(58)【調査した分野】(Int.Cl.,DB名)
複数の領域のそれぞれの位置を表す複数のメッシュ点のうち、一のメッシュ点を代表点とし、前記代表点を含み、前記代表点の近傍の前記複数のメッシュ点を複数の近傍点として定める代表点決定部と、
前記代表点の位置情報を取得すると共に、衛星の軌道情報を取得し、前記代表点における対象時刻の衛星位置の仰角を算出する衛星座標算出部と、
前記複数の近傍点のそれぞれについて、天空画像を取得し、前記天空画像から開空間を識別し、前記開空間に基づいて天頂を中心とする円形の近似開空間を算出する近似開空間算出部と、
前記代表点の前記仰角、及び前記複数の近傍点それぞれの前記近似開空間に基づいて、前記複数の近傍点それぞれの可視衛星数を算出する可視衛星数算出部と、を備える
ことを特徴とする測位精度情報算出装置。
複数の領域のそれぞれの位置を表す複数のメッシュ点のうち、一のメッシュ点を代表点とし、前記代表点を含み、前記代表点の近傍の前記複数のメッシュ点を複数の近傍点として定め、
前記代表点の位置情報を取得すると共に、衛星の軌道情報を取得し、前記代表点における対象時刻の衛星位置の仰角を算出し、
前記複数の近傍点のそれぞれについて、天空画像を取得し、前記天空画像から開空間を識別し、前記開空間に基づいて天頂を中心とする円形の近似開空間を算出し、
前記代表点の前記仰角、及び前記複数の近傍点それぞれの前記近似開空間に基づいて、前記複数の近傍点それぞれの可視衛星数を算出する
ことを特徴とする測位精度情報算出方法。
【発明を実施するための形態】
【0013】
本発明の一実施の形態に係る測位精度情報算出システム1について図面を参照して説明する。
図1は、本実施形態に係る測位精度情報算出システム1の構成を示す概略図である。測位精度情報算出システム1は、測位精度情報算出装置10、衛星情報記憶装置21及び天空画像取得装置22により構成される。これらの測位精度情報算出装置10、衛星情報記憶装置21及び天空画像取得装置22は、それぞれ、主に半導体装置で構成され、CPU(Central Processing Unit)、RAM(Random Access Memory)等の揮発性記憶装置、ハードディスクやフラッシュメモリ等の不揮発性記憶装置、及び外部との通信のための接続を行う通信インターフェースを有する、いわゆる情報処理機器として構成されていてもよい。
【0014】
本実施形態においては、これらの装置はそれぞれ通信ネットワーク31に接続されていることとする。しかしながら、衛星情報記憶装置21及び天空画像取得装置22のいずれか又は両方は、測位精度情報算出装置10内の機能により実現されるものであってもよい。通信ネットワーク31は、LAN(Local Area Network)やインターネット等のTCP(Transmission Control Protocol)/IP(Internet Protocol)プロトコルにより通信接続を行う通信ネットワーク31とすることができる。通信ネットワーク31は、有線及び無線のいずれか又は両方を用いた通信ネットワーク31とすることができる。
【0015】
衛星情報記憶装置21は、GPS、GRONASS及びQZSS等の様々な航法衛星のうち、複数の衛星61の軌道情報を記憶することができる。衛星情報記憶装置21は、通信ネットワーク31を介してアクセスできるサーバ装置として構成されていてもよい。航法衛星の衛星信号により軌道情報を取得する場合には、航法衛星を衛星情報記憶装置21とすることとしてもよい。
【0016】
天空画像取得装置22は、ある位置情報が示す位置における天空画像が要求された際に、その位置での天空画像を送信する。ここで天空画像は、例えば天頂を中心とする平面視による画像、又は魚眼レンズ等を用いて天空を撮影した画像等を含む。ここで天空画像取得装置22は、例えば、三次元地図情報や車載カメラ等が撮影した風景画像に基づいて天空画像を生成する機能を有していてもよい。天空画像取得装置22は、通信ネットワーク31を介してアクセスできるサーバ装置として構成されていてもよい。
【0017】
測位精度情報算出装置10は、代表点決定部11と、衛星座標算出部12と、近似開空間算出部13と、可視衛星数算出部14と、可視衛星数表示部15とを有している。代表点決定部11は、複数の領域54のそれぞれの位置を表す複数のメッシュ点52のうち、一のメッシュ点52を代表点51とし、代表点51を含み、代表点51の近傍の複数のメッシュ点52を複数の近傍点55として定める。ここで、代表点決定部11は、更に、対象地域をメッシュ状に分割し、近傍点55のグループが異なる場合には、異なる代表点51を定めることとしてもよい。
【0018】
図2は、代表点51及び近傍点55について説明するための図である。
