0012】
一方で、呼吸信号のスペクトルは、低周波数領域の一次と高次の周波数成分を含んだ複雑な形状を持つ。そこで、圧電型センサの感度の周波数特性がハイパスフィルタ特性の場合は、呼吸信号のスペクトルは、高次成分が不用意に強調されて歪んでしまう。そのことから、前出のRSI値の算出にあたり、二次成分を含めて呼吸信号として扱われるおそれがあり、呼吸周波数を正確に検出することができない場合があることがわかった。即ち、RSI値を精度良く算出するためには、感圧センサの周波数特性を平坦にする必要がある。
【0013】
ここにおいて、本態様の心不全診断装置では、パワースペクトルにおいて呼吸波形の一次周波数成分を二次周波数成分に比して充分に大きくなるように補正する信号補正部を新たに採用した。この信号補正部により、本来の呼吸信号である検出信号における呼吸周波数の一次成分をより正確に反映して、特に呼吸周波数の二次成分による悪影響を抑えて、パワースペクトルを取得することができる。それ故、例えば得られたパワースペクトルから標準偏差を利用した「呼吸周期の規則性」に関する指標を取得して呼吸周期の経時的な変動乃至は安定性を評価することで心不全を診断を行うに際して、圧電型の感圧センサを採用することによる被検者への非侵襲性や非拘束性により、違和感のない良好な使用感を損なうことなく、診断精度の向上が図られ得るのである。
【0014】
また、圧電型のセンサは、静電容量型や空気式等の他の方式のセンサと比較して、一般に、感度が高く呼吸情報を検出し易い。更に、静的荷重によるバイアス信号がないことから、検出信号(呼吸信号)が被験者の体重や圧電型センサの敷き方に左右されることがなく、上記の他の方式のセンサと比較して、信号処理し易い利点がある。
【0015】
更にまた、感圧センサは患者を拘束する必要がなく、特に、本出願で提案する圧電型の感圧センサは、感度が高く、シーツの下やマットレスの下でも計測できることから、患者への負担を少なくすることができる。
【0016】
第二の態様は、前記第一の態様に係る心不全診断装置であって、前記圧電型センサシートが圧電層と電極層を有しており、該圧電層がゴム弾性体によって形成されているものである。
【0017】
一般に、セラミックス製や合成樹脂製の圧電型センサは、ゴム弾性体製の圧電型センサに比べてカットオフ周波数が低周波になり易いが、柔軟性が低く、患者が違和感を感じ易かった。そこで、本態様の心不全診断装置では、圧電型センサの材質としてカットオフ周波数が高周波になり易いゴム弾性体を採用しつつも、前述の信号補正部を採用したことで、被検者の呼吸周期を高精度に検出することが可能となる。それ故、被検者の呼吸信号の検出精度ひいては心不全の診断精度を確保しつつ、柔軟な圧電型シートを採用することが可能となり、使用時における被検者の違和感を一層軽減することが可能になる。
【0018】
第三の態様は、前記第二の態様に係る心不全診断装置において、前記圧電型センサシートの前記圧電層が、10
9 Ω・cm以上の体積抵抗率を有する高抵抗ゴム材料から構成されているものである。
【0019】
本態様の心不全診断装置では、圧電層として比較的抵抗値の高いゴム材料を採用することで、一般に1/(2πRC)で決定される圧電型センサにおける低周波側のカットオフ周波数(遮断周波数)をより低周波とすることができる。それ故、呼吸波形の一次周波数成分における呼吸信号の減衰を抑えることができて、信号補正部による大幅な補正に起因するノイズの増幅等の懸念を効果的に回避することも可能になる。
【0020】
第四の態様は、前記第一〜第三の何れか一つの態様に係る心不全診断装置において、前記信号補正部が、0.1Hz〜0.5Hz間における最大パワーの最小パワーに対する比を5以下とするデジタルフィルタを含んで構成されているものである。
【0021】
本態様の心不全診断装置によれば、心不全の診断に際して有効と考えられる呼吸周波数域において、例えば得られたパワースペクトルから標準偏差を利用した「呼吸周期の規則性」に関する指標を取得して呼吸周期の経時的な変動乃至は安定性を評価することで心不全を診断を行うに際して、有効な検出信号の検出精度が実現可能になる。
【発明の効果】
【0022】
