特許第6801679号(P6801679)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ゼオン株式会社の特許一覧
特許6801679重合体、ポジ型レジスト組成物、およびレジストパターン形成方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6801679
(24)【登録日】2020年11月30日
(45)【発行日】2020年12月16日
(54)【発明の名称】重合体、ポジ型レジスト組成物、およびレジストパターン形成方法
(51)【国際特許分類】
   C08F 220/22 20060101AFI20201207BHJP
   C08F 212/06 20060101ALI20201207BHJP
   C08F 212/14 20060101ALI20201207BHJP
   G03F 7/32 20060101ALI20201207BHJP
   G03F 7/039 20060101ALI20201207BHJP
   G03F 7/20 20060101ALI20201207BHJP
   H01L 21/027 20060101ALI20201207BHJP
【FI】
   C08F220/22
   C08F212/06
   C08F212/14
   G03F7/32
   G03F7/039 501
   G03F7/20 521
   H01L21/30 569E
【請求項の数】7
【全頁数】20
(21)【出願番号】特願2017-564220(P2017-564220)
(86)(22)【出願日】2017年1月20日
(86)【国際出願番号】JP2017002023
(87)【国際公開番号】WO2017130870
(87)【国際公開日】20170803
【審査請求日】2019年10月25日
(31)【優先権主張番号】特願2016-16572(P2016-16572)
(32)【優先日】2016年1月29日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2016-16584(P2016-16584)
(32)【優先日】2016年1月29日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000229117
【氏名又は名称】日本ゼオン株式会社
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100150360
【弁理士】
【氏名又は名称】寺嶋 勇太
(74)【代理人】
【識別番号】100174001
【弁理士】
【氏名又は名称】結城 仁美
(72)【発明者】
【氏名】星野 学
【審査官】 牟田 博一
(56)【参考文献】
【文献】 特開昭57−118243(JP,A)
【文献】 特開昭59−49536(JP,A)
【文献】 特開昭61−170735(JP,A)
【文献】 特開平2−115852(JP,A)
【文献】 特開2011−215243(JP,A)
【文献】 特開2016−218321(JP,A)
【文献】 特開昭59−83157(JP,A)
【文献】 国際公開第99/062964(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08F212/04、220/22
G03F7/039
(57)【特許請求の範囲】
【請求項1】
下記一般式(I):
【化1】

(式(I)中、Rは、塩素原子、フッ素原子またはフッ素原子で置換されたアルキル基であり、Rは、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、RおよびRは、水素原子、フッ素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。)
で表される単量体単位(A)と、
下記一般式(II):
【化2】

(式(II)中、R、R、RおよびRは、水素原子、フッ素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、Rは、水素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、pおよびqは、0以上5以下の整数であり、p+q=5である。)
で表される単量体単位(B)とを有し、
前記単量体単位(A)および前記単量体単位(B)の少なくとも一方がフッ素原子を一つ以上有し、
重量平均分子量が22000未満であり、
分子量分布(Mw/Mn)が1.30以上1.60以下である、重合体。
【請求項2】
前記Rが塩素原子である、請求項1に記載の重合体。
【請求項3】
前記Rがフッ素原子で置換されたアルキル基であり、
前記RおよびRが水素原子または非置換のアルキル基である、請求項2に記載の重合体。
【請求項4】
前記R〜Rが水素原子または非置換のアルキル基であり、
前記単量体単位(A)がフッ素原子を一つ以上有する、請求項1〜3の何れかに記載の重合体。
【請求項5】
重量平均分子量が10000以上である、請求項に記載の重合体。
【請求項6】
請求項1〜の何れかに記載の重合体と、溶剤とを含む、ポジ型レジスト組成物。
【請求項7】
請求項に記載のポジ型レジスト組成物を用いてレジスト膜を形成する工程と、
前記レジスト膜を露光する工程と、
前記露光されたレジスト膜を現像する工程と、
を含み、
前記現像を、フッ素系溶剤の含有量が60体積%以上である、アルコールおよびフッ素系溶剤を含む現像液を用いて行う、レジストパターン形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、重合体、ポジ型レジスト組成物、およびレジストパターン形成方法に関し、特には、ポジ型レジストとして好適に使用し得る重合体、当該重合体を含むポジ型レジスト組成物、および当該ポジ型レジスト組成物を用いたレジストパターン形成方法に関するものである。
【背景技術】
【0002】
従来、半導体製造等の分野において、電子線などの電離放射線や紫外線などの短波長の光(以下、電離放射線と短波長の光とを合わせて「電離放射線等」と称することがある。)の照射により主鎖が切断されて現像液に対する溶解性が増大する重合体が、主鎖切断型のポジ型レジストとして使用されている。
【0003】
そして、例えば特許文献1には、高感度な主鎖切断型のポジ型レジストとして、α−メチルスチレン単位とα−クロロアクリル酸メチル単位とを含有するα−メチルスチレン・α−クロロアクリル酸メチル共重合体よりなるポジ型レジストが開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特公平8−3636号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、レジストを用いたレジストパターンの形成プロセスでは、電離放射線等の照射、現像液を用いた現像処理およびリンス液を用いたリンス処理を経てレジストパターンを形成した際に、レジストパターンの倒れが発生することがある。そのため、レジストを用いたレジストパターンの形成では、レジストパターンの倒れを抑制することが求められている。