図2には2つの近傍点領域50が示されており、それぞれメッシュ53により複数の領域54に分割されている。各領域54はその位置を表すメッシュ点52を有している。代表点決定部11は、近傍点領域50に含まれる複数のメッシュ点52のうち一つのメッシュ点52を代表点51として決定し、代表点51を含む、近傍点領域50に含まれるメッシュ点52を近傍点55として決定する。ここで、メッシュ点52は、個々の領域54を2次元平面としたときの重心とすることができる。また、代表点51は、複数の近傍点55に係る複数の領域54(近傍点領域50)において、重心を含む領域54のメッシュ点52とすることができる。なお、
図2に示される代表点51及び近傍点55は一例であり、この他の方法で、代表点51、及び代表点51を含む複数の近傍点55として定めることとしてもよい。
【0019】
衛星座標算出部12は、代表点51の位置情報を取得すると共に、例えば衛星情報記憶装置21から衛星61の軌道情報を取得し、代表点51における対象時刻の衛星位置の仰角θを算出する。
図3は、衛星位置の仰角θについて説明する図である。この図に示されるように、仰角θは、代表点51において、衛星61を見上げたときの水平面からの角度である。測位衛星は高度約2万kmに軌道を取っているため、代表点51と他の近傍点55の距離は無視できる程度である。このため、各衛星61の仰角θは、代表点51及び代表点51近傍の近傍点55においてほぼ同じであり、仰角θは、近傍点55においても、代表点51の仰角θを用いて計算することとし、近傍点55での仰角θの計算は行わないこととしている。これにより計算の処理負荷をより軽減することができる。
【0020】
具体的には、例えば、与えられた衛星軌道要素等の衛星軌道を同定する情報からECEF(Earth Centered Earth Fixed)座標系での衛星軌道を表す方程式を導出する。そして、この方程式の解を計算し、観測地点中心の座標系に変換する処理を各時刻(例、1分間隔で24時間)ごとに繰り返す。その結果、時間単位で各衛星座標が出力される。ただし、観測地点中心の座標系において、以降では、仰角θのみ使用することから、仰角θのみ計算する。通常の衛星座標の算出であれば、仰角θの他、方位角を計算するところ、方位角の計算を行わないこととしているため、計算の処理負荷をより軽減することができる。
【0021】
近似開空間算出部13は、複数の近傍点55のそれぞれについて、天空画像を取得し、天空画像から開空間65を識別し、開空間65に基づいて天頂を中心とする円形の近似開空間67を算出する。天空画像、開空間65及び近似開空間67については
図5のフローチャートの説明の際に詳しく説明する。可視衛星数算出部14は、代表点51の仰角θ、及び複数の近傍点55それぞれの近似開空間67に基づいて、複数の近傍点55それぞれの可視衛星数を算出する。可視衛星数の算出については
図5のフローチャートの説明の際に詳しく説明する。可視衛星数表示部15は、複数の領域54それぞれにおける可視衛星数を示した画像を表示する。ここで測位精度情報算出装置10は、可視衛星数表示部15を有しない構成であってもよい。
【0022】
図4は、天空画像取得装置22における天空画像の取得の例について説明するための図である。この図に示されるように、天空画像取得装置22、並びに三次元地図情報記憶装置23、車載カメラ画像記憶装置24及び天空撮影画像記憶装置25は通信ネットワーク32に接続されている。ここで、通信ネットワーク32は、通信ネットワーク31と同じネットワークであってもよく、また、三次元地図情報記憶装置23、車載カメラ画像記憶装置24及び天空撮影画像記憶装置25のいずれか又はすべては、通信ネットワーク32を介してアクセスされるサーバ装置として構成されていてもよい。
【0023】
ここで、三次元地図情報記憶装置23は、建物等の構造物の情報を含んだ三次元地図情報を記憶している。天空画像取得装置22は、三次元地図情報記憶装置23から三次元地図情報を取得し、取得した三次元地図情報に基づいて、位置情報が示す位置における天空画像を生成することができる。
【0024】
車載カメラ画像記憶装置24は、車載カメラ等により撮影された画像を蓄積して記憶している。天空画像取得装置22は、車載カメラ画像記憶装置24から車載カメラ等により撮影された画像(例えば中央に道路があり、両側に建物が写っている画像)を取得し、位置情報が示す位置における天空画像を生成することができる。車載カメラ等により撮影された画像は、すべての位置における画像ではないため、位置情報によっては三次元画像が生成できない場合がある。しかしながら、天空画像そのもの又は天空画像に近い画像が併せて記憶されている場合があるため、車載カメラ等により撮影された画像を利用できる場合には、三次元地図情報から天空画像を生成する場合よりも、処理負荷をも軽減することができることがある。
【0025】
天空撮影画像記憶装置25は、直接撮影された天空画像を記憶している。天空画像取得装置22は、天空撮影画像記憶装置25から天空画像を取得することができる。ある位置情報が示す位置において、直接撮影された天空画像が存在する場合は、車載カメラ等により撮影された画像が利用できる場合より少ないと考えられるが、位置情報に係る位置に天空画像が存在する場合には、ほぼそのまま天空画像として使用することができるため、処理負荷を軽減することができる。