本発明に係る心不全診断装置によれば、圧電型センサシートを採用することで測定時における被検者の違和感を抑えて良好な使用感を実現しつつ、圧電型センサシートによる検出信号に基づいて得られた呼吸周波数の標準偏差を利用した指標を用いて心不全に関する情報を精度良く診断することが可能になる。
【発明を実施するための形態】
【0024】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0025】
先ず、
図1には、本発明の一実施形態としての心不全診断装置10が示されている。この心不全診断装置10は、
被検者である使用者としての患者Pの呼吸や心臓の拍動等に伴う身体の微小な体動(振動)が入力されて当該入力振動に応じた検出信号を出力する圧電型センサシート12と、圧電型センサシート12から出力された検出信号を解析する解析装置14とを含んで構成されている。
【0026】
より詳細には、圧電型センサシート12は、例えば
図2の如き構造とされており、略矩形シート状の柔軟なセンサ本体16を備えている。このセンサ本体16は、
図3,4に示すように、圧電層18と、該圧電層18の感圧方向の両側面に重ね合わせ状態で配された一対の電極層20a,20bと、一対の保護層22a,22bとを備えている。
【0027】
圧電層18の材質としては、セラミックスや合成樹脂、ゴム弾性体(エラストマを含む)等が採用され得るが、本実施形態では、セラミックスや合成樹脂よりも比較的、体積抵抗率ρvの小さいゴム弾性体により構成されている。体積抵抗率が小さいとカットオフ周波数が、例えば呼吸に起因する振動周波数の下限の周波数よりも高周波側で、呼吸に起因する振動周波数帯における低周波側の周波数になってしまうことから、呼吸信号の一次周波数成分の検出に支障が出るおそれがある。このことから、ゴム弾性体の抵抗値を大きくして、カットオフ周波数を、例えば呼吸に起因する振動周波数の下限の周波数よりも低周波側とすることが望ましい。具体的には、圧電層18の体積抵抗率ρvは、10
9 Ω・cm以上とされることが好適であり、10
10Ω・cm以上とされることがより好適である。
【0028】
圧電層18として採用されるゴム弾性体は、限定されるものでないが、例えば架橋ゴム及び熱可塑性エラストマから選ばれる一種以上を用いることが好適であり、例えばウレタンゴム、シリコーンゴム、ニトリルゴム(NBR)、水素化ニトリルゴム(H−NBR)、アクリルゴム、天然ゴム、イソプレンゴム、エチレン−プロピレン−ジエンゴム(EPDM)、エチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル−アクリル酸エステル共重合体、ブチルゴム、スチレン−ブタジエンゴム、フッ素ゴム、エピクロルヒドリンゴム等が挙げられる。また、官能基を導入する等して変性したエラストマを用いてもよい。変性エラストマとしては、例えばカルボキシル基、ヒドロキシル基、アミノ基から選ばれる一つ以上を有する水素化ニトリルゴムが好ましい。
【0029】
また、圧電層18は、圧電粒子を含んでいる。圧電粒子は、圧電性を有する化合物の粒子である。圧電性を有する化合物としては、ペロブスカイト型の結晶構造を有する強誘電体が知られており、例えばチタン酸バリウム、チタン酸ストロンチウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸リチウム、ニオブ酸カリウムナトリウム、ニオブ酸カリウムナトリウムリチウム、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウムストロンチウム(BST)、チタン酸ビスマスランタン(BLT)、タンタル酸ビスマスストロンチウム(SBT)のうちの一種類又は二種類以上の混合物が好適に採用され得る。
【0030】
電極層20a,20bは、圧電層18に追従して変形し得る柔軟性を有することが好ましい。このような電極層20a,20bは、例えばバインダーに導電材を配合した導電材料、導電性繊維等から形成することができる。バインダーとしては、上述の圧電層18を構成する架橋ゴム及び熱可塑性エラストマと同様の材質が採用され得る。
【0031】