【0006】
しかし、特許文献1に記載のα−メチルスチレン・α−クロロアクリル酸メチル共重合体よりなるポジ型レジストでは、レジストパターンの倒れを十分に抑制することができなかった。
【0007】
そこで、本発明は、主鎖切断型のポジ型レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制可能な重合体を提供することを目的とする。
また、本発明は、レジストパターンの倒れの発生を十分に抑制可能なポジ型レジスト組成物を提供することを目的とする。
さらに、本発明は、レジストパターンの倒れの発生を十分に抑制可能であると共に、パターニング効率の良好な、レジストパターン形成方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、フッ素原子を1つ以上含有する所定の単量体を用いて形成した所定の共重合体が、主鎖切断型のポジ型レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制可能であることを見出し、本発明を完成させた。
【0009】
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の重合体は、下記一般式(I):
【化1】
(式(I)中、Rは、塩素原子、フッ素原子またはフッ素原子で置換されたアルキル基であり、Rは、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、RおよびRは、水素原子、フッ素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、互いに同一でも異なっていてもよい。)で表される単量体単位(A)と、下記一般式(II):
【化2】
(式(II)中、R、R、RおよびRは、水素原子、フッ素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、互いに同一でも異なっていてもよく、Rは、水素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、pおよびqは、0以上5以下の整数であり、p+q=5である。)で表される単量体単位(B)とを有し、前記単量体単位(A)および前記単量体単位(B)の少なくとも一方がフッ素原子を一つ以上有することを特徴とする。
少なくとも一方がフッ素原子を一つ以上有する所定の単量体単位(A)および単量体単位(B)を含有する重合体は、レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制可能であり、主鎖切断型のポジ型レジストとして良好に使用することができる。
なお、本発明において、式(II)中のpが2以上の場合には、複数あるRは互いに同一でも異なっていてもよく、また、式(II)中のqが2以上の場合には、複数あるRは互いに同一でも異なっていてもよい。
【0010】
ここで、本発明の重合体は、前記Rが塩素原子であることが好ましい。単量体単位(A)のRが塩素原子であれば、電離放射線等を照射した際の主鎖の切断性を向上させることができる。従って、主鎖切断型のポジ型レジストとして特に良好に使用することができる。また、単量体単位(A)のRが塩素原子の重合体は調製し易い。
【0011】
また、本発明の重合体は、前記Rがフッ素原子で置換されたアルキル基であり、前記RおよびRが水素原子または非置換のアルキル基であることが好ましい。単量体単位(A)のRがフッ素原子で置換されたアルキル基であり、RおよびRが水素原子または非置換のアルキル基であれば、電離放射線等を照射した際の主鎖の切断性を向上させることができる。従って、主鎖切断型のポジ型レジストとして特に良好に使用することができる。
【0012】
更に、本発明の重合体は、前記R〜Rが水素原子または非置換のアルキル基であり、前記単量体単位(A)がフッ素原子を一つ以上有することが好ましい。単量体単位(B)のR〜Rが水素原子または非置換のアルキル基であり、単量体単位(A)がフッ素原子を一つ以上有している重合体は、調製し易く、また、電離放射線等を照射した際の主鎖の切断性に優れている。
【0013】
更にまた、本発明の重合体は、重量平均分子量が22000未満であることが好ましい。重量平均分子量が22000未満である重合体は、ポジ型レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制可能であると共に、感度を適度に高めることができるため、主鎖切断型のポジ型レジストとして良好に使用することができる。
なお、本発明において「重量平均分子量(Mw)」は、ゲル浸透クロマトグラフィーを用いて測定することができる。
【0014】
更にまた、本発明の重合体は、重量平均分子量が10000以上であることが好ましい。重合体の重量平均分子量が10000以上であれば、主鎖切断型のポジ型レジスト組成物として使用した場合にγ値が過度に低下することを抑制することができる。
【0015】
更にまた、本発明の重合体は、分子量分布(Mw/Mn)が1.30以上1.60以下であることが好ましい。重合体の分子量分布がかかる範囲内であれば、重合体の製造容易性を高めると共に、レジストパターンの明瞭性を高めることができる。
なお、本発明において、「分子量分布(Mw/Mn)」とは、数平均分子量(Mn)に対する重量平均分子量(Mw)の比を指す。そして、本発明において、「数平均分子量(Mn)」は、上述した「重量平均分子量(Mw)」と同様に、ゲル浸透クロマトグラフィーを用いて測定することができる。
【0016】
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のポジ型レジスト組成物は、上述した重合体の何れかと、溶剤とを含むことを特徴とする。上述した重合体をポジ型レジストとして含有すれば、レジストパターンの形成に使用した際にレジストパターンの倒れの発生を十分に抑制し、レジストパターンを良好に形成することができる。
【0017】
さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のレジストパターン形成方法は、上述したポジ型レジスト組成物を用いてレジスト膜を形成する工程と、前記レジスト膜を露光する工程と、前記露光されたレジスト膜を現像する工程と、を含み、前記現像を、フッ素系溶剤の含有量が60体積%以上である、アルコールおよびフッ素系溶剤を含む現像液を用いて行うことが好ましい。上述したポジ型レジスト組成物を用いて形成したレジスト膜をフッ素系溶剤の含有量が60体積%以上である、アルコールおよびフッ素系溶剤を含む現像液を用いて現像すれば、明瞭なレジストパターンを効率的に形成することができる。
【発明の効果】
【0018】
本発明の重合体によれば、レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制可能な主鎖切断型のポジ型レジストを提供することができる。