【0026】
上述の三次元地図情報、車載カメラ等により撮影された画像の情報、及び直接撮影された天空画像の情報は、更新頻度、コスト、精度、カバーエリアに違いがあり、測位環境を把握、評価するための情報を作成する際の要件により適切なものは異なる。近似開空間算出部13は、三次元地図情報から
生成された画像、車載カメラの画像から
生成された画像、及び天空を撮影した画像のうちいずれか利用可能なものを、天空画像取得装置22から取得することとしてもよい。また、近似開空間算出部13は、複数の天空画像が取得可能である場合に、最新の天空画像を天空画像取得装置22から取得することとしてもよい。
【0027】
なお、
図4では、三次元地図情報記憶装置23、車載カメラ画像記憶装置24及び天空撮影画像記憶装置25は、通信ネットワーク32を介して天空画像取得装置22に接続されるものとしたが、三次元地図情報記憶装置23、車載カメラ画像記憶装置24及び天空撮影画像記憶装置25のいずれか又はすべては、天空画像取得装置22内の機能により実現されるものであってもよい。
【0028】
図5は、測位精度情報算出装置10による測位精度情報算出処理S1の例について示すフローチャートである。このフローチャートに示すように、測位精度情報算出装置10の代表点決定部11は、ステップS10において、複数の領域54のそれぞれの位置を表す複数のメッシュ点52のうち、一のメッシュ点52を代表点51とし、代表点51を含み、代表点51の近傍の複数のメッシュ点52を複数の近傍点55として定める。ここで、ステップS10において、代表点決定部11は、更に、対象地域をメッシュ状に分割し、近傍点55のグループが異なる場合には、異なる代表点51を定めることとしてもよい。代表点51及び近傍点55の例については、
図2で説明したものと同様である。
【0029】
次にステップS20において、ステップS10で複数の代表点51を定めた場合には、未選択の代表点51を選択し、ステップS30において、衛星座標算出部12が、選択された代表点51に関して衛星座標算出処理S30を行う。
図6は、衛星座標算出処理S30を詳細に示すフローチャートである。このフローチャートに示されるように、衛星座標算出処理S30では、ステップS31において、選択された代表点51の位置情報を取得する。位置情報は代表点51における緯度経度の情報とすることができる。次にステップS32において、例えば衛星情報記憶装置21から、衛星61の軌道情報を取得する。ステップS33において、代表点51における対象時刻の衛星位置の仰角θを算出する。仰角θについては
図3を用いて説明した通りである。ここで複数の衛星61についてそれぞれ仰角θを算出することができる。
【0030】
図5に戻り、衛星座標算出処理S30が終了すると、ステップS40において未選択の近傍点55を選択する。ここでの近傍点55には代表点51も含まれる。近傍点55が選択されると、引き続き、近似開空間算出部13が、近似開空間算出処理S50を行う。
図7は、近似開空間算出処理S50を詳細に示すフローチャートである。このフローチャートに示されるように、近似開空間算出処理S50では、ステップS51において、近傍点55のそれぞれについて、例えば、天空画像取得装置22から天空画像を取得する。
図4を用いて説明した通り、天空画像取得装置22は、三次元地図情報記憶装置23、車載カメラ画像記憶装置24及び天空撮影画像記憶装置25の情報、並びにその他の天空画像を生成できる情報に基づいて天空画像を取得又は生成することができる。
【0031】
次にステップS52において、近似開空間算出部13は開空間65を識別する。ここで開空間65は、天空画像において衛星61が可視である領域であり、閉空間66は、天空画像において、建物等の構造物の遮蔽により、衛星61が不可視である領域である。
図8は、天空画像を画像処理し、開空間65及び閉空間66を識別しやすくした画像の例である。画像処理には、例えば二値化処理、エッジ抽出処理等を用いることができる。このような処理により開空間65と閉空間66とを識別することができる。
【0032】
ステップS53において、近似開空間算出部13は開空間65に基づいて天頂を中心とする円形の近似開空間67を算出する。近似開空間67の算出は、例えば、取得した天空画像上の開空間65内で、天頂を中心とする同心円の面積が最大となる仰角αを算出するものとすることができる。近似開空間67は、算出された仰角αの同心円状領域とすることができる。ここで、近似開空間67を表す値としてその観測地点における仰角αが出力されることとしてもよい。仰角αの算出方法の例としては、まず、天空画像上に矩形を想定し矩形上の周上を走査して、画像中心と距離が最小となる構造物の点を探す。ここで、周上に構造物の点があれば、より内側の矩形で同様の走査をおこない、周上に構造物の点がなければ、より外側の矩形で同様の走査をおこなう。これを繰り返すことにより、仰角αを求めることとしてもよい。
【0033】