また、電極層20a,20bに配合される導電材は、限定されるものではないが、例えば銀、金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、及びこれらの合金等からなる金属粒子、酸化亜鉛、酸化チタン等からなる金属酸化物粒子、チタンカーボネート等からなる金属炭化物粒子、銀、金、銅、白金、及びニッケル等からなる金属ナノワイヤ、カーボンブラック、カーボンナノチューブ、黒鉛、薄層黒鉛、グラフェン等の導電性炭素材料の中から適宜選択され得る。
【0032】
保護層22a,22bは、材質を限定されるものでないが、柔軟性に加えて電気絶縁性や耐久性、生体親和性を有することが望ましい。
【0033】
本実施形態では、圧電層18、電極層20a,20b、保護層22a,22bが何れも薄肉の矩形板状とされており、圧電層18の厚さ方向両側に電極層20a,20bが固着されていると共に、これら圧電層18及び電極層20a,20bの厚さ方向両側に保護層22a,22bが固着されている。これにより、圧電層18及び電極層20a,20bが外部に露出することなく、保護層22a,22bの内部に埋設されている。かかる構造をもって、センサ本体16が薄肉の略矩形シート状として形成されている。
【0034】
そして、センサ本体16の幅方向中央部分において、圧電層18と電極層20a,20bとが厚さ方向で重なる領域が、感圧部24とされており、当該感圧部24に荷重が及ぼされることにより電荷が発生するようになっている。なお、感圧部24は、全体に亘って一つの構造体とされていても良いし、面方向において複数の感圧部に分割されたセル構造体とされていても良い。
【0035】
また、本実施形態の圧電型センサシート12は、制御器26とコネクタ28とを備えており、電極層20a,20bと制御器26とが配線30a,30bにより電気的に接続されていると共に、制御器26がコネクタ28を介して家庭用電源もしくはバッテリー等に電気的に接続されて電源が供給される。
【0036】
制御器26は、圧電型センサシート12から発生する電荷を電圧に変換するチャージアンプや、チャージアンプで変換された電圧出力をデジタル信号に変換するA/D変換部を備えている。また、制御器26は信号増幅部を備えており、例えば圧電型センサシート12から発生した電荷、チャージアンプにより変換された電圧、A/D変換部により変換されたデジタル信号等が適宜増幅され得る。更に、制御器26は、計測したデータを、例えばwi‐fi(登録商標)やbluetooth(登録商標)等の無線通信により後述するスマートフォン32に転送する機能を有している。
【0037】
本実施形態の解析装置14は、スマートフォン32を含んで構成されている。スマートフォン32は、携帯電話機であって、中央演算装置(CPU)やRAM、ROM、表示画面としてのディスプレイ等のハードウェア構成を備えており、一般的なスマートフォンが有する通話機能やデータ通信機能等も有している。
【0038】
そして、制御器26からスマートフォン32に転送されたデータは、更にスマートフォン32からクラウド34(サーバー上)へ転送される。クラウド34上に送られたデータは、後述するパワースペクトル演算部(RST算出部44)により解析されて、RSIが算出される。算出されたRSIは、スマートフォン32に転送されて患者P自身が確認したり、病院に転送されて医師が心不全の経過を判断したりする材料になる。
【0039】
ここにおいて、本実施形態では、圧電型センサシート12が、患者Pが横たわるベッド36の幅方向に延びるように配置されている。特に、本実施形態では、圧電型センサシート12が、長さを調節可能とされたベルト部38を備えており、ベルト部38がベッド36のマットレスに巻き付けられて、圧電型センサシート12がマットレス上に固定されていると共に、当該圧電型センサシート12を固定したマットレスの上からシーツが被せられている。これにより、患者Pは、圧電型センサシート12に直接接触することなく圧電型センサシート12上に横たわっており、本実施形態では、圧電型センサシート12が、患者Pの胸部付近に設置されている。
【0040】
そして、患者Pの呼吸や心臓の拍動等に伴って圧電型センサシート12の感圧部24に微小な体動(振動)が入力されると、圧電層18に電荷が発生すると共に、当該発生した電荷が、制御器26のチャージアンプによって電圧に変換される。その後、A/D変換器により、電圧がデジタルに変換される。制御器26において検出されたデジタル量と時間との関係の具体的な一例を