また、本発明のポジ型レジスト組成物によれば、レジストパターンを良好に形成することができる。
さらに、本発明のレジストパターン形成方法によれば、レジストパターンの倒れの発生を十分に抑制可能であると共に、効率的にレジストパターンを形成することができる。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の重合体は、電子線やEUVレーザーなどの電離放射線や紫外線などの短波長の光の照射により主鎖が切断されて低分子量化する、主鎖切断型のポジ型レジストとして良好に使用することができる。また、本発明のポジ型レジスト組成物は、ポジ型レジストとして本発明の重合体を含むものであり、例えば、ビルドアップ基板などのプリント基板の製造プロセスにおいてレジストパターンを形成する際に用いることができる。
【0020】
(重合体)
本発明の重合体は、下記の一般式(I):
【化3】
(式(I)中、Rは、塩素原子、フッ素原子またはフッ素原子で置換されたアルキル基であり、Rは、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、RおよびRは、水素原子、フッ素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、RおよびRは互いに同一でも異なっていてもよい。)で表される単量体単位(A)と、
下記の一般式(II):
【化4】
(式(II)中、R、R、RおよびRは、水素原子、フッ素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、R、R、RおよびRは互いに同一でも異なっていてもよく、Rは、水素原子、非置換のアルキル基またはフッ素原子で置換されたアルキル基であり、pおよびqは、0以上5以下の整数であり、p+q=5である。)で表される単量体単位(B)とを有する。また、本発明の重合体は、単量体単位(A)および単量体単位(B)の少なくとも一方がフッ素原子を一つ以上有する。即ち、本発明の重合体は、単量体単位(A)がフッ素原子を一つ以上有し、単量体単位(B)がフッ素原子を有していなくてもよいし、単量体単位(B)がフッ素原子を一つ以上有し、単量体単位(A)がフッ素原子を有していなくてもよいし、単量体単位(A)および単量体単位(B)のそれぞれがフッ素原子を一つ以上有していてもよい。
なお、本発明の重合体は、単量体単位(A)および単量体単位(B)以外の任意の単量体単位を含んでいてもよいが、重合体を構成する全単量体単位中で単量体単位(A)および単量体単位(B)が占める割合は、合計で90mol%以上であることが好ましく、実質的に100mol%であることがより好ましく、100mol%(即ち、重合体は単量体単位(A)および単量体単位(B)のみを含む)ことがさらに好ましい。
【0021】
そして、本発明の重合体は、所定の単量体単位(A)および単量体単位(B)を含んでいるので、電離放射線等(例えば、電子線、KrFレーザー、ArFレーザー、EUV(Extreme Ultraviolet)レーザーなど)が照射されると、主鎖が切断されて低分子量化する。また、本発明の重合体は、単量体単位(A)および単量体単位(B)の少なくとも一方がフッ素原子を一つ以上有しているので、レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制することができる。
なお、単量体単位(A)および単量体単位(B)の少なくとも一方にフッ素原子を含有させることでレジストパターンの倒れの発生を抑制することができる理由は、明らかではないが、重合体の撥液性が向上するため、レジストパターンの形成過程において現像液やリンス液を除去する際にパターン間で引っ張り合いが起こるのを抑制することができるからであると推察される。
【0022】
<単量体単位(A)>
ここで、単量体単位(A)は、下記の一般式(III):
【化5】
(式(III)中、R〜Rは、式(I)と同様である。)で表される単量体(a)に由来する構造単位である。
【0023】
そして、重合体を構成する全単量体単位中の単量体単位(A)の割合は、特に限定されることなく、例えば30mol%以上70mol%以下とすることができる。
【0024】
ここで、式(I)および式(III)中のR〜Rを構成し得る、フッ素原子で置換されたアルキル基としては、特に限定されることなく、アルキル基中の水素原子の一部または全部をフッ素原子で置換した構造を有する基が挙げられる。
また、式(I)および式(III)中のR〜Rを構成し得る非置換のアルキル基としては、特に限定されることなく、非置換の炭素数1以上10以下のアルキル基が挙げられる。中でも、R〜Rを構成し得る非置換のアルキル基としては、メチル基またはエチル基が好ましい。
【0025】
そして、電離放射線等を照射した際の重合体の主鎖の切断性を向上させる観点からは、式(I)および式(III)中のRは、塩素原子、フッ素原子またはフッ素原子で置換された炭素数1以上5以下のアルキル基であることが好ましく、塩素原子、フッ素原子またはパーフルオロメチル基であることがより好ましく、塩素原子またはフッ素原子であることが更に好ましく、塩素原子であることが特に好ましい。なお、式(III)中のRが塩素原子である単量体(a)は、重合性に優れており、式(I)中のRが塩素原子である単量体単位(A)を有する重合体は、調製が容易であるという点においても優れている。
【0026】
また、電離放射線等を照射した際の重合体の主鎖の切断性を向上させる観点からは、式(I)および式(III)中のRは、フッ素原子で置換されたアルキル基であることが好ましく、フッ素原子で置換された炭素数1以上10以下のアルキル基であることがより好ましく、2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2−(パーフルオロブチル)エチル基、2−(パーフルオロヘキシル)エチル基、1H,1H,3H−テトラフルオロプロピル基、1H,1H,5H−オクタフルオロペンチル基、1H,1H,7H−ドデカフルオロヘプチル基、1H−1−(トリフルオロメチル)トリフルオロエチル基、1H,1H,3H−ヘキサフルオロブチル基または1,2,2,2−テトラフルオロ−1−(トリフルオロメチル)エチル基であることが更に好ましく、2,2,2−トリフルオロエチル基であることが特に好ましい。
【0027】
更に、電離放射線等を照射した際の重合体の主鎖の切断性を向上させる観点からは、式(I)および式(III)中のRおよびRは、それぞれ、水素原子または非置換のアルキル基であることが好ましく、水素原子または非置換の炭素数1以上5以下のアルキル基であることがより好ましく、水素原子であることが更に好ましい。
【0028】