図9は近似開空間67の例を説明するための図である。この図に示されるように、近似開空間67は、天頂を中心とする円形状であり、例えば閉空間66を含まないものとすることができる。
図10は近似開空間67の別の例を説明するための図である。この図に示されるように、近似開空間67は、天頂を中心とする円形状であり、例えば閉空間66を5%以内等として一部に含むものとすることができる。
【0034】
図5に戻り、近似開空間算出処理S50が終了すると、可視衛星数算出部14が可視衛星数算出処理S60を行う。
図11は、可視衛星数算出処理S60を詳細に示すフローチャートである。このフローチャートに示されるように、可視衛星数算出処理S60では、ステップS61において、仰角θを計算した衛星61のうち、未選択の衛星61を選択する。次にステップS62において選択された衛星61が可視衛星かどうかを判定する。
図12は、可視衛星かどうかの判定方法の例について説明するための図である。この図に示されるように、例えば選択された近傍点55を頂点として近似開空間67が形成する円錐形状と水平面が形成する仰角αと、選択された衛星61の仰角θを比較することで可視衛星かどうかを判定することとしてもよい。
図12の例では、衛星61aの仰角θaは角度αよりも大きいため、衛星61aは可視と判定される。一方、衛星61bの仰角θbは角度αよりも小さいため、衛星61bは不可視と判定される。このように、可視/不可視の判定は、従来の二次元の情報で判定していたものを、一次元の仰角の情報のみで判定しているため、計算の処理負荷をより軽減することができる。
【0035】
図11に戻り、ステップS62において可視衛星として判定された場合には、ステップS63において可視衛星数に1を加算して、ステップS64に移行する。一方ステップS62において可視衛星として判定されなかった場合には、ステップS64に移行する。ステップS64では、すべての衛星61について選択したかどうかを判定し、未だ選択されていない衛星61がある場合にはステップS61に戻り、処理を繰り返す。すべての衛星61について選択された場合には、可視衛星数算出処理S60を終了する。
【0036】
図5に戻り、可視衛星数算出処理S60を終了すると、ステップS70において、すべての近傍点55について選択したかどうかを判定する。ここで未だ選択されていない近傍点55がある場合にはステップS40に戻り、処理を繰り返す。ここで各衛星61の衛星座標(仰角θ)については、近傍点55の数の処理を繰り返さないこととしているため、計算の処理負荷をより軽減することができる。すべての近傍点55について選択された場合には、ステップS80に移行し、すべての代表点51について選択したかどうかを判定する。ここで未だ選択されていない代表点51がある場合にはステップS20に戻り、処理を繰り返す。すべての代表点51について選択されている場合には、可視衛星数表示処理S90に移行する。
【0037】
可視衛星数表示処理S90では、例えば複数の近傍点領域50からなる対象地域について、複数の領域54それぞれにおける可視衛星数を表した対象地域の画像を表示することとしてもよい。これにより、対象地域における測位精度情報を視覚的に認識することができる。
図13は、可視衛星数を示した対象地域の画像の例について示す図である。複数の領域54をそれぞれ可視衛星数によって色分け等をして表示することにより、更に測位精度情報を視覚的に認識することができる。ここで、可視衛星数表示処理S70は行われなくてもよいし、リスト等として表示される別の態様であってもよい。
【0038】
以上説明したように、本実施形態の測位精度情報算出装置10では、各衛星61の仰角θのみを用い、近似開空間67内に含まれるかどうかのみで、可視衛星であるかどうかを判定しているため、方位角についての計算を必要とせず、処理負荷を軽減することができる。
【0039】
また、各衛星61の衛星座標(例えば仰角θ)は、代表点51及び近傍点55において、ほとんど変化がないため、本実施形態の測位精度情報算出装置10では、代表点51を除く近傍点55の衛星座標の計算を繰り返さないこととし、代表点51の衛星座標を用いることとしているため、計算の処理負荷をより軽減することができる。
【0040】
また、衛星数の可視/不可視の判定に関し、本実施形態の測位精度情報算出装置10では、従来の二次元の情報で可視/不可視の判定をしていたものを、一次元の仰角の情報のみで判定するようにしているため、計算の処理負荷をより軽減することができる。
【0041】
また、本実施形態の測位精度情報算出装置10では、天空画像について、実際に撮影された天空画像、三次元地図情報から生成された天空画像、車載カメラから撮影された画像から生成された天空画像その他の情報から生成された天空画像を利用することができるため、より多くの地点において、より精度の高い測位精度情報を提供することができる。
【0042】
したがって、本実施形態によれば、より処理負荷を軽減して航法衛星の測位精度情報を出力することができる。