図5のグラフに示す。
【0041】
以下、患者Pの呼吸や心臓の拍動に伴って検出される信号(検出信号)を、解析装置14により解析する手順の具体的な一例を、
図6を示して説明する。
【0042】
先ず、患者Pがベッド36上に横たわった状態において、患者Pの呼吸や心臓の拍動等に伴う微小な体動(振動)が圧電型センサシート12の感圧部24に入力されることで、当該振動の大きさ(振幅)に応じた電荷(信号)が、制御器26にて経時的に検出される。そして、制御器26にて検出された信号が、デジタルフィルタを介して呼吸信号として出力される。
【0043】
すなわち、デジタルフィルタにより、圧電型センサシート12の出力特性を略フラットにするために、デジタル信号に変換されたデータ(検出信号)に対して、低周波側を増幅するか、又は高周波側を減衰するような補正処理を行う。かかるデジタルフィルタによる補正処理は、制御器26によって行われてもよいし、適切なプログラム(アプリケーション)が導入されたスマートフォン32やクラウド34によって行われてもよい。具体的なデジタルフィルタの処理を示す数式(補正式)等は限定されるものではないが、
図7に、デジタルフィルタによる出力特性の具体的な一例を示す。
【0044】
なお、圧電型センサシート12には生産上のばらつきが多少発生することから、かかるばらつきも考慮して上記補正式が設定されることが好ましい。それ故、デジタルフィルタの補正式は、得られる検出信号等に応じて、最初の測定時、又は測定の度や所定の測定間隔や時間感覚などをもって適宜設定されてもよい。
【0045】
この結果、制御器26にて検出された信号は、デジタルフィルタを介することで
図8に示される出力特性をもって、補正された検出信号(呼吸信号)として取り出される。
【0046】
なお、参考として、
図9にはデジタルフィルタを介さずに出力した場合の圧電型センサシート12の出力特性を示す。
図9にも示されているように、圧電層18としてゴム弾性体を採用したことにより、低周波側において0.5Hz付近にカットオフ周波数があり、例えば0.1Hz付近の出力が大きく低下していることが看取される。これに対して、デジタルフィルタで圧電型センサシート12におけるカットオフ周波数より低周波側の出力を増幅することにより、
図8に示すように、例えば人の呼吸に起因する振動周波数に略相当する0.1Hz〜0.5Hzの間の出力特性が略フラットとなるようにされており、0.1Hz〜0.5Hzの間における最大パワーと最小パワーの比が5以下(5dB以下)とされている。
【0047】
因みに、かかる0.1Hz〜0.5Hzの間における最大パワーと最小パワーの比が5より大きい場合には、例えば後述するRSTの算出時に呼吸周波数の高調波(二次周波数成分)の影響が大きくなり、RSTが正確に算出されないおそれがある。
【0048】
このように低周波側が増幅するように補正されて出力された呼吸信号から、少なくとも呼吸周波数帯域(例えば0.1Hz〜0.5Hz)を含む周波数において、周波数解析によりパワースペクトルを算出する。この結果を、
図10に示す。
【0049】
本実施形態では、
図10に示されるパワースペクトルにおいて、呼吸波形の基本波に基づく一次周波数成分のピーク(山部)がおよそ0.25Hzの位置に現れると共に、高調波である二次周波数成分のピーク(山部)がおよそ0.5Hzの位置に現れている。
【0050】
かかるパワースペクトルにおいて、一次周波数成分の最大値は、二次周波数成分の最大値に対して1.5倍以上とされている。なお、一次周波数成分の最大値が二次周波数成分の最大値に対して1.5倍よりも小さい場合、二次周波数成分の影響が大きくなって、後述するRSTが正確に算出されないおそれがある。
【0051】
そして、得られたパワースペクトルに対して、前記特許文献1に記載されているように、患者Pの呼吸周波数の標準偏差(SD)を算出して、更にこの標準偏差(SD)の逆数(RSI)を取ることで、呼吸周期の安定度、ひいては心不全疾患の重症度を示す指標としてのRST(呼吸安定時間)が得られる。このRSTの値が、例えば所定の値に対して大きいか小さいか、または、前回の測定時のRSTの値に対して大きくなっているか小さくなっているか等を判定することで、心不全疾患の重症度や進行度が判断され得る。