そして、上述した式(I)で表される単量体単位(A)を形成し得る、上述した式(I)で表される単量体(a)としては、特に限定されることなく、例えば、α−クロロアクリル酸2,2,2−トリフルオロエチル、α−クロロアクリル酸2,2,3,3,3−ペンタフルオロプロピル、α−クロロアクリル酸2−(パーフルオロブチル)エチル、α−クロロアクリル酸2−(パーフルオロヘキシル)エチル、α−クロロアクリル酸1H,1H,3H−テトラフルオロプロピル、α−クロロアクリル酸1H,1H,5H−オクタフルオロペンチル、α−クロロアクリル酸1H,1H,7H−ドデカフルオロヘプチル、α−クロロアクリル酸1H−1−(トリフルオロメチル)トリフルオロエチル、α−クロロアクリル酸1H,1H,3H−ヘキサフルオロブチル、α−クロロアクリル酸1,2,2,2−テトラフルオロ−1−(トリフルオロメチル)エチルなどのα−クロロアクリル酸フルオロアルキルエステル;α−フルオロアクリル酸メチル、α−フルオロアクリル酸エチルなどのα−フルオロアクリル酸アルキルエステル;α−トリフルオロメチルアクリル酸メチル、α−トリフルオロメチルアクリル酸エチルなどのα−フルオロアルキルアクリル酸アルキルエステル;α−フルオロアクリル酸2,2,2−トリフルオロエチル、α−フルオロアクリル酸2,2,3,3,3−ペンタフルオロプロピル、α−フルオロアクリル酸2−(パーフルオロブチル)エチル、α−フルオロアクリル酸2−(パーフルオロヘキシル)エチル、α−フルオロアクリル酸1H,1H,3H−テトラフルオロプロピル、α−フルオロアクリル酸1H,1H,5H−オクタフルオロペンチル、α−フルオロアクリル酸1H,1H,7H−ドデカフルオロヘプチル、α−フルオロアクリル酸1H−1−(トリフルオロメチル)トリフルオロエチル、α−フルオロアクリル酸1H,1H,3H−ヘキサフルオロブチル、α−フルオロアクリル酸1,2,2,2−テトラフルオロ−1−(トリフルオロメチル)エチルなどのα−フルオロアクリル酸フルオロアルキルエステル;が挙げられる。
【0029】
なお、電離放射線等を照射した際の重合体の主鎖の切断性を更に向上させる観点からは、単量体単位(A)は、α−クロロアクリル酸フルオロアルキルエステルに由来する構造単位であることが好ましい。即ち、式(I)および式(III)中のR〜Rは、Rが塩素原子であり、Rがフッ素原子で置換されたアルキル基であり、RおよびRが水素原子であることが特に好ましい。
【0030】
<単量体単位(B)>
また、単量体単位(B)は、下記の一般式(IV):
【化6】
(式(IV)中、R〜R、並びに、pおよびqは、式(II)と同様である。)で表される単量体(b)に由来する構造単位である。
【0031】
そして、重合体を構成する全単量体単位中の単量体単位(B)の割合は、特に限定されることなく、例えば30mol%以上70mol%以下とすることができる。
【0032】
ここで、式(II)および式(IV)中のR〜Rを構成し得る、フッ素原子で置換されたアルキル基としては、特に限定されることなく、アルキル基中の水素原子の一部または全部をフッ素原子で置換した構造を有する基が挙げられる。
また、式(II)および式(IV)中のR〜Rを構成し得る非置換のアルキル基としては、特に限定されることなく、非置換の炭素数1以上5以下のアルキル基が挙げられる。中でも、R〜Rを構成し得る非置換のアルキル基としては、メチル基またはエチル基が好ましい。
【0033】
そして、重合体の調製の容易性および電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、式(II)および式(IV)中のRは、水素原子または非置換のアルキル基であることが好ましく、非置換の炭素数1以上5以下のアルキル基であることがより好ましく、メチル基であることが更に好ましい。
【0034】
また、重合体の調製の容易性および電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、式(II)および式(IV)中に複数存在するRおよび/またはRは、全て、水素原子または非置換のアルキル基であることが好ましく、水素原子または非置換の炭素数1以上5以下のアルキル基であることがより好ましく、水素原子であることが更に好ましい。
なお、重合体の調製の容易性および電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、式(II)および式(IV)中のpが5であり、qが0であり、5つあるRの全てが水素原子または非置換のアルキル基であることが好ましく、5つあるRの全てが水素原子または非置換の炭素数1以上5以下のアルキル基であることがより好ましく、5つあるRの全てが水素原子であることが更に好ましい。
【0035】
一方、重合体をレジストパターンの形成に使用した際にレジストパターンの倒れの発生を更に抑制する観点からは、式(II)および式(IV)中に複数存在するRおよび/またはRは、フッ素原子またはフッ素原子で置換されたアルキル基を含むことが好ましく、フッ素原子またはフッ素原子で置換された炭素数1以上5以下のアルキル基を含むことがより好ましい。
【0036】
更に、重合体の調製の容易性および電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、式(II)および式(IV)中のRおよびRは、それぞれ、水素原子または非置換のアルキル基であることが好ましく、水素原子または非置換の炭素数1以上5以下のアルキル基であることがより好ましく、水素原子であることが更に好ましい。
【0037】
そして、上述した式(II)で表される単量体単位(B)を形成し得る、上述した式(IV)で表される単量体(b)としては、特に限定されることなく、例えば、以下の(b−1)〜(b−11)等のα−メチルスチレンおよびその誘導体が挙げられる。
【化7】
【0038】
なお、重合体の調製の容易性および電離放射線等を照射した際の主鎖の切断性を向上させる観点からは、単量体単位(B)は、フッ素原子を含有しない(即ち、単量体単位(A)のみがフッ素原子を含有する)ことが好ましく、α−メチルスチレンに由来する構造単位であることがより好ましい。即ち、式(II)および式(IV)中のR〜R、並びに、pおよびqは、p=5、q=0であり、Rがメチル基であり、5つあるRが全て水素原子であり、RおよびRが水素原子であることが特に好ましい。
【0039】
<重合体の性状>
[重量平均分子量]
そして、上述した単量体単位(A)および単量体単位(B)を有する本発明の重合体の重量平均分子量(Mw)は、例えば、10000以上150000以下とすることができる。さらに、本発明の重合体の重量平均分子量(Mw)は、22000未満であることが好ましく、21900未満であることがより好ましく、15000以上であることが好ましい。重合体の重量平均分子量(Mw)が上記上限値以下(未満)であれば、ポジ型レジストとして使用した際に、比較的低い照射量で現像液に対する溶解性を増大させることができるので、ポジ型レジストとして使用した際の感度を適度に向上させることができる。また、重合体の重量平均分子量(Mw)が上記下限値以上であれば、過剰に低い照射量でレジスト膜の現像液に対する溶解性を高まることを抑制することができ、γ値が過度に低下することを抑制することができる。
【0040】
[数平均分子量]
また、本発明の重合体の数平均分子量(Mn)は、例えば10000以上100000以下とすることができる。さらに、本発明の重合体の数平均分子量(Mn)は、22000未満であることが好ましく、15000未満であることがより好ましい。重合体の数平均分子量(Mn)が上記上限値以下(未満)であれば、かかる重合体を含有するポジ型レジスト組成物を用いて形成したレジストをポジ型レジストとして使用した際の感度を更に高めることができる。
【0041】
[分子量分布]
そして、本発明の重合体の分子量分布(Mw/Mn)は、例えば2.50以下とすることができる。さらに、本発明の重合体の分子量分布(Mw/Mn)は、1.30以上であることが好ましく、1.35以上であることがより好ましく、2.40以下であることが好ましく、1.75以下であることがより好ましく、1.60以下であることがさらに好ましく、1.55以下であることがさらにより好ましい。重合体の分子量分布(Mw/Mn)が上記下限値以上であれば、重合体の製造容易性を高めることができる。重合体の分子量分布(Mw/Mn)が上記上限値以下であれば、ポジ型レジストとして使用した際のγ値を高めることができ、得られるレジストパターンの明瞭性を高めることができる。
【0042】
[分子量が6000未満の成分の割合]
本発明の重合体は、分子量が6000未満の成分の割合が2%超であることが好ましく、6%超であることがより好ましく、10%以下であることが好ましい。分子量が6000未満の成分の割合が2%超であれば、ポジ型レジストとして使用した際の感度を一層高めることができる。また、分子量が6000未満の成分の割合が10%以下であれば、ポジ型レジストとして使用した際にγ値が過度に低下することを抑制することができる。
【0043】
[分子量が10000未満の成分の割合]
本発明の重合体は、分子量が10000未満の成分の割合が5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましく、30%以下であることが好ましく、25%以下であることがより好ましい。分子量が10000未満の成分の割合が5%以上であれば、ポジ型レジストとして使用した際の感度を一層高めることができる。分子量が10000未満の成分の割合が30%以下であれば、ポジ型レジストとして使用した際にγ値が過度に低下することを抑制することができる。
【0044】
[分子量が50000超の成分の割合]
本発明の重合体は、分子量が50000超の成分の割合が、7%以下であることが好ましく、5%以下であることがより好ましい。分子量が50000超の成分の割合が、7%以下であれば、ポジ型レジストとして使用した際の感度を一層高めることができる。
【0045】
[分子量が80000超の成分の割合]
本発明の重合体は、分子量が80000超の成分の割合が、1%以下であることが好ましく、0.9%以下であることがより好ましい。分子量が80000超の成分の割合が1%以下であれば、ポジ型レジストとして使用した際の感度を一層高めることができる。
【0046】
(重合体の調製方法)
そして、上述した単量体単位(A)および単量体単位(B)を有する重合体は、例えば、単量体(a)と単量体(b)とを含む単量体組成物を重合させた後、任意に得られた重合物を精製することにより調製することができる。
なお、重合体の組成、分子量分布、重量平均分子量および数平均分子量は、重合条件および精製条件を変更することにより調整することができる。具体的には、例えば、重合体の組成は、重合に使用する単量体組成物中の各単量体の含有割合を変更することにより調整することができる。また、重量平均分子量および数平均分子量は、重合温度を高くすれば、小さくすることができる。更に、重量平均分子量および数平均分子量は、重合時間を短くすれば、小さくすることができる。
【0047】
<単量体組成物の重合>
ここで、本発明の重合体の調製に用いる単量体組成物としては、単量体(a)および単量体(b)を含む単量体成分と、任意の溶媒と、重合開始剤と、任意に添加される添加剤との混合物を用いることができる。そして、単量体組成物の重合は、既知の方法を用いて行うことができる。中でも、溶媒としては、シクロペンタノンなどを用いることが好ましく、重合開始剤としては、アゾビスイソブチロニトリルなどのラジカル重合開始剤を用いることが好ましい。
【0048】
また、単量体組成物を重合して得られた重合物は、特に限定されることなく、重合物を含む溶液にテトラヒドロフラン等の良溶媒を添加した後、良溶媒を添加した溶液をメタノール等の貧溶媒中に滴下して重合物を凝固させることにより回収することができる。
【0049】
<重合物の精製>
なお、得られた重合物を精製する場合に用いる精製方法としては、特に限定されることなく、再沈殿法やカラムクロマトグラフィー法などの既知の精製方法が挙げられる。中でも、精製方法としては、再沈殿法を用いることが好ましい。
なお、重合物の精製は、複数回繰り返して実施してもよい。
【0050】
そして、再沈殿法による重合物の精製は、例えば、得られた重合物をテトラヒドロフラン等の良溶媒に溶解した後、得られた溶液を、テトラヒドロフラン等の良溶媒とメタノール等の貧溶媒との混合溶媒に滴下し、重合物の一部を析出させることにより行うことが好ましい。このように、良溶媒と貧溶媒との混合溶媒中に重合物の溶液を滴下して重合物の精製を行えば、良溶媒および貧溶媒の種類や混合比率を変更することにより、得られる重合体の分子量分布、重量平均分子量および数平均分子量を容易に調整することができる。具体的には、例えば、混合溶媒中の良溶媒の割合を高めるほど、混合溶媒中で析出する重合体の分子量を大きくすることができる。
【0051】
なお、再沈殿法により重合物を精製する場合、本発明の重合体としては、良溶媒と貧溶媒との混合溶媒中で析出した重合物を用いてもよいし、混合溶媒中で析出しなかった重合物(即ち、混合溶媒中に溶解している重合物)を用いてもよい。ここで、混合溶媒中で析出しなかった重合物は、濃縮乾固などの既知の手法を用いて混合溶媒中から回収することができる。
【0052】
(ポジ型レジスト組成物)
本発明のポジ型レジスト組成物は、上述した重合体と、溶剤とを含み、任意に、レジスト組成物に配合され得る既知の添加剤を更に含有する。そして、本発明のポジ型レジスト組成物は、上述した重合体をポジ型レジストとして含有しているので、レジストパターンの形成に使用した際にレジストパターンの倒れの発生を十分に抑制することができる。
【0053】
<溶剤>
なお、溶剤としては、上述した重合体を溶解可能な溶剤であれば既知の溶剤を用いることができる。中でも、適度な粘度のポジ型レジスト組成物を得てポジ型レジスト組成物の塗工性を向上させる観点からは、溶剤としてはアニソールを用いることが好ましい。
【0054】
(レジストパターン形成方法)
本発明のレジストパターン形成方法は、上述した本発明のポジ型レジスト組成物を用いることが好ましい。具体的には、本発明のレジストパターン形成方法は、(1)本発明のポジ型レジスト組成物を用いてレジスト膜を形成する工程と、(2)レジスト膜を露光する工程と、(3)露光されたレジスト膜を現像する工程と、を含むことが好ましい。さらに、本発明のレジストパターン形成方法は、上記工程(3)の現像を、フッ素系溶剤の含有量が60体積%以上である、アルコールおよびフッ素系溶剤を含む現像液を用いて行うことが好ましい。フッ素原子を含有する本発明の重合体を含んでなるレジスト膜を、フッ素系溶剤の含有量が60体積%以上である所定の現像液を用いて現像すれば、明瞭なレジストパターンを効率的かつ良好に形成することができる。