【0052】
すなわち、本実施形態では、チャージアンプで変換された検出信号を、周波数特性が略フラットとなるように調整されたデジタルフィルタを通じて呼吸信号へと変換し、その呼吸信号をスマートフォン32を介したインターネット通信を通じてクラウド34へ転送する。そして、転送されたデータがパワースペクトルに変換されると共に、呼吸波形の標準偏差を算出してRSTが求められる。従って、本実施形態では、検出信号から呼吸に起因する振動周波数の信号を呼吸信号として取り出す呼吸信号取得部40と、制御器26(圧電型センサシート12)により検出された検出信号をデジタルフィルタにより補正して呼吸信号とする信号補正部42とが、適切なプログラム(アプリケーション)を備えた制御器26とスマートフォン32とクラウド34との少なくとも一つにより構成されている(
図1中では制御器26に設けられている)。また、呼吸信号からパワースペクトルを算出するパワースペクトル演算部としてのRST算出部44が、クラウド34上のプログラムを含んで構成されている。
【0053】
ところで、心不全疾患は、睡眠の質との間に相関関係があることが見出されている。それ故、上記RSTの情報に加えて、患者Pがベッド36に在床しているか、ベッド36から離床しているかの情報が得られることが好ましい。かかる在床か離床かの判定は、例えばチャージアンプで変換された検出信号を、デジタルフィルタ(例えば、後述する4Hz以上の周波数成分を抽出するハイパスフィルタや、0.8Hz〜2Hzの周波数成分を抽出するバンドパスフィルタ)を通じて変換して、その信号を在床離床判定部46を通じて、在床か離床かを判断する。その判断信号は、インターネット通信を通じてクラウド34上へ転送される。即ち、本実施形態では、在床離床判定部46が、適切なプログラム(アプリケーション)を備えた制御器26とスマートフォン32とクラウド34との少なくとも一つにより構成されている(
図1中では制御器26に設けられている)。
【0054】
そして、上記のように求められたRSTと在床、離床情報は、インターネット通信を通じて、病院で医師が見られるようなシステムに転送されたり、患者Pのスマートフォン32に転送されたりされてもよい。これにより、医師はRSTや在床、離床情報を見て、患者Pが心不全の傾向があるかどうかを判断することができて、心不全の傾向があると判断された場合には、薬による介入や通院など、適切な処置が施される。
【0055】
患者Pがベッド36に対して在床か離床かを検知する具体的な手段は限定されるものではないが、例えば患者Pのベッド36に対する在床か離床かを、上述のように圧電型センサシート12の検出信号に基づいて検知するようになっていてもよい。即ち、人の心拍はおよそ1Hzであるが、心拍に伴う身体の振動(心弾動)はおよそ4Hz以上であり、検出信号に対して4Hz以上の周波数成分を抽出するハイパスフィルタを介して、
図11(a)に示すように心弾動が検出されることで、患者Pがベッド36に在床であると判断されるようになっていてもよい。または、心弾動に起因する4Hz以上の周波数成分に対して、更に0.8Hz〜2Hzの周波数成分を抽出するバンドパスフィルタを介することで、
図11(b)に示すように心拍を検出することも可能であり、心拍が検出されることで患者Pがベッド36に在床であると判断されてもよい。なお、例えばこれら心弾動や心拍が検出されない場合、患者Pは離床状態であると判断される。
【0056】
RSTの情報に加えて、上述のように患者Pがベッド36に対して在床か離床かが判定されることで心不全疾患の重症度を判断するようになってもよい。即ち、国際公開第2011/019091号にも記載されているように、心不全患者は睡眠の質が低下していることが見出されている。これにより、例えば夜間十分な睡眠時間を確保しているにも拘らず、日中もベッド36に在床し臥せっている(睡眠状態にあるか否かに拘らず)ような場合には、在床時間及び離床時間等の情報が心不全疾患の重症度を判断する一助となり得る。特に、心不全患者と健常者とでは睡眠中のRSTに違いが見られることから、例えば在床の検知してから30分や1時間等の所定時間経過後、入眠したと推定される患者PのRSTを健常者のRSTと比較することで心不全疾患の重症度を判断するようになっていてもよい。
【0057】
このような患者Pがベッド36に対する在床か離床かの判定は、上記のように圧電型センサシート12の検出信号に基づいて判定されてもよいが、例えば特開2015−8920号や国際公開第2015/186182号に記載の圧力センサを別途設けて患者Pの体圧を検出することで、患者Pがベッド36に在床であると判断されるようになっていてもよい。
【0058】
以上の如き本実施形態の心不全診断装置10では、患者Pの呼吸による振動を検出するセンサとして、圧電層18がゴム弾性体からなる柔軟な圧電型センサシート12を採用している。これにより、圧電型センサシート12が患者Pの体形に合わせて容易に変形することができて、ベッド36上に横たわる患者Pが違和感や不快感を感じるおそれが低減され得る。
【0059】
しかしながら、圧電層18をゴム弾性体で構成することで、低周波側の信号が得られ難かった。そこで、信号補正部42を設けて、パワースペクトルにおける低周波側を増幅するような補正を行うことで、高調波の影響を回避することができることから、より正確にRSTを算出することができて、心不全疾患の重症度の判断が、より確実になされ得る。
【0060】
具体的には、圧電層18が、10
9 Ω・cm以上の高抵抗のゴム弾性体から構成されていることで、低周波側の信号をより安定して得ることができる。
【0061】
また、信号補正部42においてデジタルフィルタを設けて呼吸信号の低周波側を増幅することで、圧電層18をゴム弾性体で構成することに伴って得られ難い低周波側の信号を安定して得ることができて、RSTの算出及び心不全の判断がより正確に行われ得る。
【0062】
更に、本実施形態では、心不全の重症度等が、RSTだけでなく、患者Pのベッド36に対する在床及び離床の検知結果によっても判定される。特に、本実施形態では、患者Pのベッド36に対する在床及び離床が、圧電型センサシート12の検出信号に基づいて検知されることから、別途特別な構成を設ける必要がなく、簡単な構造をもってより正確な診断がなされ得る。
【0063】
更にまた、圧電型センサシート12の生産上のばらつきや外部環境等に応じて、センサ感度にばらつきが発生するおそれがあることから、かかるばらつきを考慮して補正式を設定することで、センサ感度のばらつきを抑えることもできる。
【0064】
以上、本発明の実施形態について説明してきたが、本発明はかかる実施形態における具体的な記載によって限定的に解釈されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良などを加えた態様で実施可能である。
【0065】
前記実施形態では、低周波側の信号を増幅補正する手段としてデジタルフィルタが採用されていたが、アナログフィルタが採用されてもよい。これにより、反応性(感度)の向上が図られる。尤も、前記実施形態のように、デジタルフィルタを採用することにより、部品点数やコストの削減が図られるし、アナログフィルタでは、温湿度による特性変化や部品ロットによる特性のばらつき等があることから、デジタルフィルタが好ましい。
【0066】
なお、本発明に係る心不全診断装置の使用者は、例えば病院に入院又は通院して治療を受けている患者に限定されるものではなく、心不全診断装置を自宅で使用してRSTを算出することでその結果により心不全疾患の重症度を把握して、必要に応じて病院等で適切な治療を受けるようにしてもよい。
【課題】使用者に装着する必要のない柔軟な圧電型センサシートの検出結果から、呼吸安定性に基づいた心不全の高精度な診断を可能とする、新規な心不全診断装置を提供する。
【解決手段】使用者Pの呼吸周波数の標準偏差から生成された指標を用いて心不全の診断を行う心不全診断装置10であって、入力振動に応じた検出信号を出力する柔軟な圧電型センサシート12と、圧電型センサシート12の検出信号から呼吸に起因する振動周波数の信号を呼吸信号として取り出す呼吸信号取得部40と、呼吸信号から呼吸周波数帯域のパワースペクトルを算出するパワースペクトル演算部44とを、有しており、パワースペクトルにおいて呼吸波形の一次周波数成分の最大値が呼吸波形の二次周波数成分の最大値に対して1.5倍以上となるように検出信号を補正して該呼吸信号とする信号補正部42が設けられている。