【0055】
<レジスト膜形成工程>
上記工程(1)では、レジストパターンを利用して加工される基板などの被加工物の上に、本発明のポジ型レジスト組成物を塗布し、塗布したポジ型レジスト組成物を乾燥させてレジスト膜を形成する。塗布方法および乾燥方法は特に限定されることなく、既知の塗布方法および乾燥方法にて行うことができる。
【0056】
<露光工程>
上記工程(2)では、レジスト膜に対して電離放射線や光を照射して所望のパターンを描画する。なお、電離放射線や光の照射には、電子線描画装置やレーザー描画装置などの既知の描画装置を用いることができる。
【0057】
<現像工程>
上記工程(3)では、パターンを描写したレジスト膜を現像液と接触させてレジスト膜を現像し、被加工物上にレジストパターンを形成する。ここで、レジスト膜と現像液とを接触させる方法は、特に限定されることなく、現像液中へのレジスト膜の浸漬やレジスト膜への現像液の塗布等の既知の手法を用いることができる。そして、現像したレジスト膜をリンス液でリンスする。
特に、現像液およびリンス液としては、例えば、CFCFHCFHCFCF、CFCFCHCl、CClFCFCHClF、CFCFCFCFOCH、およびC18を含むフルオロカーボン等のフッ素系溶剤;メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロピルアルコール)等のアルコール;酢酸アミル、酢酸ヘキシルなどのアルキル基を有する酢酸エステル;フッ素系溶剤とアルコールとの混合物;フッ素系溶剤とアルキル基を有する酢酸エステルとの混合物;アルコールとアルキル基を有する酢酸エステルとの混合物;フッ素系溶剤とアルコールとアルキル基を有する酢酸エステルとの混合物;などを用いることができる。現像液およびリンス液の組合せは、上述した重合体よりなるレジストの溶解性などを考慮し、例えば、レジスト溶解性のより高い溶剤を現像液とし、レジスト溶解性のより低い溶剤をリンス液とすることができる。また、現像液の選定にあたり、上記工程(2)を実施する前のレジスト膜を溶解しない現像液を選択することが好ましい。さらに、リンス液の選定にあたり、現像液と混ざり易いリンス液を選択し、現像液との置換が容易となるようにすることが好ましい。
【0058】
特に、本発明のレジストパターン形成方法で使用する現像液は、90体積%以上がアルコールおよびフッ素系溶剤であることが好ましい。現像液は、より好ましくは95体積%以上が、最も好ましくは100体積%が、アルコールおよびフッ素系溶剤である。さらに、現像液中において、好ましくは60体積%以上が、より好ましくは70体積%以上が、フッ素系溶剤である。60体積%以上がフッ素系溶剤である、アルコールおよびフッ素系溶剤を含む現像液を用いて、本発明の重合体よりなるレジスト膜を現像すれば、γ値を高めることができ、得られるレジストパターンの明瞭性を高めることができるからである。
【実施例】
【0059】
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
そして、実施例1〜4および比較例1において、重合体の重量平均分子量、数平均分子量および分子量分布、重合体よりなるポジ型レジストのEth(感度)および耐パターン倒れ性を、実施例5〜8において、これらに加えて、重合体中の各分子量の成分の割合、並びに、重合体よりなるポジ型レジストのγ値を、それぞれ下記の方法で測定および評価した。
【0060】
<重量平均分子量、数平均分子量および分子量分布>
得られた重合体についてゲル浸透クロマトグラフィーを用いて重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
具体的には、ゲル浸透クロマトグラフ(東ソー製、HLC−8220)を使用し、展開溶媒としてテトラヒドロフランを用いて、重合体の重量平均分子量(Mw)および数平均分子量(Mn)を標準ポリスチレン換算値として求めた。そして、分子量分布(Mw/Mn)を算出した。
【0061】
<レジスト膜の感度(Eth)>
スピンコーター(ミカサ製、MS−A150)を使用し、ポジ型レジスト組成物を直径4インチのシリコンウェハ上に厚さ500nmになるように塗布した。そして、塗布したポジ型レジスト組成物を温度180℃のホットプレートで3分間加熱して、シリコンウェハ上にレジスト膜を形成した。そして、電子線描画装置(エリオニクス社製、ELS−S50)を用いて、電子線の照射量が互いに異なるパターン(寸法500μm×500μm)をレジスト膜上に複数描画し、レジスト用現像液としてイソプロピルアルコール(実施例1〜4、比較例1)、又は、フッ素系溶剤(三井・デュポンフロロケミカル株式会社製、バートレルXF(登録商標)、CFCFHCFHCFCF)およびイソプロピルアルコールを所定の体積比率で混合して得た現像液(実施例5〜8)を用いて温度23℃で1分間の現像処理を行った後、リンス液としてのフッ素系溶剤(三井・デュポンフロロケミカル社製、バートレル(CFCFHCFHCFCF))で10秒間リンスした。なお、電子線の照射量は、4μC/cmから200μC/cmの範囲内で4μC/cmずつ異ならせた。次に、描画した部分のレジスト膜の厚みを光学式膜厚計(大日本スクリーン製、ラムダエース)で測定し、電子線の総照射量の常用対数と、現像後のレジスト膜の残膜率(=現像後のレジスト膜の膜厚/シリコンウェハ上に形成したレジスト膜の膜厚)との関係を示す感度曲線を作成した。
そして、得られた感度曲線(横軸:電子線の総照射量の常用対数、縦軸:レジスト膜の残膜率(0≦残膜率≦1.00))について、残膜率0.20〜0.80の範囲において感度曲線を二次関数にフィッティングし、得られた二次関数(残膜率と総照射量の常用対数との関数)上の残膜率0の点と残膜率0.50の点とを結ぶ直線(感度曲線の傾きの近似線)を作成した。また、得られた直線(残膜率と総照射量の常用対数との関数)の残膜率が0となる際の、電子線の総照射量Eth(μC/cm)を求めた。そして、実施例1〜4、および比較例1については、以下の基準に従って感度を評価した。Ethの値が小さいほど、感度が高く、ポジ型レジストとしての重合体が少ない照射量で良好に切断され得ることを示す。
A:Ethが200μC/cm以下
B:Ethが200μC/cm超600μC/cm以下
C:Ethが600μC/cm
【0062】
<耐パターン倒れ性>
スピンコーター(ミカサ製、MS−A150)を使用し、ポジ型レジスト組成物を、直径4インチのシリコンウェハ上に塗布した。次いで、塗布したポジ型レジスト組成物を温度180℃のホットプレートで3分間加熱して、シリコンウェハ上に厚さ40nmのレジスト膜を形成した。そして、電子線描画装置(エリオニクス社製、ELS−S50)を用いてレジスト膜を最適露光量(Eop)で露光して、パターンを描画した。その後、レジスト用現像液としてイソプロピルアルコール(実施例1〜4、および比較例1)、又は、フッ素系溶剤(三井・デュポンフロロケミカル株式会社製、バートレルXF(登録商標)、CFCFHCFHCFCF)およびイソプロピルアルコールを所定の体積比率で混合して得た現像液(実施例5〜8)を用いて温度23℃で1分間の現像処理を行った後、リンス液としてのフッ素系溶剤(三井・デュポンフロロケミカル社製、バートレル(CFCFHCFHCFCF))で10秒間リンスしてレジストパターンを形成した。そして、形成したレジストパターンのパターン倒れの有無を観察した。なお、最適露光量(Eop)は、それぞれEthの約2倍の値を目安として、適宜設定した。また、レジストパターンのライン(未露光領域)とスペース(露光領域)は、それぞれ20nmとした。
そして、以下の基準に従って耐パターン倒れ性を評価した。
A:パターン倒れ無し
B:パターン倒れ有り
【0063】
<重合体中の各分子量の成分の割合>
実施例5〜8で得られた重合体について、ゲル浸透クロマトグラフ(東ソー製、HLC−8220)を使用し、展開溶媒としてテトラヒドロフランを用いて、重合体のクロマトグラフを得た。そして、得られたクロマトグラムから、ピークの総面積(A)、分子量が所定範囲である成分のピークの面積の合計(X)をそれぞれ求めた。具体的には、下記複数の閾値によりそれぞれ定められる所定範囲の分子量の成分について、割合を算出した。
分子量が6000未満の成分(X6)の割合(%)=(X6/A)×100
分子量が10000未満の成分(X10)の割合(%)=(X10/A)×100
分子量が50000超の成分(X50)の割合(%)=(X50/A)×100
分子量が80000超の成分(X80)の割合(%)=(X80/A)×100
【0064】
<レジスト膜のγ値>
実施例5〜8で調製したポジ型レジスト組成物について、レジスト膜の感度(Eth)の評価方法と同様にして、シリコンウェハ上にレジスト膜を形成し、さらに、感度曲線を作成した。そして、得られた感度曲線(横軸:電子線の総照射量の常用対数、縦軸:レジスト膜の残膜率(0≦残膜率≦1.00))について、下記の式を用いてγ値を求めた。なお、下記の式中、Eは、残膜率0.20〜0.80の範囲において感度曲線を二次関数にフィッティングし、得られた二次関数(残膜率と総照射量の常用対数との関数)に対して残膜率0を代入した際に得られる総照射量の対数である。また、Eは、得られた二次関数上の残膜率0の点と残膜率0.50の点とを結ぶ直線(感度曲線の傾きの近似線)を作成し、得られた直線(残膜率と総照射量の常用対数との関数)に対して残膜率1.00を代入した際に得られる総照射量の対数である。そして、下記式は、残膜率0と1.00との間での上記直線の傾きを表している。
【数1】
γ値の値が大きいほど、感度曲線の傾きが大きく、明瞭性の高いパターンを良好に形成し得ることを示す。
【0065】
(実施例1)
<重合体の調製>
単量体(a)としてのα−クロロアクリル酸2,2,2−トリフルオロエチル3.0gおよび単量体(b)としてのα−メチルスチレン4.40gと、溶媒としてのシクロペンタノン1.85gと、重合開始剤としてのアゾビスイソブチロニトリル0.006975gとを含む単量体組成物をガラス容器に入れ、ガラス容器を密閉および窒素置換して、窒素雰囲気下、78℃の恒温槽内で6.0時間撹拌した。その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にテトラヒドロフラン(THF)10gを加えた。そして、THFを加えた溶液をメタノール300g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、白色の凝固物(重合体)を得た。なお、得られた重合体は、α−メチルスチレン単位とα−クロロアクリル酸2,2,2−トリフルオロエチル単位とを50mol%ずつ含んでいた。
そして、得られた重合体について、重量平均分子量、数平均分子量および分子量分布を測定した。結果を表1に示す。
<ポジ型レジスト組成物の調製>
得られた重合体を溶剤としてのアニソールに溶解させ、重合体の濃度が11質量%であるレジスト溶液(ポジ型レジスト組成物)を調製した。そして、重合体よりなるポジ型レジストの感度および耐パターン倒れ性を評価した。結果を表1に示す。
【0066】
(実施例2)
<重合体の調製>
単量体(a)としてのα−フルオロアクリル酸メチル3.0gおよび単量体(b)としてのα−メチルスチレン7.97gと、重合開始剤としてのアゾビスイソブチロニトリル0.01263gとを含む単量体組成物をガラス容器に入れ、ガラス容器を密閉および窒素置換して、窒素雰囲気下、78℃の恒温槽内で60.0時間撹拌した。その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にテトラヒドロフラン(THF)10gを加えた。そして、THFを加えた溶液をメタノール300g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、白色の凝固物(重合体)を得た。なお、得られた重合体は、α−メチルスチレン単位とα−フルオロアクリル酸メチル単位とを50mol%ずつ含んでいた。
そして、得られた重合体について、重量平均分子量、数平均分子量および分子量分布を測定した。結果を表1に示す。
<ポジ型レジスト組成物の調製>
得られた重合体を溶剤としてのアニソールに溶解させ、重合体の濃度が11質量%であるレジスト溶液(ポジ型レジスト組成物)を調製した。そして、重合体よりなるポジ型レジストの感度および耐パターン倒れ性を評価した。結果を表1に示す。
【0067】
(実施例3)
<重合体の調製>
単量体(a)としてのα−クロロアクリル酸メチル3.0gおよび単量体(b)としてのα−メチル−4−フルオロスチレン7.93gと、溶媒としてのシクロペンタノン2.74gと、重合開始剤としてのアゾビスイソブチロニトリル0.01091gとを含む単量体組成物をガラス容器に入れ、ガラス容器を密閉および窒素置換して、窒素雰囲気下、78℃の恒温槽内で6.0時間撹拌した。その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にテトラヒドロフラン(THF)10gを加えた。そして、THFを加えた溶液をメタノール300g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、白色の凝固物(重合体)を得た。なお、得られた重合体は、α−メチル−4−フルオロスチレン単位とα−クロロアクリル酸メチル単位とを50mol%ずつ含んでいた。
そして、得られた重合体について、重量平均分子量、数平均分子量および分子量分布を測定した。結果を表1に示す。
<ポジ型レジスト組成物の調製>
得られた重合体を溶剤としてのアニソールに溶解させ、重合体の濃度が11質量%であるレジスト溶液(ポジ型レジスト組成物)を調製した。そして、重合体よりなるポジ型レジストの感度および耐パターン倒れ性を評価した。結果を表1に示す。
【0068】
(実施例4)
<重合体の調製>
単量体(a)としてのα−フルオロアクリル酸2,2,2−トリフルオロエチル3.0gおよび単量体(b)としてのα−メチルスチレン4.82gと、重合開始剤としてのアゾビスイソブチロニトリル0.00764gとを含む単量体組成物をガラス容器に入れ、ガラス容器を密閉および窒素置換して、窒素雰囲気下、78℃の恒温槽内で60.0時間撹拌した。その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にテトラヒドロフラン(THF)10gを加えた。そして、THFを加えた溶液をメタノール300g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、白色の凝固物(重合体)を得た。なお、得られた重合体は、α−メチルスチレン単位とα−フルオロアクリル酸2,2,2−トリフルオロエチル単位とを50mol%ずつ含んでいた。
そして、得られた重合体について、重量平均分子量、数平均分子量および分子量分布を測定した。結果を表1に示す。
<ポジ型レジスト組成物の調製>
得られた重合体を溶剤としてのアニソールに溶解させ、重合体の濃度が11質量%であるレジスト溶液(ポジ型レジスト組成物)を調製した。そして、重合体よりなるポジ型レジストの感度および耐パターン倒れ性を評価した。結果を表1に示す。
【0069】
(比較例1)
<重合体の調製>
単量体としてのα−クロロアクリル酸メチル3.0gおよびα−メチルスチレン6.88gと、溶媒としてのシクロペンタノン2.47gと、重合開始剤としてのアゾビスイソブチロニトリル0.01091gとを含む単量体組成物をガラス容器に入れ、ガラス容器を密閉および窒素置換して、窒素雰囲気下、78℃の恒温槽内で6.5時間撹拌した。その後、室温に戻し、ガラス容器内を大気解放した後、得られた溶液にテトラヒドロフラン(THF)30gを加えた。そして、THFを加えた溶液をメタノール300g中に滴下し、重合物を析出させた。その後、析出した重合物を含む溶液をキリヤマ漏斗によりろ過し、白色の凝固物(重合体)を得た。なお、得られた重合体は、α−メチルスチレン単位とα−クロロアクリル酸メチル単位とを50mol%ずつ含んでいた。
そして、得られた重合体について、重量平均分子量、数平均分子量および分子量分布を測定した。結果を表1に示す。
<ポジ型レジスト組成物の調製>
得られた重合体を溶剤としてのアニソールに溶解させ、重合体の濃度が11質量%であるレジスト溶液(ポジ型レジスト組成物)を調製した。そして、重合体よりなるポジ型レジストの感度および耐パターン倒れ性を評価した。結果を表1に示す。
【0070】
(実施例5)
<重合体の調製>
重合開始剤としてのアゾビスイソブチロニトリルの配合量を0.069751gに変更し、且つ、溶媒としてのシクロペンタノンの配合量を1.87gに変更した以外は実施例1と同様にして重合物およびポジ型レジスト組成物を得た。得られた重合物の重量平均分子量(Mw)は21807であり、数平均分子量(Mn)は14715であり、分子量分布(Mw/Mn)は1.48であった。また、得られた重合物は、α−クロロアクリル酸2,2,2−トリフルオロエチル単位を50mol%、α−メチルスチレン単位を50mol%含んでいた。得られた重合物中の各分子量の成分の割合を測定した。更に、得られたポジ型レジスト組成物について、ポジ型レジスト膜の耐パターン倒れ性、感度、およびγ値を上述に従って評価した。結果を表2に示す。なお、各種評価においてポジ型レジストを形成するにあたって、現像液としては、フッ素系溶剤(三井・デュポンフロロケミカル株式会社製、バートレルXF(登録商標)、CFCFHCFHCFCF)を62.5[vol%]、およびイソプロピルアルコールを37.5[vol%]含有する現像液を用いた。
【0071】
(実施例6)
各種評価においてポジ型レジストを形成するにあたって、レジスト用現像液として、フッ素系溶剤(三井・デュポンフロロケミカル株式会社製、バートレルXF(登録商標)、CFCFHCFHCFCF)を75.0[vol%]、およびイソプロピルアルコールを25.0[vol%]含有する現像液を用いた以外は実施例5と同様にして、各種測定および評価を行った。結果を表2に示す。
【0072】
(実施例7)
実施例1と同様にして重合物を得た。得られた重合物の重量平均分子量(Mw)は50883であり、数平均分子量(Mn)は31303であり、分子量分布(Mw/Mn)は1.63であった。また、得られた重合物は、α−クロロアクリル酸2,2,2−トリフルオロエチル単位を50mol%、α−メチルスチレン単位を50mol%含んでいた。
そして、実施例5と同様にして重合物中の各分子量の成分の割合を測定した。結果を表2に示す。さらに、実施例1と同様にしてポジ型レジスト組成物を調製し、実施例5と同様にして各種測定および評価を行った、結果を表2に示す。
【0073】
(実施例8)
ポジ型レジストの形成に当たり、レジスト用現像液として、フッ素系溶剤(三井・デュポンフロロケミカル株式会社製、バートレルXF(登録商標)、CFCFHCFHCFCF)を75.0[vol%]、およびイソプロピルアルコールを25.0[vol%]含有する現像液を用いた以外は実施例7と同様にして、各種測定および評価を行った。結果を表2に示す。
【0074】
【表1】
【0075】
【表2】
【0076】
表1〜2より、フッ素原子を含有する所定の単量体を用いて形成した所定の重合体よりなる実施例1〜8のポジ型レジストは、フッ素原子を含有しない重合体よりなる比較例1のポジ型レジストと比較し、耐パターン倒れ性に優れていることが分かる。
更に、表1〜2より、実施例1、7、8および実施例5〜6の重合体よりなるポジ型レジストは感度が高く、これらの重合体は電離放射線等を照射した際の主鎖の切断性に優れていることが分かる。
更にまた、表2より、フッ素原子を含有する所定の単量体を用いて形成した所定の重合体よりなる実施例5〜8のポジ型レジストは、フッ素系溶剤の含有量が60体積%以上である、アルコールおよびフッ素系溶剤を含む現像液を用いて現像すると、Ethの値が小さくなり(すなわち、レジスト膜の感度が高くなり)、レジストパターンを効率的且つ良好に形成しうることがわかる。
そして、表2より、フッ素原子を含有し、重量平均分子量が22000未満である重合体よりなる実施例5〜6のポジ型レジストは、フッ素系溶剤の含有量が60体積%以上である、アルコールおよびフッ素系溶剤を含む現像液を用いて現像すると、Ethの値が特に小さくなり(すなわち、レジスト膜の感度が特に高くなり)、レジストパターンを特に効率的且つ良好に形成しうることがわかる。
【産業上の利用可能性】
【0077】
本発明の重合体によれば、レジストとして使用した際にレジストパターンの倒れの発生を十分に抑制可能な主鎖切断型のポジ型レジストを提供することができる。
また、本発明のポジ型レジスト組成物によれば、レジストパターンを良好に形成することができる。
さらに、本発明のレジストパターン形成方法によれば、レジストパターンを効率的に形成可能である。